A (1.999999)-APPROXIMATION RATIO FOR VERTEX COVER PROBLEM

A Preprint
Majid Zohrehbandian
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. zohrebandian@yahoo.com

May 4, 2024

Abstract

The vertex cover problem is a famous combinatorial problem, and its complexity has been heavily studied over the years. While a 2-approximation for it can be trivially obtained, researchers have not been able to approximate it better than $2-o(1)$. In this paper, by a combination of a new semidefinite programming formulation along with satisfying new proposed properties, we introduce an approximation algorithm for the vertex cover problem with a performance ratio of 1.999999 on arbitrary graphs, en route to answering an open question about the correctness/incorrectness of the unique games conjecture.

Keywords Combinatorial Optimization • Vertex Cover Problem • Unique Games Conjecture • Complexity Theory

1 Introduction

In complexity theory, the abbreviation $N P$ refers to "nondeterministic polynomial", where a problem is in $N P$ if we can quickly (in polynomial time) test whether a solution is correct. P and $N P$-complete problems are subsets of $N P$ Problems. We can solve P problems in polynomial time while determining whether or not it is possible to solve $N P$-complete problems quickly (called the $P v s N P$ problem) is one of the principal unsolved problems in Mathematics and Computer science.

Here, we consider the vertex cover problem (VCP) which is a famous $N P$-complete problem. It cannot be approximated within a factor of 1.36 [1], unless $P=N P$, while a 2-approximation factor for it can be trivially obtained by taking all the vertices of a maximal matching in the graph. However, improving this simple 2-approximation algorithm was a hard task [2, 3].
In this paper, we show that there is a $(2-\varepsilon)$-approximation ratio for the vertex cover problem, where the value of ε is not constant. Then, we fix the ε value equal to $\varepsilon=0.000001$ and we show that on arbitrary graphs, a 1.999999 -approximation ratio can be obtained by solving a new semidefinite programming (SDP) formulation.

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and introduces new properties about it. In section 3, by using the satisfying properties, we propose a solution algorithm for VCP with a performance ratio of 1.999999 on arbitrary graphs. Finally, Section 4 concludes the paper.

2 Performance ratio based on a VCP feasible solution

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a typical example of an $N P$-complete optimization problem. In this section, we calculate the performance ratios of VCP feasible solutions which lead to an approximation ratio of $2-\varepsilon$, where the value of ε is not constant and depends on the produced feasible
solution. Then, in the next section, we will fix the value of ε equal to $\varepsilon=0.000001$ to produce a 1.999999 -approximation ratio for the vertex cover problem.
Let $G=(V, E)$ be an undirected graph on vertex set V and edge set E, where $|\mathrm{V}|=n$. Throughout this paper, $z_{V C P}^{*}$ is the optimal value for the vertex cover problem and we have produced a feasible solution for the problem with vertex partitioning $V=V_{1} \cup V_{0}$ and objective value $\left|V_{1}\right|$. The integer linear programming (ILP) model for VCP is as follows; i.e. $z 1^{*}=z_{V C P}^{*}$.

$$
\begin{aligned}
& \text { (1) } \min _{s . t .} z 1=\sum_{i \in V} x_{i} \\
& x_{i}+x_{j} \geq 1 \quad i j \in E \\
& x_{i} \in\{0,+1\} \quad i \in V
\end{aligned}
$$

Lemma 1. [4] Let x^{*} be an extreme optimal solution to the linear programming (LP) relaxation of the model (1). Then $x_{j}^{*} \in\{0,0.5,1\} \quad j \in V$ and if we define $V^{0}=\left\{j \in V \mid x_{j}^{*}=0\right\}, V^{0.5}=\left\{j \in V \mid x_{j}^{*}=0.5\right\}$ and $V^{1}=\left\{j \in V \mid x_{j}^{*}=1\right\}$, then, there exist a VCP optimal solution which includes all of the vertices V^{1} and it is a subset of $V^{0.5} \cup V^{1}$.

Theorem 1. Let x^{*} be an extreme optimal solution to the LP relaxation of the model (1) and $V^{0}=\left\{j \in V \mid x_{j}^{*}=0\right\}$, $V^{0.5}=\left\{j \in V \mid x_{j}^{*}=0.5\right\}, V^{1}=\left\{j \in V \mid x_{j}^{*}=1\right\}$ and $G_{0.5}$ be the induced graph on the vertices $V^{0.5}$. If we can introduce a vertex cover feasible partitioning $V^{0.5}=V_{1}^{0.5} \cup V_{0}^{0.5}$ with an approximation ratio of $1 \leq \rho<2$, for the VCP on $G_{0.5}$, then, the vertex cover feasible partitioning $V=\left(V_{1} \cup V_{0}\right)=\left(V_{1}^{0.5} \cup V^{1}\right) \cup\left(V_{0}^{0.5} \cup V^{0}\right)$, has an approximation ratio of $1 \leq \rho<2$, for the VCP on G.
Proof. We have $\frac{\left|V_{1}^{0.5}\right|}{z_{V C P}^{*}\left(G_{0.5}\right)} \leq \rho$. Therefore, $\left|V_{1}^{0.5}\right|+(1-\rho)\left|V^{1}\right| \leq \rho z_{V C P}^{*}\left(G_{0.5}\right)$ and we have $\frac{\left|V_{1}^{0.5}\right|+\left|V^{1}\right|}{z_{V C P}^{*}\left(G_{0.5}\right)+\left|V^{1}\right|}=\frac{\left|V_{1}\right|}{z_{V C P}^{*}(G)} \leq \rho \diamond$

We know that we can efficiently solve the following SDP formulation as a relaxation of the VCP model (1).

$$
\begin{gathered}
\text { (2) } \min _{s . t .} z 2=\sum_{i \in V} X_{o i} \\
X_{o i}+X_{o j} \geq 1 \quad i j \in E \\
0 \leq X_{o i} \leq+1 \quad i \in V \\
X \succeq 0
\end{gathered}
$$

This model can be written as follows:

$$
\begin{gathered}
\text { (3) } \text { min }_{s . t .} z 3=\sum_{i \in V} X_{o i} \\
X_{o i}+X_{o j}-X_{i j}=1 \quad i j \in E \\
X_{i i}=1, \quad 0 \leq X_{i j} \leq+1 \quad i, j \in V \cup\{o\} \\
X \succeq 0
\end{gathered}
$$

Moreover, by introducing the vector set $v_{o}, v_{1}, \ldots, v_{n}$ for which $V_{1}=\left\{i \in V \mid v_{i}=v_{o}\right\}$ is a feasible vertex cover, and $V_{o}=V-V_{1}$ is the set of the perpendicular vectors to v_{o} and $v_{i} \cdot v_{j}=X_{i j}$, see Figure 1, $\operatorname{SDP}(3)$ can be written as follows:

$$
\begin{gathered}
\text { (4) } \min _{\text {s.t. }} z 4=\sum_{i \in V} v_{o} \cdot v_{i} \\
v_{o} \cdot v_{i}+v_{o} \cdot v_{j}-v_{i} \cdot v_{j}=1 \quad i j \in E \\
v_{i} \cdot v_{i}=1, \quad 0 \leq v_{i} \cdot v_{j} \leq+1 \quad i, j \in V \cup\{o\}
\end{gathered}
$$

Theorem 2. Although it is hard to produce the exact VCP optimal value, let's assume that we have a lower bound on the VCP optimal value and we know $z_{V C P}^{*} \geq \frac{n}{2}+\frac{n}{k}=\frac{(k+2) n}{2 k}$. Then, for all vertex cover feasible partitioning $V=V_{1} \cup V_{0}$, we have the approximation ratio $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq \frac{2 k}{k+2}<2$.

Figure 1. A VCP feasible solution

Proof. If $z_{V C P}^{*} \geq \frac{(k+2) n}{2 k}$ then $\frac{n}{z_{V C P}^{*}} \leq \frac{2 k}{k+2}$. Hence, $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq \frac{n}{z_{V C P}^{*}} \leq \frac{2 k}{k+2}<2 \diamond$
Theorem 3. If $z_{V C P}^{*} \geq \frac{n}{2}$ and we have produced a VCP feasible partitioning $V=V_{1} \cup V_{0}$, where $\left|V_{1}\right| \leq \frac{k n}{k+1}$ and $\left|V_{0}\right| \geq \frac{n}{k+1}$ (or $\left|V_{1}\right| \leq k\left|V_{0}\right|$), then, based on such a solution we have an approximation ratio $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq \frac{2 k}{k+1}<2$.
Proof. If $\left|V_{1}\right| \leq \frac{k n}{k+1}$ then $n \geq \frac{k+1}{k}\left|V_{1}\right|$. Hence, $z_{V C P}^{*} \geq \frac{n}{2} \geq \frac{k+1}{2 k}\left|V_{1}\right|$ which concludes that $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq \frac{2 k}{k+1}<2 \diamond$

3 A (1.999999)-approximation algorithm on arbitrary graphs

In section 2, based on a feasible solution for the vertex cover problem, we introduced a $(2-\varepsilon)$-approximation ratio where ε value was not a constant value. In this section, we fix the value of ε equal to $\varepsilon=0.000001$ to produce a 1.999999 -approximation ratio on arbitrary graphs. To do this, we introduce the following property on a solution value of the SDP (4) formulation.

Property 1. For some vertex cover problems, after solving the SDP (4), both of the following conditions occur:
a) For less than 0.000001 n of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}<0.5$.
b) For less than 0.01 n of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}>0.5004$.

Theorem 4. If $z_{V C P}^{*} \geq \frac{n}{2}$ and the solution of the SDP (4) does not meet the Property (1) then we can produce a VCP solution with a performance ratio of 1.999999 .
Proof. If the solution of the SDP (4) does not meet the Property (1.a), then we can introduce $V_{0}=\left\{j \in V \mid v_{o}^{*} v_{j}^{*}<0.5\right\}$ and $V_{1}=V-V_{0}$, to have a VCP feasible solution with $\left|V_{0}\right| \geq 0.000001 n$ and $\left|V_{1}\right| \leq 0.999999 n \leq 999999\left|V_{0}\right|$. Then, for such a solution and based on Theorem (3), we have an approximation ratio $\frac{\left|V_{1}\right|}{z_{V C P}^{*}}<\frac{2(999999)}{999999+1}=1.999998<1.999999$.
Otherwise, if the solution of the SDP (4) meets the Property (1.a) but it does not meet the Property (1.b) then we have

$$
\begin{aligned}
& z_{V C P}^{*} \geq z_{S D P(4)}^{*} \geq(0)(0.000001 n)_{\left\{\text {s.t. } v_{o}^{*} v_{j}^{*}<0.5\right\}} \\
&+(0.5)(0.989999 n)_{\left\{\text {s.t. } 0.5 \leq v_{o}^{*} v_{j}^{*}\right\}} \\
&+(0.5004)(0.01 n)_{\left\{\text {s.t. } v_{o}^{*} v_{j}^{*}>0.5004\right\}}=\frac{n}{2}+0.0000035 n .
\end{aligned}
$$

Note that, due to the correctness of Property (1.a) we have less than 0.000001 n of vertices $j \in V$ with $v_{o}^{*} v_{j}^{*}<0.5$ and due to the incorrectness of Property (1.b) we have more than 0.01 n of vertices $j \in V$ with $v_{o}^{*} v_{j}^{*}>0.5004$. Therefore, in the above inequality, the first summation is the lower bound on the vertices $j \in V$ with $v_{o}^{*} v_{j}^{*}<0.5$, and the third summation is the lower bound on only 0.01 n of the vertices $j \in V$ with $v_{o}^{*} v_{j}^{*}>0.5004$ (only 0.01 n of the vertices with $v_{o}^{*} v_{j}^{*}>0.5004$ are considered in third summation and beyond the 0.01 n of such vertices are considered in second summation). Moreover, the second summation is the lower bound on the other vertices; i.e. the vertices $j \in V$ with $0.5 \leq v_{o}^{*} v_{j}^{*} \leq 0.5004$ or the vertices $j \in V$ with $v_{o}^{*} v_{j}^{*}>0.5004$ and beyond the 0.01 n of such vertices which have been considered in third summation.

Therefore, based on the above lower bound on $z_{V C P}^{*}$ value and based on Theorem (2), for all VCP feasible solutions $V=V_{1} \cup V_{0}$, we have the approximation ratio $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq \frac{2\left(\frac{1}{0.0000035}\right)}{0.0000035}+2$. $<1.999999 \diamond$

Figure 2. Each solution on $G 2$ corresponds to a VCP feasible solution.

Definition 1. Let $\varepsilon=0.0004$ and $V_{\varepsilon}=\left\{j \in V \mid 0.5 \leq v_{o}^{*} v_{j}^{*} \leq 0.5+\varepsilon\right\}$.

Based on Theorem (4), after solving the SDP (4) on problems with $z_{V C P}^{*} \geq \frac{n}{2}$, i) If the solution of the SDP (4) does not meet the Property (1) then we have a performance ratio of 1.999999 , ii) Otherwise (if the solution of the SDP (4) meets the Property (1)), for more than $0.989999 n$ of vertices $j \in V$, we have $0.5 \leq v_{o}^{*} v_{j}^{*} \leq 0.5+\varepsilon$; i.e. $\left|V_{\varepsilon}\right| \geq 0.989999 n$. Moreover, for each edge $i j$ in $E_{\varepsilon}=\left\{i j \in E \mid i, j \in V_{\varepsilon}\right\}$, we have $v_{i}^{*} v_{j}^{*} \simeq 0$; i.e. the corresponding vectors of each edge in E_{ε} are almost perpendicular to each other.

Therefore, to produce a VCP performance ratio of 1.999999 for problems with $z_{V C P}^{*} \geq \frac{n}{2}$, we need a solution for the SDP (4) that does not meet the Property (1). To do this, we introduce a new SDP model based on the SDP (4) formulation.

Let $G 2=\left(V_{\text {new }}, E_{\text {new }}\right)$ be a new graph based on the connection of two copies of graph $G\left(G^{\prime}=G "=G\right)$, where each vertex in G^{\prime} (one copy of G) is connected to all vertices of $G^{\prime \prime}$ (the other copy of G). Then, based on the SDP model (3), we introduce a new SDP model as follows:

$$
\begin{gathered}
\text { (5) } \text { min }_{\text {s.t. }} z 5=\sum_{i \in V_{\text {new }}} X_{o i} \\
S D P(3) \text { constraints on } G^{\prime} \text { and } G^{\prime \prime} \\
X_{o i}+X_{o j}-X_{i j}=1 \quad i \in V^{\prime}, j \in V^{\prime \prime} \\
-1 \leq X_{i j} \leq+1 \quad i \in V^{\prime}, j \in V^{\prime \prime} \\
X \succeq 0
\end{gathered}
$$

Moreover, by introducing the vector set $v_{o}, v_{1}, \ldots, v_{2 n}$ for which $V_{1 \text { new }}=V_{1}^{\prime} \cup V^{\prime \prime}{ }_{1}=\left\{i \in V_{\text {new }} \mid v_{i}=v_{o}\right\}$ corresponds to a feasible vertex cover on graph G, and $V_{0}^{\prime}=V^{\prime}-V_{1}^{\prime}$ and $V^{\prime \prime}{ }_{0}=V "-V^{\prime \prime}{ }_{1}$ correspond to perpendicular vectors to v_{o} where $V_{0}^{\prime}=-V^{\prime \prime}{ }_{0}$, see Figure 2, SDP (5) can be written as follows:

$$
\begin{gathered}
\text { (6) } \min _{\text {s.t. }} z 6=\sum_{i \in V_{\text {new }}} v_{o} v_{i} \\
S D P(4) \text { constraints on } G^{\prime} \text { and } G^{\prime \prime} \text { and a common vector } v_{0} \\
v_{o} v_{i}+v_{o} v_{j}-v_{i} v_{j}=1 \quad i \in V^{\prime}, j \in V^{\prime \prime} \\
-1 \leq v_{i} v_{j} \leq+1 \quad i \in V^{\prime}, j \in V^{\prime \prime}
\end{gathered}
$$

Lemma 2. Due to additional constraints, we have $z 6^{*} \geq 2\left(z 4^{*}\right)$. Moreover, for each VCP feasible partitioning $V=V_{1} \cup V_{0}$ on G, we can introduce $V_{1}^{\prime}=V^{\prime \prime}{ }_{1}=V_{1}$ and $-V_{0}^{\prime}=V^{\prime \prime}{ }_{0}=V_{0}$ as a feasible solution for SDP (6) on $G 2$ where $V_{1 \text { new }}=V_{1}^{\prime} \cup V^{\prime \prime}{ }_{1}$ and $V_{0 \text { new }}=V_{0}^{\prime} \cup V^{\prime}{ }_{0}$. Therefore, $z 6^{*} \leq 2\left(z 1^{*}\right)=2\left(z_{V C P}^{*}\right)$.

Now, we are going to prove that by solving SDP (6) on problems with $z_{V C P}^{*} \geq \frac{n}{2}$, it is not possible to produce a solution which meets the Property (1) on both graphs G^{\prime} and $G^{\prime \prime}$ unless the induced graph on V_{ε}^{\prime} is bipartite and the induced graph on $V "{ }_{\varepsilon}$ is bipartite.

Theorem 5. For 4 normalized vectors $v_{1}, v_{2}, v_{3}, v_{4}$ which are perpendicular to each other, there exists exactly one normalized vector v where $v . v_{i}=0.5 \quad i=1,2,3,4$. Such a vector v satisfies the equation $v=0.5\left(v_{1}+v_{2}+v_{3}+v_{4}\right)$. Proof.
$v_{1} \cdot v_{2}=0$ and then we have $\left|v_{1}+v_{2}\right|=\sqrt{\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}}=\sqrt{2}$.
$v_{3} \cdot v_{4}=0$ and then we have $\left|v_{3}+v_{4}\right|=\sqrt{\left|v_{3}\right|^{2}+\left|v_{4}\right|^{2}}=\sqrt{2}$.
$\left(v_{1}+v_{2}\right) \cdot\left(v_{3}+v_{4}\right)=0$ and then we have

$$
\left|v_{1}+v_{2}+v_{3}+v_{4}\right|=\sqrt{\left|v_{1}+v_{2}\right|^{2}+\left|v_{3}+v_{4}\right|^{2}}=2
$$

Finally, we have $\left(v_{1}+v_{2}+v_{3}+v_{4}\right) . v=2$. Hence, $\left|v_{1}+v_{2}+v_{3}+v_{4}\right| .|v| \cdot \cos (\theta)=2$ and this concludes that $\theta=0$ and $v=0.5\left(v_{1}+v_{2}+v_{3}+v_{4}\right) \diamond$

Corollary 1. For 4 normalized vectors $v_{1}, v_{2}, v_{3}, v_{4}$ which are almost perpendicular to each other, a normalized vector v where $v . v_{i} \simeq 0.5 \quad i=1,2,3,4$, satisfies the equation $v \simeq 0.5\left(v_{1}+v_{2}+v_{3}+v_{4}\right)$.

Theorem 6. By solving SDP (6) on $G 2$, it is not possible to have an optimal solution that meets the Property (1) on both graphs G^{\prime} and $G^{\prime \prime}$ unless the induced graph on V_{ε}^{\prime} is bipartite and the induced graph on $V^{"}{ }_{\varepsilon}$ is bipartite. Proof. Suppose that we have an optimal solution that meets the Property (1) on both graphs G^{\prime} and $G^{\prime \prime}$. Therefore, for an edge $a b$ in E_{ε}^{\prime} and an edge $c d$ in $E^{\prime \prime}{ }_{\varepsilon}$ (a complete subgraph of $G 2$ on four vertices a, b, c, d) we have 4 normalized vectors $v_{a}, v_{b}, v_{c}, v_{d}$ which are almost perpendicular to each other.
Moreover, we have a normalized vector v_{o} for which $v_{o} v_{h} \simeq 0.5 h=a, b, c, d$. Hence, based on Corollary (1) we have $v_{o} \simeq 0.5\left(v_{a}+v_{b}+v_{c}+v_{d}\right)$. This means that for each edge $i j$ in E_{ε}^{\prime} we have $v_{o} \simeq 0.5\left(v_{i}+v_{j}+v_{c}+v_{d}\right)$, and for each edge $i j$ in $E "{ }_{\varepsilon}$ we have $v_{o} \simeq 0.5\left(v_{a}+v_{b}+v_{i}+v_{j}\right)$.

Therefore, for each edge $i j$ in E_{ε}^{\prime} we have $v_{i}+v_{j} \simeq 2 v_{o}-v_{c}-v_{d}=U$, and for each edge $i j$ in $E^{\prime \prime}$, we have $v_{i}+v_{j} \simeq 2 v_{o}-v_{a}-v_{b}=W$, where, due to almost perpendicular property of the vectors v_{i} and v_{j}, we have $|U| \simeq|W| \simeq \sqrt{\left|v_{i}\right|^{2}+\left|v_{j}\right|^{2}}=\sqrt{2}$.
Now, suppose that we have an odd cycle on t vertices $1,2, \ldots, t$, in $G_{\varepsilon}^{\prime}=\left(V_{\varepsilon}^{\prime}, E_{\varepsilon}^{\prime}\right)$, where $t=2 k+1$ is an odd number. Then, by addition of the vectors in this cycle, we have $S=\left(v_{1}+v_{2}\right)+\left(v_{2}+v_{3}\right)+\ldots+\left(v_{t}+v_{1}\right) \simeq t U$.
But, the above summation can do as $S=2\left(v_{1}+v_{2}+v_{3}+\ldots+v_{t-2}+v_{t-1}+v_{t}\right)$ to produce the following results, which all of them must be $\simeq t U$.

$$
\begin{gathered}
S=2\left(\left(v_{1}+v_{2}\right)+\left(v_{3}+v_{4}\right)+\ldots+\left(v_{t-2}+v_{t-1}\right)+v_{t}\right) \simeq 2\left(k U+v_{t}\right)=(t-1) U+2 v_{t} \\
S=2\left(\left(v_{2}+v_{3}\right)+\left(v_{4}+v_{5}\right)+\ldots+\left(v_{t-1}+v_{t}\right)+v_{1}\right) \simeq(t-1) U+2 v_{1} \\
S=2\left(\left(v_{3}+v_{4}\right)+\left(v_{5}+v_{6}\right)+\ldots+\left(v_{t}+v_{1}\right)+v_{2}\right) \simeq(t-1) U+2 v_{2} \\
\ldots \\
S=2\left(\left(v_{t}+v_{1}\right)+\left(v_{2}+v_{3}\right)+\ldots+\left(v_{t-3}+v_{t-2}\right)+v_{t-1}\right) \simeq(t-1) U+2 v_{t-1} \\
---------------------------------1 \simeq v_{t-1} \simeq v_{t} \simeq 0.5 U
\end{gathered}
$$

Hence $|U| \simeq 2\left|v_{1}\right| \simeq 2 \neq \sqrt{2}$ and this is a contradiction; e.g. $v_{1} v_{2} \simeq(0.5 U) .(0.5 U) \neq 0$. Therefore, there is not any odd cycle in G_{ε}^{\prime}, and similarly, there is not any odd cycle in $G^{\prime \prime}{ }_{\varepsilon}$. Therefore, if the optimal solution of SDP (6) on $G 2$ meets the Property (1) on both graphs G^{\prime} and $G^{\prime \prime}$, then both of the subgraphs G_{ε}^{\prime} and $G^{\prime \prime}{ }_{\varepsilon}$ are bipartite \diamond

Corollary 2. To produce a performance ratio of 1.999999 for problems with $z_{V C P}^{*} \geq \frac{n}{2}$, we should solve SDP (6) on $G 2$. Then, if the solution of SDP (6) does not meet the Property (1), we have a performance ratio of 1.999999 . Otherwise, the VCP problem on the bipartite graph G_{ε}^{\prime} is simple, and because $\left|V_{\varepsilon}\right| \geq 0.989999 n$, solving such a simple problem produces a performance ratio of 1.999999 .

Moreover, based on Theorem (1) and Corollary (2), to produce a performance ratio of 1.999999 for problems with $z_{V C P}^{*}<\frac{n}{2}$, it is sufficient to produce an extreme optimal solution for the LP relaxation of the model (1).

Theorem 7. The following LP model has a unique optimal solution that corresponds to an extreme optimal solution for the LP relaxation of the model (1).

$$
\text { (7) } \min _{\text {s.t. }} 77=\sum_{i=1}^{n}(0.1)^{i} x_{i}
$$

$$
\begin{gathered}
x_{i}+x_{j} \geq 1 \quad i j \in E \\
\sum_{i \in V} x_{i}=z^{*} \\
0 \leq x_{i} \leq+1 \quad i \in V
\end{gathered}
$$

Proof. The feasible region of the model (7) is an optimal face of the feasible region of the LP relaxation of the model (1). Therefore, its extreme optimal points correspond to the extreme optimal points of the LP relaxation of the model
(1). Due to the properties of these extreme points, introduced in Lemma (1), and the objective coefficients of model (7), it is not possible to have more than one optimal extreme point. In other words, based on the priority weights on the decision variables of the model (7), its optimal solution corresponds to the unique extreme point solution of the following algorithm.
Step 0. Let $\mathrm{k}=1$ and z^{*} be the optimal value of the LP relaxation of the model (1).
Step k. Solve the following LP model.

$$
\begin{gathered}
\text { (8) } \min _{\text {s.t. }} z(k)=x_{k} \\
x_{i}+x_{j} \geq 1 \quad i j \in E \\
\sum_{i \in V} x_{i}=z^{*} \\
x_{i}=x_{i}^{*}=z(k)^{*} \quad i=1, \cdots, k-1 \\
0 \leq x_{i} \leq+1 \quad i \in V
\end{gathered}
$$

Let $\mathrm{k}=\mathrm{k}+1$. If $k<n$ repeat this step, otherwise, the solution x^{*} is an extreme optimal solution of the LP relaxation of the model (1) \diamond

Therefore, our algorithm to produce an approximation ratio 1.999999 for arbitrary vertex cover problems is as follows:

Mahdis Algorithm (To produce a vertex cover solution on graph G with a ratio factor $\rho=1.999999$)
Step 1. Let $V^{1}=V^{0}=\{ \}$ and solve the LP relaxation of the model (1) on G.
Step 2. If $z 1_{(L P \text { relaxation })}^{*}<\frac{n}{2}$ then solve the model (7) to produce an extreme optimal solution of the LP relaxation of the model (1). Based on such a solution $\left(x_{j}^{*} \in\{0,0.5,1\} j \in V\right)$, introduce $V^{0}=\left\{j \in V \mid x_{j}^{*}=0\right\}$, $V^{0.5}=\left\{j \in V \mid x_{j}^{*}=0.5\right\}, V^{1}=\left\{j \in V \mid x_{j}^{*}=1\right\}$, and let $G=G_{0.5}$ as the induced graph on the vertex set $V^{0.5}$.
Step 3. Produce $G 2$ based on G and solve the SDP (6) model.
Step 4. If for more than 0.000001 n of vertices $j \in V^{\prime}$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}<0.5$, then produce a suitable solution $V_{1} \cup V_{0}$, correspondingly, where $V_{0}=\left\{j \in V^{\prime} \mid v_{o}^{*} v_{j}^{*}<0.5\right\}$ and $V_{1}=V^{\prime}-V_{0}$ and go to Step 9. Hence, the solution does not meet the Property (1.a) and we have $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq 1.999999$. Otherwise, go to Step 5.
Step 5. If for more than 0.000001 n of vertices $j \in V^{\prime \prime}$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}<0.5$, then produce a suitable solution $V_{1} \cup V_{0}$, correspondingly, where $V_{0}=\left\{j \in V^{\prime \prime} \mid v_{o}^{*} v_{j}^{*}<0.5\right\}$ and $V_{1}=V^{\prime \prime}-V_{0}$ and go to Step 9 . Hence, the solution does not meet the Property (1.a) and we have $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq 1.999999$. Otherwise, go to Step 6.
Step 6. If for more than 0.01 n of vertices $j \in V^{\prime}$ and corresponding vectors, we have $v_{o}^{*} v_{j}^{*}>0.5004$, then it is sufficient to produce an arbitrary VCP feasible solution $V=V_{1} \cup V_{0}$ to have $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq 1.999999$ and go to Step 9 . Otherwise, go to Step 7.
Step 7. If for more than 0.01 n of vertices $j \in V^{\prime \prime}$ and corresponding vectors, we have $v_{o}^{*} v_{j}^{*}>0.5004$, then it is sufficient to produce an arbitrary VCP feasible solution $V=V_{1} \cup V_{0}$ to have $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq 1.999999$ and go to Step 9 . Otherwise, go to Step 8.
Step 8. The solution meets the Property (1) and based on Theorem (6), the VCP problem on G_{ε}^{\prime} is simple and $\left|V_{\varepsilon}^{\prime}\right| \geq 0.989999 n$. Therefore, solve the VCP problem on bipartite subgraph G_{ε}^{\prime} to produce a feasible solution $V_{1} \cup V_{0}$ for which we have $\frac{\left|V_{1}\right|}{z_{V C P}^{*}} \leq 1.999999$. Then, go to Step 9.
Step 9. The partitioning $\left(V_{1} \cup V^{1}\right) \cup\left(V_{0} \cup V^{0}\right)$ produces a VCP feasible solution on the original graph G with an approximation ratio factor $\rho=1.999999$.

Corollary 3. Based on the proposed 1.999999 -approximation algorithm for the vertex cover problem, the unique games conjecture is not true.

4 Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approximation algorithm within any constant factor better than 2 . Here, we proposed a new algorithm to introduce a 1.999999 -approximation ratio for the vertex cover problem on arbitrary graphs, and this lead to the conclusion that the unique games conjecture is not true.

Acknowledgment. I would like to extend my sincere appreciation to Dr. Flavia Bonomo for her useful comments. Moreover, I could publish in arXiv due to her endorsement.

Competing Interest and Data Availability

The authors have no relevant financial or non-financial interests to declare that are relevant to the content of this article. Data sharing is not applicable to this article as no data-sets were generated or analyzed during the current study.

References

1) Dinur I., Safra S. (2005) On the hardness of approximating minimum vertex cover. Annals of Mathematics, 162, 439-485.
2) Khot S. (2002) On the power of unique 2-Prover 1-Round games. Proceeding of 34th ACM Symposium on Theory of Computing, STOC.
3) Khot S., Regev O. (2008) Vertex cover might be hard to approximate to within $2-\varepsilon$. Journal of Computer and System Sciences, 74, 335-349.
4) Nemhauser G.L., Trotter L.E. (1975) Vertex packing: Structural properties and algorithms. Mathematical Programming, 8, 232-248.
