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Abstract

In this paper, a new method is discussed to derive the eigenvalue density in Hermitian matrix model with a general
potential. The density is considered on one interval or multiple disjoint intervals. The method is based on Lax pair theory
and Cayley-Hamilton theorem by studying the orthogonal polynomials associated with the Hermitian matrix model. It is
obtained that the restriction conditions for the parameters in the density are connected to the discrete Painlevé I equation,
and the results are related to the scalar Riemann-Hilbert problem. Some special density functions are also discussed in
association with the known results in this subject.
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1 Introduction
This paper is a continuation of the previous works (1) (2) (3) (4) about the linearized equation d2φ/dη2 =−ξ 2F(η ,ξ )φ

for the Painlevé or discrete Painlevé equations. The connection between the integral
∫

η

η0

√
F(t,ξ )dt in the WKB asymp-

totics and the analytic potential in the previous researches is now extended to the relation between
√

F(η ,ξ ) and the
derivative of the potential function in the complex plane to investigate the distribution of eigenvalues considered in matrix
models. The fundamental density in this consideration is the Wigner semicircle obtained from a differential equation for
the Hermite polynomials, similar to the linearized equation above, as discussed in (5). The differential equation and the
recursion formula for the Hermite polynomials form a degenerate case of the Lax pair for the discrete Painlevé I equation,
and then the Lax pair theory is now applied to study a general density problem.

The eigenvalue density is the solution of the energy minimization problem for a given potential of the model, and
there have been various methods developed in history and specially in recent years to solve this type problems, such as the
Plemelj formula or Riemann-Hilbert problem related methods. This report is to show that a new algebraic method can be
developed to calculate the densities by using the Lax pair theory and discrete Painlevé equations. The factorization of the
reduced matrix from the Lax pair by applying the Cayley-Hamilton theorem can simplify the analytic calculations when
working on the density and the consequent problems as explained in the following.

Consider the Hermitian matrix model with a general potential V (z) = ∑
2m
j=0 t j z j, where z is a real or complex variable,

t j are real, and t2m > 0 to have convergent integral for the partition function

Zn =
∫

∞

−∞

· · ·
∫

∞

−∞

e−Σn
i=1V (zi)∏

j<k
(z j− zk)

2dz1 · · ·dzn.

The free energy function is defined as (6) E(0) = − limn→∞
1
n2 lnZn. By the scaling transformation z = n

1
2m η and t j =

n1− j
2m g j, the potential becomes W (η) = ∑

2m
j=0 g j η j. The eigenvalue density ρm(η) on ν1 interval(s) Ω = ∪ν1

j=1[η
( j)
− ,η

( j)
+ ]

is defined to minimize the free energy function

E(0) =
∫

Ω

W (η)ρm(η)dη−
∫

Ω

∫
Ω

ln |λ −η | ρm(λ )ρm(η)dλdη . (1)

The density is required to satisfy the following conditions (5) (6):
(i) ρm is non-negative when η ∈Ω,

ρm(η)≥ 0; (2)

(ii) ρm is normalized, ∫
Ω

ρm(η)dη = 1; (3)

(iii) ρm satisfies a variational equation when η is an inner point of Ω,

(P)
∫

Ω

ρm(λ )

η−λ
dλ =

1
2

W
′
(η), (4)

where (P) stands for the principal value of the integral. So the problem is to find ρm(η) such that it satisfies these
three conditions. The density generally takes a form as the product of a polynomial and the square root of another
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polynomial as introduced in the following, and the nonlinear relation(s) satisfied by the parameters in the density will
become complicated as the order of the potential and the number of the potential parameters are increasing.

When m = 1 and W (η) = η2, there is ρ1(η) = 1
π

√
2−η2, for η ∈ [−

√
2,
√

2], which is the well known Wigner
semicircle. When m = 2 and W (η) = 1

2 η2 +gη4, it is given in (6) that

ρ2(η) =
1
π
(

1
2
+4gb2 +2gη

2)
√

4b2−η2, (5)

for η ∈ [−2b,2b], where
b2 +12gb4 = 1. (6)

The free energy function is

E(0)(g) = E(0)(0)+
1

24
(b2−1)(9−b2)− 1

2
lnb2. (7)

It can be calculated that E(0)(0) = 3/4. And E(0) has a singular point at g = gc, where gc =−1/48. See (6) (7) (8) (9) for
the details.

When W (η) = g2mη2m, there is (10) (11)

ρm(η) =
1
π

mg2m h(η)
√

4b2−η2, (8)

for η ∈ [−2b,2b], where

h(η) = η
2m−2 +

m−1

∑
p=1

η
2m−2−2p(2b)2p

p

∏
l=1

2l−1
2l

, (9)

subject to the condition

mg2m (2b)2m
m

∏
l=1

2l−1
2l

= 1. (10)

More results can be found, for instance, in (10) (11) (12) (13) (14) (15) (16) (17) (18). Being part of their works, the
density and free energy for potential 1

2 η2 +g2mη2m studied in (14) using combinatoric method is a generalization of the
results discussed above. In (15), a density function of the form

ρm+1(η) = c−1
0 (η− c)2m

√
4−η2, c0 =

∫
∞

−∞

(η− c)2m
√

4−η2 dη , (11)

is given and applied to study a third order phase transition problem by extending the density from the one interval to
multiple disjoint intervals. The critical point for the transition in (15) is chosen as the discrete system is changed to
continuum Painlevé II system. The string equations (2.9) and (2.10) in (15) for the coefficients βn and γn in the recursion
formula η ψn = γn+1ψn+1 + βnψn + γnψn−1 in their consideration are related to the discrete Painlevé I equation in this
paper.

The density and the conditions for the parameters in this paper are obtained from the Lax pair structure and the discrete
Painlevé I equation as outlined in the following. Consider the orthogonal polynomials pn = zn+ · · · on the real line with the
weight exp(−V (z)): < pn, pn′ >= hnδn,n′ . By using the recursion formula (19) pn+1(z)+un pn(z)+vn pn−1(z) = zpn(z), it
will be discussed that Φn(z) = e−

1
2V (z)(pn(z), pn−1(z))T satisfies two equations, Φn+1 = Ln Φn, and ∂

∂ z Φn = An Φn. These
two equations are called the Lax pair for the discrete Painlevé I equation which is a set of two discrete equations for un and
vn: < pn,V ′ pn−1 >= nhn−1, and < pn,V ′ pn >= 0, where hn/hn−1 = vn. These two relations will be applied to derive
the conditions for the parameters in the density.

The coefficient matrix An(z) in the equation above is generally a complicated 2×2 matrix. Replacing un−l and vn−l+1
in An by new parameters xn and yn respectively for a range of l, we can get another matrix

Ãn(z) = DnF̃n(z)D−1
n −

1
2

V
′
(z)I, (12)

where the matrix F̃n(z) is a polynomial of matrix Jn derived from Ln,

Jn =

(
0 1
−yn z− xn

)
.

Here Dn = diag(hn,hn−1), and I is the identity matrix. By Cayley-Hamilton theorem for Jn, there is (z−xn)I = Jn+ynJ−1
n .

Applying this relation to V
′
(z)I in (12), the matrix D−1

n Ãn(z)Dn can be factorized as a product of a polynomial and a simple
matrix

D−1
n Ãn(z)Dn = f2m−2(z)(Jn(z)− ynJ−1

n (z)), (13)
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where the polynomial f2m−2(z) will be given in section 3. There is an important asymptotics√
−det Ãn(z) =

1
2

V
′
(z)− n

z
+O

( 1
z2

)
, (14)

as z→ ∞ in the complex plane, derived by referring the structure of the discrete Painlevé I equation. This property will
be finally used to satisfy the conditions (3) and (4). If z/n

1
2m , t j/n1− j

2m , xn/n
1

2m , and yn/n
1
m are denoted as η ,g j,a, and b2

respectively, the formula for ρm(η) on interval [η−,η+] = [a−2b,a+2b] can be obtained by

1
nπ

√
det Ãn(z)dz = ρm(η)dη . (15)

The eigenvalue density problem is then solved when the condition (2) is satisfied.
The density results can be applied to get the free energy which is an important physical quantity to study the nonlinear

properties as considered in the expansion theory. The free energy and consequent physical quantities, such as internal
energy and specific heat, are generally studied based on the logarithmic partition function by using Wilson loops and
topological methods in physics. Researches in this field include, for instance, planar diagrams (6) (7) (8) (9), phase
transitions (15) (20) (21), graphical enumeration (13) (14), and continuum limit and combinatoric interpretations (14) (15)
(16) (17) (18). The Lax pair method here provides another technique to handle the branch singularities when computing
the free energy function as shown in section 6 for the one interval case.

Other models can also be studied by the Lax pair method as seen in the appendix. The weak- and strong-coupling
densities in the unitary matrix model (20) can be derived using the Lax pair for the discrete Painlevé II equation (4)
associated with the orthogonal polynomials on unit circle. The density in (22) (23) can be obtained using the Laguerre
polynomials. It would be interesting to investigate in the future whether more results for the Lax pair and discrete Painlevé
equations associated with the orthogonal polynomials obtained in the literatures, such as (24) (25) (26) (27) (28) (29) (30)
(31) (32) (33) (34) and the references therein, can be applied to study the density problems in matrix models or random
matrix ensembles.

This paper is organized as follows. To avoid the symbolic complexity, we just show the details for the density on
one interval, and point out some key steps for the multiple interval case in section 2.2 and section 5, plus an example in
section 7.1. In the next section, we will start from the orthogonal polynomials associated with the Hermitian matrix model
to derive the Lax pair and discrete Painlevé I equation, and the matrix Ãn is then defined. In section 3, Ãn is factorized
by using the Cayley-Hamilton theorem. The factorization property will give the formula for the density by scaling. In
section 4, the asymptotics for (−det Ãn)

1/2 and (−detAn)
1/2 as z→∞ in the complex plane are obtained. In section 5, we

will discuss the density and the related scalar Riemann-Hilbert problem. In section 6, the general free energy function for
one interval case is discussed. In section 7, some special densities are presented based on the general results, including
some symmetric densities associated with the results in other literatures. The appendix is about some density functions in
econophysics and unitary matrix model.

2 Lax pair and discrete Painlevé I equation

2.1 Lax pair and the orthogonal polynomials
It is discussed in the introduction that ρm(η) on one interval [η−,η+], for instance, needs to satisfy the conditions:∫

η+
η− ρm(η)dη = 1, and

1
2

W ′(η) = (P)
∫

η+

η−

ρm(λ )

η−λ
dλ

.
= lim

ε→0

(∫
η−ε

η−

ρm(λ )

η−λ
dλ +

∫
η+

η+ε

ρm(λ )

η−λ
dλ

)
,

for η ∈ (η−,η+). The method is to search an analytic function with asymptotics 1
2W ′(η)− 1

η
, as η → ∞ in the complex

plane. Then by contour integral method, these two conditions can be satisfied.
To have such asymptotics, consider the orthogonal polynomials pn(z) = zn + · · · on (−∞,∞) associated with the

Hermitian matrix model, defined by

< pn, pn′ >≡
∫

∞

−∞

pn(z)pn′(z)e
−V (z)dz = hn δn,n′ (1)

where V (z) = ∑
2m
j=0 t jz j, t2m > 0. The basic asymptotics e−V (z)/2 pn(z)∼ e−

1
2V (z)+n lnz (as z→ ∞) leads an idea to use the

differential equation of the polynomials to derive the density formula. In the following, the Lax pair is introduced in terms
of the orthogonal polynomials given above.

The orthogonal polynomials satisfy a recursion formula (19):

pn+1(z)+un pn(z)+ vn pn−1(z) = zpn(z). (2)
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By multiplying pn−1(z)e−V (z) on both sides of this recursion formula and taking integral, we have vn = hn/hn−1. This
recursion formula will give the first equation of the Lax pair. For the second equation of the pair, let us consider the
differential equation.

When n≥ 2m−1, express the derivative of pn with respect to z as a linear combination of p j, j = 0,1, · · · ,n−1,

∂

∂ z
pn = an,n−1 pn−1 +an,n−2 pn−2 + · · ·+an,0 p0, (3)

where an, j are independent of z. By integration by parts, there are

an, j h j =
∫

∞

−∞

V ′(z) p j(z) pn(z) e−V (z) dz, (′= ∂/∂ z)

for j = 0,1, · · · ,n−1, and an, j = 0 when j < n−2m+1 by the orthogonality. Then, by the recursion formula, ∂

∂ z pn can
become as a linear combination of pn and pn−1, but the new coefficients are dependent on z.

Denote Φn(z) = e−
1
2V (z)(pn(z), pn−1(z))T . By the discussions above, there are

Φn+1 = Ln Φn, (4)

where

Ln =

(
z−un −vn

1 0

)
;

and
∂

∂ z
Φn = An(z) Φn, (5)

for a matrix An(z). Equations (4) and (5) are called the Lax pair for the discrete Painlevé I equation to be discussed in
section 2.3, and the structure was given in (26), as well as in (25) (Part 2, Chapter 1).

The method in this paper starts from the construction of the matrix An. For m≥ 1 and n≥ 2m, consider

∂

∂ z
pn = an,n−1 pn−1 +an,n−2 pn−2 + · · ·+an,n−2m+1 pn−2m+1,

∂

∂ z
pn−1 = an−1,n−2 pn−2 +an−1,n−3 pn−3 + · · ·+an−1,n−2m pn−2m,

where, for n′ = n or n−1, and k = 1,2, · · · ,2m−1,

an′,n′−khn′−k =
∫

∞

−∞

V ′(z) pn′−k pn′ e−V (z)dz. (6)

It follows that
∂

∂ z

(
pn

pn−1

)
=

2m−1

∑
k=1

Cn−k

(
Pn−k

Pn−k−1

)
,

where

Cn−k =

(
an,n−khn−k 0

0 an−1,n−k+1hn−k+1

)
,

for k = 1, · · · ,2m−1. And Pj = p j/h j satisfy(
Pj

Pj−1

)
= J̄ j+1

(
Pj+1
Pj

)
, J̄ j+1 =

(
0 1

−v j+1 z−u j

)
,

by using (4) and v j+1 = h j+1/h j. Let Dn = diag(hn,hn−1). The above discussion gives

∂

∂ z

(
pn

pn−1

)
= Dn FnD−1

n

(
pn

pn−1

)
,

where the matrix Fn is defined by

DnFn =Cn−1J̄n + · · ·+Cn−2m+1J̄n−2m+2J̄n−2m+3 · · · J̄n. (7)

Let I be the 2×2 identity matrix. Then, there is

An = DnFnD−1
n −

1
2

V ′(z)I, n≥ 2m. (8)
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2.2 Reduced matrices from the Lax pair structure
Let ∆ be the operator for index change acting only on the polynomials: ∆l pn = pn+l , where l is integer. Then∫

∞

−∞

pn′
2m

∑
j=1

jt j(xn +∆+ yn∆
−1) j−1 pn′−ke−V (z)dz

=
∫

∞

−∞

pn′
2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n (∆+ yn∆
−1)q pn′−ke−V (z)dz

=
2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n hn′ δq−k−2r,0, (9)

for n′ = n or n− 1, k = 1,2, · · · ,2m− 1, and q = 0,1, · · · ,2m− 1, where the new parameters xn and yn are introduced

by referring the roles of the un and vn in the Lax pair. Here ( q
r ) = q!/(r!(q− r)!), [·] denotes the integer part, µq =

(1+(−1)q)/2, and q= 2[q/2]−µq+1. For k > 0, there is q−k−2r = 2([q/2]−µq−r)+1+µq−k < 0 if [q/2]−µq < r,
which implies δq−k−2r,0 = 0 when r > [q/2]−µq.

Let

F̃n =
2m

∑
j=1

jt j

j−1

∑
q=1

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n Jq−2r
n , (10)

where

Jn =

(
0 1
−yn z− xn

)
. (11)

Define
Ãn(z) = DnF̃nD−1

n −
1
2

V ′(z)I, (12)

which is a matrix reduced from the Lax pair structure, to be used for the one interval problem.
For the density on disjoint intervals, let

J(ν)n =

(
0 1
−y(1)n z− x(1)n

)
· · ·
(

0 1
−y(ν)n z− x(ν)n

)
. (13)

According to the Cayley-Hamilton theorem for J(ν), there is

(trJ(ν)n ) I = J(ν)n +(detJ(ν)n )J(ν)n
−1
. (14)

We can transform t j ( j = 1, · · · ,2m) into a new set of parameters t
′
j ( j = 1, · · · ,2m) by a linear transformation, such that

V ′(z) =
ν−1

∑
s=0

zs
ms

∑
q=0

t
′
νq+s+1(trJ

(ν)
n )q, (15)

for some integers ms (s = 0, · · · ,ν − 1), where each ms is the largest integer such that s+ νms ≤ 2m− 1. In fact, by
expanding the above expression in terms of z and comparing the coefficients with V ′(z) = ∑

2m
j=1 jt jz j−1, we can get a

upper triangle matrix T2m so that T2m~t ′ =~t with~t = (t1,2t2, · · · ,2mt2m)
T and~t ′ = (t

′
1, · · · , t

′
2m)

T . The derivative ∂ pn/∂ z is
now expanded as

∂ pn

∂ z
=

ν−1

∑
s=0

N0

∑
q′=1

a(ν)n,n−νq′+sz
s pn−νq′(z)+

n

∑
k=νN0+1

a(ν)n,n−k pn−k(z), (16)

where n−νN0 < ν and the choice of N0 is dependent on the value of m.
By the index change operator ∆, there is

ms

∑
q=1

t ′νq+s

∫
∞

−∞

pn−νq′+sz
s(∆ν +(detJn)∆

−ν)q pne−V (z)dz

=
ms

∑
q=1

t
′
νq+s

[q/2]−µq

∑
r=0

(
q
r

)
(detJ(ν)n )q−r

δq−q′−2r,0 , q′ ≤ ms, (17)

Then we get another reduced matrix

Ã(ν)
n (z) = DnF̃(ν)

n D−1
n −

1
2

V ′(z)I, (18)
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where

F̃(ν)
n =

ν−1

∑
s=0

zs
ms

∑
q=1

t
′
νq+s

[q/2]−µq

∑
r=0

(
q
r

)
(detJ(ν)n )r(J(ν)n )q−2r . (19)

by referring that (pn−νq′ , pn−νq′−1)
T is connected to

Dn(detJ(ν)n )−q′(J(ν)n )q′D−1
n (pn, pn−1)

T .

The formula for the matrix Ã(ν)
n (z) will be applied to study the density on multiple disjoint intervals as discussed in section

5.

2.3 Reduced equations from discrete Painlevé I
The discrete Painlevé I equation associated with the orthogonal polynomials in the considerations was introduced in (26)
as an equation for vn. As an extension, the discrete Painlevé I equation here is a set of two equations for un and vn.

By orthogonality of the polynomials pn(z) = zn + · · · and integration by parts, there are

< pn(z),V ′(z) pn−1(z)>= nhn−1, (20)
< pn(z),V ′(z) pn(z)>= 0. (21)

These two equations are recursion formulae for the parameters un and vn. The set of (20) and (21) is called discrete
Painlevé I equation when m = 2, and called high order discrete Painlevé I equation when m > 2. The discrete Painlevé I
equation is the consistency condition for the Lax pair (4) and (5). The consistency can be discussed by the methods in the
references cited in the introduction. In this paper, only the equations are needed for restricting the parameters.

If the differential equation is written in the form

∂

∂ z
pn = an,n pn +an,n−1 pn−1 + · · ·+an,n−2m+1 pn−2m+1,

where an,n = 0, then the equation (6) is still true for k = 0. Write (20) and (21) as

an,n−1hn−1 = nhn−1, (22)
an,nhn = 0. (23)

Based on (9) for n′ = n, k = 1 and k = 0 respectively, in this method for eigenvalue density on one interval, restrict xn and
yn to satisfy the following equations

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr+1

n δq,2r+1 = n, (24)

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n δq,2r = 0, (25)

Notice that δq,2r+1 = 0 when q is even, and δq,2r = 0 when q is odd. After substitutions q = 2p+ 1, r = p in (24), and
q = 2p, r = p in (25), there are

2m

∑
j=2

jt j

[
j
2

]
−1

∑
p=0

(
j−1

2p+1

)(
2p+1

p

)
x j−2p−2

n yp+1
n = n, (26)

2m

∑
j=1

jt j

[
j−1
2

]
∑
p=0

(
j−1
2p

)(
2p
p

)
x j−2p−1

n yp
n = 0. (27)

These two equations will be changed to get the restriction conditions for the parameters in the density.
Specially, when V (z) is even, V (−z) = V (z), or t1 = t3 = · · · = t2m−1 = 0, there is pn(−z) = pn(z), which implies

un = 0, and it follows that xn = 0. Then (27) becomes 0 = 0, and (26) becomes

m

∑
j=1

2 j t2 j

(
2 j−1

j

)
y j

n = n, (28)

by replacing j by 2 j, and taking p = j− 1 on the left hand side of (26). The relations between the parameters are
fundamental when studying the nonlinear properties of the density problem as explained before, and relevant discussions
can be seen in (17) and (14) (section 5.11), for instance. In (14), an enumeration method is applied to derive a parameter
relation formula similar to equation (28).
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3 Factorization of Ãn(z)

If xn, yn, and t j( j = 1, · · · ,2m) satisfy equation (27), then for Ãn(z) defined by (12) and µq = (1+(−1)q)/2, there is

D−1
n ÃnDn

=
1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n (J
q−2r
n − (yn J−1

n )q−2r). (1)

Proof. Because
(z− xn)I = Jn + ynJ−1

n , (2)

and q = 2[q/2]−µq +1, the binomial expansion implies
(z− xn)

qI

=

(
[q/2]−µq

∑
r=0

+ µq

[q/2]

∑
r=[q/2]

+
2[q/2]−µq+1

∑
r=[q/2]+1

)(
q
r

)
yr

nJq−2r
n

=
[q/2]−µq

∑
r=0

(
q
r

)
yr

nJq−2r
n + µq

(
q

[q/2]

)
y[q/2]

n Jq−2[q/2]
n +

[q/2]−µq

∑
s=0

(
q
s

)
yq−s

n J−q+2s
n

=
[q/2]−µq

∑
r=0

(
q
r

)
yr

n
(
Jq−2r

n +(ynJ−1
n )q−2r)+µq

(
q

[q/2]

)
y[q/2]

n Jq−2[q/2]
n ,

where s comes out by substitution r = q− s, and is replaced by r in the last step. Since

V
′
(z) =

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n (z− xn)
q,

V
′
(z)I now can be expressed in terms of Jn.

By D−1
n ÃnDn = F̃n− 1

2V
′
(z)I, where F̃n is given by (10), we then have

D−1
n ÃnDn

=
1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n (J
q−2r
n − (yn J−1

n )q−2r)

−1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n µq

(
q

[q/2]

)
y[q/2]

n Jq−2[q/2]
n .

Since µq = 1 when q is even, and µq = 0 when q is odd, the last part in the above vanishes by taking q = 2p and applying
equation (27). So the lemma is proved.

Let

αn =
z− xn +

√
(z− xn)2−4yn

2
. (3)

It is easy to check that √
−det(Jn− ynJ−1

n ) =
√
(z− xn)2−4yn = αn− ynα

−1
n . (4)

For Jn defined by (11), there are ( k = 1,2, · · · )

Jk
n− yk

nJ−k
n =

αk
n − yk

nα−k
n

αn− ynα
−1
n

(Jn− ynJ−1
n ), (5)

where

αk
n − yk

nα−k
n

αn− ynα
−1
n

=
1

2k−1

[ k−1
2 ]

∑
s=0

(
k

2s+1

)
(z− xn)

k−2s−1((z− xn)
2−4yn)

s. (6)

Proof. By (2) and (3), there is
Jn + ynJ−1

n = (αn + ynα
−1
n )I, (7)

which implies J2
n − y2

nJ−2
n = (αn + ynα−1

n )(Jn− ynJ−1
n ). Then (5) is true for k = 1 and 2.
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Suppose (5) is true for k−1 and k. Let us show it is true for k+1. Multiplying (5) with (7), we have

Jk+1
n − yk+1

n J−k−1
n + yn(Jk−1

n − yk−1
n J−k+1

n )

=
αk+1

n − yk+1
n α−k−1

n

αn− ynα
−1
n

(Jn− ynJ−1
n )+ yn

αk−1
n − yk−1

n α−k+1
n

αn− ynα
−1
n

(Jn− ynJ−1
n ).

By the assumption, equation (5) is true for k+1.
By (3) and ynα−1

n = 1
2 (z− xn− ((z− xn)

2−4yn)
1/2), there is

α
k
n − yk

nα
−k
n

=
1
2k

k

∑
j=0

(
k
j

)
(z− xn)

k− j
(
((z− xn)

2−4yn)
j
2 − (−1) j((z− xn)

2−4yn)
j
2

)

=
1

2k−1

[ k−1
2 ]

∑
s=0

(
k

2s+1

)
(z− xn)

k−2s−1((z− xn)
2−4yn)

s+ 1
2 ,

where the terms with even j are cancelled, and the terms with odd j are combined by taking j = 2s+1.
Let

f2m−2(z) =
1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n

2q−2r−1 f (q,r)(z), (8)

where

f (q,r)(z) =
[ q−2r−1

2 ]

∑
s=0

(
q−2r
2s+1

)
(z− xn)

q−2r−2s−1((z− xn)
2−4yn)

s. (9)

The discussions above imply the following result.
If xn, yn, and t j( j = 1, · · · ,2m) satisfy equation (27), then for any z ∈C (complex plane), there is

D−1
n Ãn(z)Dn = f2m−2(z)(Jn(z)− ynJ−1

n (z)), (10)

where Ãn(z) is defined by (12 ), f2m−2(z) is a polynomial of degree 2m−2 defined by (8 ) and (9 ), and Jn(z) is defined
by (11).

4 Asymptotics as z→ ∞

If xn, yn(> 0), and t j( j = 1, · · · ,2m) satisfy equations (26) and (27), then for z ∈C[xn−2
√

yn,xn +2
√

yn], there is

√
−det Ãn =

1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[q/2]−µq

∑
r=0

(
q
r

)
yr

n (α
q−2r
n − (ynα

−1
n )q−2r). (1)

As z→ ∞ in the complex plane, there is the asymptotics√
−det Ãn(z) =

1
2

V ′(z)− n
z
+O

(
1
z2

)
, (2)

where V (z) = ∑
2m
j=0 t jz j, t2m > 0 and ′ = ∂/∂ z.

Proof. As z→ ∞, there is D−1
n Ãn(z)Dn ∼ mt2mz2m−1diag(−1,1) by (10), (11), and (12). Since t2m > 0, the branch of the

square root is determined by (−det Ãn(z))1/2 ∼ mt2m z2m−1, as z→+∞ on the real line. Then (5) with k = q−2r and (4)
imply √

−det(Jq−2r
n − (ynJ−1

n )q−2r) = α
q−2r
n − (ynα

−1
n )q−2r,

which gives (1) according to (1). Here we denote ∑
−1
r=0 ·= 0 when q = 0 for convenience in the discussions.

Let s = q− r = ([q/2]−µq− r)+ [q/2]+1 in the terms (ynα−1
n )q−2r in (1). Then

√
−det Ãn =

1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[
[q/2]−µq

∑
r=0

(
q
r

)
α

q−r
n (ynα

−1
n )r

−
q

∑
s=[q/2]+1

(
q
s

)
α

q−s
n (ynα

−1
n )s

]
.
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By binomial formula, there is√
−det Ãn =

1
2

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

[
(αn + ynα

−1
n )q

−µq

(
q

[q/2]

)
α

q−[q/2]
n (ynα

−1
n )[q/2]−2

q

∑
s=[q/2]+1

(
q
s

)
ys

nα
−(2s−q)
n

]
.

Since αn + ynα−1
n = z− xn, the first part in the bracket above gives 1

2V
′
(z) by considering the outside summations. The

second part in the bracket can be dropped off by using (27). For s = [q/2]+1 in the third part in the bracket, we have the
following by separating the odd q and even q terms, and by noticing that q starts from q = 1, and j starts from j = 2 for
this part,

2m

∑
j=1

jt j

j−1

∑
q=0

(
j−1

q

)
x j−q−1

n

(
q

[q/2]+1

)
y[q/2]+1

n α
q−2[q/2]−2
n

= α
−1
n

2m

∑
j=2

jt j

[
j
2

]
−1

∑
p=0

(
j−1

2p+1

)(
2p+1

p

)
x j−2p−2

n yp+1
n

+α
−2
n

2m

∑
j=2

jt j

[
j−1
2

]
∑
p=1

(
j−1
2p

)(
2p

p+1

)
x j−2p−1

n yp+1
n ,

where q = 2p+ 1 when q is odd, and q = 2p when q is even. As z→ ∞, it is easy to check that α−1
n = z−1 +O

(
z−2
)
.

Combining the discussions above, we get√
−det(Ãn) =

1
2

2m

∑
j=1

jt jz j−1− n
z
+O

(
1
z2

)
,

by using (26).
In the following, we show that (−detAn(z))1/2 has similar asymptotics as discussed for (−det Ãn(z))1/2 as z→ ∞.

Since the restriction conditions for An and Ãn are different in the asymptotics, separate proofs are needed. The proof in
the following adopts the Cauchy kernel used in (26) (10).

For An defined by (8) with n≥ 2m, as z→ ∞, there is√
−detAn(z) =

1
2

V ′(z)− n
z
+O

(
1
z2

)
, (3)

when the parameters satisfy (22). Proof. Denote

p̂n(z) =
∫

∞

−∞

e−V (z′)

z′− z
pn(z′)dz′, and Ψn =

(
pn p̂n

pn−1 p̂n−1

)
.

It is not hard to see that V ′(z) and Fn(z) are both of degree 2m−1 in z. Since n≥ 2m, by orthogonality there is∫
∞

−∞

e−V (z′)

z′− z

[
Dn(F(z′)−Fn(z))D−1

n − (V ′(z′)−V ′(z))
]( pn(z′)

pn−1(z′)

)
dz′ = 0.

Then it can be verified that
∂

∂ z
Ψn = DnFnD−1

n Ψn−Ψn diag(0,V ′).

Multiplying Ψ−1
n on both sides of the above equation and taking trace, we get the following by using ∂ detΨn/∂ z = 0,

trFn(z) =V ′(z), (4)

which implies −detAn(z) = 1
4 (V

′(z))2−detFn(z).
According to (7), DnFn can be expressed as

[Cn−1J̄−1
n−1 · · · J̄

−1
n−m+1 + · · ·+Cn−2m−1J̄n−2m+2 · · · J̄n−m]J̄n−m+1 · · · J̄n−1J̄n.

Considering the leading terms as z→ ∞, we have

Dn Fn = [det(J̄n−1 · · · J̄n−m+1)
−1zm−1diag(an,n−1hn−1,0)+ · · ·

+zm−1diag(0,an−1,n−2mhn−2m)]J̄n−m+1 · · · J̄n−1J̄n.

It can be calculated by (6) that an−1,n−2mhn−2m = 2mt2mhn−1. Since detDn = hnhn−1, and vn = hn/hn−1, there is detFn =
2mt2m an,n−1 z2m−2(1+O(z−1)). By (22), there is

detFn(z) = 2mnt2m z2m−2(1+O(z−1)). (5)

Then (3) is proved.
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5 Density and related problems

For the density on one interval, denote z/n
1

2m , t j/n1− j
2m , xn/n

1
2m , and yn/n

1
m by η , g j, a, and b2 respectively according

to the universality argument (10), where b > 0. Let αn = n
1

2m α , and then yn α−1
n = n

1
2m (b2α−1), where α = (η −

a+
√

(η−a)2−4b2)/2, and b2 α−1 = (η − a−
√
(η−a)2−4b2)/2. By Proposition 3, it follows that for z ∈ C[xn−

2
√

yn,xn +2
√

yn], √
−det Ãn(z) = n1− 1

2m k2m−2(η)
√
(η−a)2−4b2, η ∈C[a−2b,a+2b],

where

k2m−2(η) =
2m

∑
j=1

jg j

j−1

∑
q=0

(
j−1

q

)
a j−q−1

[
q
2

]
−µq

∑
r=0

(
q
r

)
b2r

2q−2r k(q,r)(η), (1)

and

k(q,r)(η) =
[ q−2r−1

2 ]

∑
s=0

(
q−2r
2s+1

)
(η−a)q−2r−2s−1((η−a)2−4b2)s. (2)

Define an analytic function

ωm(η) = k2m−2(η)
√

(η−a)2−4b2, η ∈C[a−2b,a+2b]. (3)

The parameters a, b, and g j( j = 1, · · · ,2m) are restricted to satisfy the following conditions

2m

∑
j=2

jg j

[
j
2

]
−1

∑
p=0

(
j−1

2p+1

)(
2p+1

p

)
a j−2p−2 b2p+2 = 1, (4)

2m

∑
j=1

jg j

[
j−1
2

]
∑
p=0

(
j−1
2p

)(
2p
p

)
a j−2p−1 b2p = 0. (5)

These two conditions (4) and (5) are obtained from (26) and (27). By Proposition 4, if a,b, and g j( j = 1, · · · ,2m) satisfy
the equations (4) and (5), then for η ∈C[a−2b,a+2b] there is

ωm(η) =
1
2

2m

∑
j=1

jg j

j−1

∑
q=0

(
j−1

q

)
a j−q−1

[q/2]−µq

∑
r=0

(
q
r

)
b2r (αq−2r− (b2

α
−1)q−2r). (6)

As η → ∞,

ωm(η) =
1
2

W ′(η)− 1
η
+O

(
1

η2

)
. (7)

In (6), the index j actually starts from j = 2, and index q starts from 1. We keep this form just for convenience in the later
discussion for free energy when we use equation (5) where j is from j = 1 and p is from p = 0. Let

ρm(η) =
1
π

k2m−2(η)
√
(η+−η)(η−η−), η ∈ [η−,η+], (8)

where η− = a−2b, η+ = a+2b, b > 0, and k2m−2(η) is given by (1). By (3) and (8), there is

ωm(η)
∣∣∣
[η−,η+]±

=±πi ρm(η)
∣∣∣
[η−,η+]

, (9)

where [η−,η+]
+ and [η−,η+]

− stand for the upper and lower edges of the interval [η−,η+] respectively. Since ρm(η) is
non-negative, we also need

k2m−2(η)≥ 0, (10)

for η ∈ [η−,η+].
For the density on multiple disjoint intervals, consider

J(ν) =
(

0 1
−b2

1 η−a1

)
· · ·
(

0 1
−b2

ν η−aν

)
, (11)

where ν ≥ 1. According to the Cayley-Hamilton theorem for J(ν), choose α(ν) = (Λ+

√
Λ2−4b(ν)2

)/2, where Λ =

Λ(η) = trJ(ν), b(ν) > 0 and b(ν)
2
= detJ(ν). We can transform g j ( j = 1, · · · ,2m) into a new set of parameters g′j ( j =

10



1, · · · ,2m) by a linear transformation so that W ′(η) = ∑
ν−1
s=0 ηs

∑
ms
q=0 g

′
νq+s+1Λq for some integers ms (s = 0, · · · ,ν−1) as

done in section 2.2.
Define another analytic function

ω
(ν)
m (η) =

1
2

ν−1

∑
s=0

η
s

ms

∑
q=1

g
′
νq+s+1

[q/2]−µq

∑
r=0

(
q
r

)
b(ν)

2r
(α(ν)q−2r− (b(ν)

2
α
(ν)−1

)q−2r), (12)

for η in outside of the cuts to be discussed in the following. Then there is ω
(ν)
m (η) = 1

2W ′(η)−X(η), where

X(η) =
ν−1

∑
s=0

η
s

ms

∑
q=0

g
′
νq+s+1

[
µq

2

(
q

[q/2]

)
b(ν)

2[q/2]
α
(ν)q−2[q/2]

+
q

∑
r=[q/2]+1

(
q
r

)
b(ν)

2r
α
(ν)q−2r

]
. (13)

It is the same argument as discussed for ωm(η) that if the parameters satisfy the conditions
[mν−1−1

2

]
∑
p=0

g
′
2ν p+2ν

(
2p+1

p

)
b(ν)

2p+2
= 1, (14)

[ms
2 ]

∑
p=0

g
′
2ν p+s+1

(
2p
p

)
b(ν)

2p
= 0, (15)

for s = 0,1, · · · ,ν−1, then

ω
(ν)
m (η) =

1
2

W ′(η)− 1
η
+O

(
1

η2

)
, (16)

as η → ∞.

Now, consider the cuts for ω
(ν)
m (η), determined by α(ν)−b(ν)

2
α(ν)−1

=

√
Λ2−4b(ν)2. The equation Λ2−4b(ν)

2
= 0

has 2ν roots, real or complex. If there is a complex root, its complex conjugate is also a root. If there is repeated root,
the factor can be moved out from the inside of the square root in the expression of ω

(ν)
m (η). Therefore, without loss of

generality, we consider the equation Λ2− 4b(ν)
2
= 0 has 2ν1 simple real roots η

(s)
− ,η

(s)
+ , s = 1, · · · ,ν1, and 2ν2 simple

complex roots ηs, η̄s, s = 1, · · · ,ν2, where η̄s is the complex conjugate of ηs, Imηs > 0, and ν = ν1 + ν2. Suppose the
real roots are so ordered that [η(s)

− ,η
(s)
+ ], s = 1, · · · ,ν1, form a set of disjoint intervals, Ω = ∪ν1

s=1[η
(s)
− ,η

(s)
+ ]. Define

ρ
(ν)
m (η) =

1
π

Re
1
i

ω
(ν)
m (η)

∣∣∣
Ω+

, (17)

for η ∈ Ω. It can be seen that when ν = ν1 = 1, ω
(1)
m = ωm, ρ

(1)
m (η) = ρm(η), and the conditions (14) and (15) become

(4) and (5) respectively.
Choose ν2 points η

(0)
s on the real line outside of Ω, such that the straight lines Γs’s, each one connecting ηs and η

(0)
s

for s= 1, · · · ,ν2, do not intersect each other. Now, ω
(ν)
m (η) is well defined and analytic in the outside of Ω∪∪ν2

s=1(Γs∪ Γ̄s),
where Γ̄s is the straight line connecting η̄s and η

(0)
s . Let Γ∗s be the closed counterclockwise contour along the edges of

Γs∪ Γ̄s, and define

Is =
∫

Γ∗s
ω

(ν)
m (η)dη , and Îs(η) =

∫
Γ∗s

ω
(λ )
m (λ )

λ −η
dλ ,η ∈Ω,

for s = 1, · · · ,ν2. According to the definition of Γ∗s , Is and Îs(η) are real.
If the parameters as,bs(s = 1, · · · ,ν), and g j( j = 1, · · · ,2m) satisfy the conditions (14) and (15), then ρ

(ν)
m (η) defined

by (17) on Ω satisfies (3) and (4).
Proof. Let Γ be a large counterclockwise circle of radius R, and Ω∗ be the union of closed counterclockwise contours
around the upper and lower edges of all the intervals in Ω. Then by Cauchy theorem and (16),∫

Ω∗

(
ω

(ν)
m (η)− 1

2
W ′(η)

)
dη +

ν2

∑
s=1

Is =
∫

Γ

(
ω

(ν)
m (η)− 1

2
W ′(η)

)
dη →−2πi,

as R→ ∞, which implies
∫

Ω
ρm(η)dη = 1 by (9),

∫
Ω∗W

′(η)dη = 0, and Is are real. So ρm(η) satisfies the condition (3).
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Change the Ω− and Ω+ discussed above just at η ∈Ω as semicircles of ε radius. By (16) and
∫

Γ∗s
W ′(λ )
λ−η

dλ = 0, there
is

1
2πi

∫
Ω∗

ω
(ν)
m (λ )− 1

2W ′(λ )
λ −η

dλ +
1

2πi

ν2

∑
s=1

Îs =
1

2πi

∫
Γ

ω
(ν)
m (λ )− 1

2W ′(λ )
λ −η

dλ → 0,

as R→ ∞. Then taking the real part on both sides and by (17), we get

1
2

W ′(η) =
1

2π

∫
Ω∗

Re 1
i ω

(ν)
m (λ )

λ −η
dλ → (P)

∫
Ω

ρm(λ )

η−λ
dλ ,

as ε → 0.
By the discussions above, it can be seen that when ν2 = 0, as,bs(s = 1, · · · ,ν), and g j( j = 1, · · · ,2m) satisfy the

relations (14) and (15), G(η) = ω
(ν)
m (η)− 1

2W ′(η) solves the scalar Riemann-Hilbert problem (10):

(i) G(η) is analytic when η ∈CΩ;

(ii) G(η)
∣∣∣
Ω+

+ G(η)
∣∣∣
Ω−

=−W ′(η);

(iii) G(η)→ 0, as η → ∞.

(18)

In other words, if as and bs can be chosen such that(
trJ(ν)

)2
−4detJ(ν) =

ν

∏
j=1

(η−η
( j)
− )(η−η

( j)
+ ), (19)

then the corresponding Riemann-Hilbert problem can be well solved, where the left hand side of (19) is also equal to
−det(J(ν)− (detJ(ν))J(ν)

−1
).

Meanwhile, by Proposition 4, when n≥ 2m and the parameters satisfy (22), the σn(z) defined by

σn(z) =
1
π

Re
√

detAn(z), −∞ < z < ∞, (20)

satisfies
∫

∞

−∞
σm(z)dz = n and (P)

∫
∞

−∞

σm(z′)
z−z′ dz′ = 1

2V ′(z), which is the level density (5). When the density involves the
parameter n, the discrete Painlevé I equation and the initial conditions when n is less than 2m need to be considered to
calculate the functions un and vn.

6 Free energy for the one interval case
For ρm(η) defined by (8) on [η−,η+] with the parameters a, b, and g j( j = 1, · · · ,2m) satisfying the conditions (10), (4),
and (5), there is ∫

η+

η−
η

k
ρm(η)dη

=
2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1 bq+1

[q/2]−µq

∑
r=0

(
q

[q/2]+ r+1

)
R2r+µq+1,k (1)

where
Rl,k =

i
π

∫
π

−π

(a+2bcosθ)ke−i l θ sinθ dθ , (2)

with l = 2r+µq +1, and µq = (1+(−1)q)/2.
Proof. Let Ω∗ be the closed counterclockwise contour around lower and upper edges of [η−,η+], and Γ be a large
counterclockwise circle. Since Ω∗ is counterclockwise, by (9) and Cauchy theorem we have∫

η+

η−
η

k
ρm(η)dη =− 1

2πi

∫
Ω∗

η
k
ωm(η)dη =− 1

2πi

∫
Γ

η
k
ωm(η)dη .

So the problem becomes the calculation of the integral
∫

Γ
ηkωm(η)dη .

By using binomial formula skill as in the proof of Proposition 4, and
∫

Γ
ηk (α +b2α−1)q dη =

∫
Γ

ηk (η−a)q dη = 0,
we can obtain ∫

η+

η−
η

k
ρm(η)dη =

1
2πi

2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1

q

∑
s=[q/2]+1

(
q
s

)
b2s
∫

Γ

η
k

α
−(2s−q) dη . (3)

Notice that the index q is changed to start from 1, and j is changed to start from 2.
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On Ω∗, there is η = a + 2b cosθ , −π ≤ θ ≤ π, where a = (η+ + η−)/2 and 2b = (η+ − η−)/2 > 0. Then
α−1 = b−1 e−iθ , where the square root takes positive and negative imaginary value on upper and lower edge of [η−,η+]
respectively. By Cauchy theorem, the integral along Γ can be changed to along Ω∗, that implies∫

Γ

η
k

α
−(2s−q) dη =−2bq−2s+1

∫
π

−π

(a+2bcosθ)ke−i(2s−q)θ sinθ dθ .

Let r = s− [q/2]−1 in (3). Because the range of s is from [q/2]+1 to q, and q = 2[q/2]− µq +1, the range of r is
from 0 to [q/2]−µq. Since 2s−q = 2r+µq +1, this lemma is proved.

For ρm(η) defined by (8) on [η−,η+] with the parameters a, b, and g j( j = 1, · · · ,2m) satisfying the conditions (10),
(4), and (5), there is∫

η+

η−
ln |η−a|ρm(η)dη

= ln(2b)−
2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1 bq+1

[q/2]−µq

∑
r=0

(
q

[q/2]+ r+1

)
Θ2r+µq+1 (4)

where
Θl = Re

i
π

∫
π

0
θ eiθ

[(
eiθ +

√
e2iθ −1

)l−
(
eiθ −

√
e2iθ −1

)l
]

dθ , (5)

with l = 2r+µq +1, and µq = (1+(−1)q)/2.
Proof. Let γ = γ1 ∪ γ2 ∪ γ3 be a closed counterclockwise contour, where γ1 is the upper edges of [η−,a], γ2 is the upper
edges of [a,η+], and γ3 is the semi-circle of radius 2b with center a. Applying Cauchy theorem for ln(η−a)ωm(η), we
have ∫

γ1

(ln |η−a|+π i)ωm(η)dη +
∫

γ2

ln |η−a|ωm(η)dη +
∫

γ3

ln(2beiθ )ωm(η)dη = 0.

When η ∈ γ1∪ γ2, ω(η) = π iρm(η). Then taking imaginary part for the above equation, we get∫
η+

η−
ln |η−a|ρm(η)dη− ln(2b)+

1
π

Re
∫

γ3

θ ωm(η)dη = 0, (6)

where we have used
∫

γ3
ωm(η)dη = −

∫
γ1∪γ2

ωm(η)dη = −π i
∫

γ1∪γ2
ρm(η)dη = −π i. So the problem becomes the

calculation of the integral
∫

γ3
θ ωm(η)dη .

Rewrite (6) as

ωm(η) =
1
2

2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1

[q/2]−µq

∑
s=0

(
q
s

)
b2s (αq−2s− (b2

α
−1)q−2s).

Let r = [q/2]−µq− s. The range of r is from 0 to [q/2]−µq. Since q = 2[q/2]−µq +1, and q−2s = 2([q/2]−µq− s)+
µq +1, we have the following,

ωm(η) =
1
2

2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1

[q/2]−µq

∑
r=0

(
q

[q/2]+ r+1

)
b2([q/2]−µq−r)(α2r+µq+1− (b2

α
−1)2r+µq+1).

On γ3, we have η − a = 2beiθ , which implies α = b
(
eiθ +

√
e2iθ −1

)
, and b2α−1 = b

(
eiθ −

√
e2iθ −1

)
. It follows

that ∫
γ3

θ (α2r+µq+1− (b2
α
−1)2r+µq+1)dη

= 2ib2r+µq+2
∫

π

0
θ eiθ

[(
eiθ +

√
e2iθ −1

)2r+µq+1−
(
eiθ −

√
e2iθ −1

)2r+µq+1
]

dθ .

We finally have

1
π

Re
∫

γ3

θ ωm(η)dη

=
2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−q−1 bq+1

[q/2]−µq

∑
r=0

(
q

[q/2]+ r+1

)
Θ2r+µq+1.

Then by (6), the lemma is proved.
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The Θl in the above lemma can be solved by some elementary integrals using recursion method as described in the
following.

For k = 0,1,2, · · · , there are ∫
π

0
θ e2iθ (1− e2iθ )k+ 1

2 dθ =
π

(2k+3)i
, (7)

∫
π

0
θ eiθ (1− e2iθ )k+ 1

2 dθ =−2
∫ 1

0

∫ 1

0
(1− x2y2)k+ 1

2 dxdy+
πi
2

B
(1

2
,k+

3
2

)
, (8)

where B(·, ·) is the Euler beta function.
Proof. The first equation in this lemma can be easily verified by using integration by parts,∫

π

0
θ e2iθ (1− e2iθ )k+ 1

2 dθ =
1

(2k+3)i

∫
π

0
(1− e2iθ )k+ 3

2 dθ =
π

(2k+3)i
.

To prove the second equation, consider

J(γ) =
∫

π

0
eiθ (1− γe2iθ )k+ 1

2 dθ , and I(γ) =
∫

π

0
θ eiθ (1− γe2iθ )k+ 1

2 dθ ,

for 0≤ γ ≤ 1. It can be calculated that (γ
1
2 J(γ))

′
= iγ−

1
2 (1−γ)k+ 1

2 , where ′ = d/dγ . Then γ
1
2 J(γ) = i

∫ γ

0 t−
1
2 (1−t)k+ 1

2 dt,
which implies

J(γ) = 2i
∫ 1

0
(1− γ x2)k+ 1

2 dx, (9)

by taking t = γ x2.
It can be calculated that (γ

1
2 I(γ))

′
= πi

2 γ−
1
2 (1− γ)k+ 1

2 − 1
2i γ
− 1

2 J(γ). Then by (9) and taking integral from 0 to 1, we
have

I(1) =
πi
2

∫ 1

0
γ
− 1

2 (1− γ)k+ 1
2 dγ−

∫ 1

0
γ
− 1

2

(∫ 1

0
(1− γ x2)k+ 1

2 dx
)

dγ,

which gives the second equation in this lemma by taking γ = y2 in the last term above.
To further calculate the real part of the right hand side of equation (8), consider the following line and double integrals

for k = 0,1,2, · · · ,

lk =
∫ 1

0
(1− x2)k+ 1

2 dx, and dk =
∫ 1

0

∫ 1

0
(1− x2y2)k+ 1

2 dxdy.

First, l0 = π

4 , and

d0 =
1
2

∫ 1

0

(√
1− y2 +

1
y

sin−1 y
)

dy =
π

8
+

π

4
ln2. (10)

When k ≥ 1, by integration by parts, we can verify that lk satisfy a recursion formula lk = lk−1− 1
2k+1 lk, which gives

lk =
(2k+1)!!
(2k+2)!!

π

2 . Also by integration by parts, there is dk = dk−1 +
1

2k+1 (lk−dk), which implies

dk =
2k+1
2k+2

dk−1 +
(2k+1)!!
(2k+2)!!

π

4(k+1)
. (11)

Specially

d1 =
9π

64
+

3π

16
ln2, (12)

which will be used in the non-symmetric density discussed in section 7. By combining the results above, we have the
following result for the free energy.

For the eigenvalue density ρm(η) defined by (8) with the parameters a, b, and g j( j = 1, · · · ,2m) satisfying the condi-
tions (10), (4), and (5), there is the following formula for the free energy (1):

E(0) =
1
2

W (a)− ln(2b)

+
2m

∑
j=2

jg j

j−1

∑
q=1

(
j−1

q

)
a j−1−q bq+1

[q/2]−µq

∑
r=0

(
q

[q/2]+ r+1

)
E2r+µq+1, (13)

where

El =
1
2

2m

∑
k=0

gkRl,k +Θl , (14)

with l = 2r+µq +1, and µq = (1+(−1)q)/2.
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Proof. Consider equation (4). By taking integral from a to η for variable η , we have
∫

η+
η− ln |λ −η |ρm(λ )dλ = 1

2W (η)−
1
2W (a)+

∫
η+
η− ln |λ − a|ρm(λ )dλ . Multiplying ρm(η) and taking

∫
η+
η− dη on both sides of this equation, we get by using

(3) ∫
η+

η−

∫
η+

η−
ln |λ −η |ρm(λ )ρm(η)dλdη

=
1
2

∫
η+

η−
W (η)ρm(η)dη− 1

2
W (a)+

∫
η+

η−
ln |λ −a|ρm(λ )dλ .

Then according to (1), we arrive

E(0) =
1
2

W (a)+
1
2

2m

∑
k=0

gk

∫
η+

η−
η

k
ρm(η)dη−

∫
η+

η−
ln |η−a|ρm(η)dη .

By Lemma 6 and Lemma 6, the integrals above can be expressed in terms of Rl,k and Θl . After simplifications, the result
is proved.

7 Some special densities

7.1 The model for m = 2

When m = 2, or W (η) = g0 +g1 η +g2 η2 +g3 η3 +g4 η4, Proposition 5 gives the general eigenvalue density

ρ2(η) =
1

2π
(2g2 +3g3(η +a)+4g4(η

2 +aη +a2 +2b2))
√

4b2− (η−a)2, (1)

where the parameters satisfy the following conditions

2g2 +3g3(η +a)+4g4(η
2 +aη +a2 +2b2)≥ 0, η ∈ [η−,η+], (2)

2g2b2 +6g3ab2 +12g4(a2 +b2)b2 = 1, (3)
g1 +2g2a+3g3(a2 +2b2)+4g4a(a2 +6b2) = 0. (4)

The free energy function is given by Proposition 6

E(0) =W (a)+
3
4
− lnb−4g4b4−6(g3 +4g4a)2b6−6g2

4b8. (5)

When g1 = g2 = 0, i.e. W (η) = g0 +g3 η3 +g4 η4, the conditions become

3g3(η +a)+4g4(η
2 +aη +a2 +2b2)≥ 0, η ∈ [η−,η+], (6)

g3 =−
8a(a2 +6b2)

3b2(5a4 +3(a2−4b2)2)
, (7)

g4 =
2(a2 +2b2)

b2(5a4 +3(a2−4b2)2)
. (8)

The condition (6) is satisfied if and only if τ = 4b2

a2 is restricted in the intervals 0 < τ ≤ τ− or τ+ ≤ τ, where τ+ = 1+
√

5,

and τ− is uniquely determined by the conditions: 0 < τ− < 1/2 and 1− 2τ
1/2
− + 3

4 τ2
− = 0. Approximately we have

τ− ≈ 0.28 and τ+ ≈ 3.24. The corresponding free energy function is reduced to

E(0) = g0 +
3
8
− lnb− 8

3ττ̄
− 15τ +32

3τ̄
− 140τ−40

3τ̄2 , (9)

for τ ∈ (0,τ−]∪ [τ+,∞), where τ̄ = 5+ 3(1− τ)2. The density function in this case can be further changed into the
following forms. Let η = ax and τ = c2 (c > 0). Then

ρ2(η)dη =
16
π

(x
c
− c

2

)2
+

x2−1
2

5+3(1− c2)2

√
c2− (x−1)2 dx, (10)

for x ∈ [1− c,1+ c], where c ∈ (0,c−]∪ [c+,∞), c− =
√

τ−, and c+ =
√

τ+. On the other hand, if η = −ax and τ = c2

(c > 0), then

ρ2(η)dη =
16
π

(x
c
+

c
2

)2
+

x2−1
2

5+3(1− c2)2

√
c2− (x+1)2 dx, (11)
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for x ∈ [−1− c,−1+ c], where c ∈ (0,c−]∪ [c+,∞), c− =
√

τ−, and c+ =
√

τ+.
The density on two disjoint intervals can be calculated by using the method discussed before. Briefly, there is

ρ
(2)
2 (η) =

1
2π

(3g3 +4g4(a1 +a2 +η))Re
√

4b2
1b2

2−
(
(η−a1)(η−a2)−b2

1−b2
2

)2
, (12)

where −∞ < η < ∞, and

4g4b2
1b2

2 = 1, (13)
2g2 +(3g3 +4g4(a1 +a2))(a1 +a2)−4g4(a1a2−b2

1−b2
2) = 0, (14)

g1− (3g3 +4g4(a1 +a2))(a1a2−b2
1−b2

2) = 0. (15)

It can be checked that if taking a1 = a2 = a and b1 = b2 = b in the above, then a and b satisfy the equations (3) and (4).
In addition, the parameters need to satisfy extra condition(s) such that ρ

(2)
2 (η) does not take negative value. Relevant

discussions can be found in (15) if ones are interested in the corresponding free energy.
As a remark, if W (η) = g3 η3+g4 η4 is degenerated to W (η) = g4 η4 by taking a→ 0, (9) becomes E(0) = 3/8− lnb.

We will see next that E(0) has the same result as W (η) = g2 η2 + g4 η4 is degenerated to W (η) = g4 η4. We can also
use (1) to get other special densities for m = 2. The density formula (1) and conditions (3) (4) for g1 = g4 = 0,g2 = 1/2
coincide with the results (45) and (46) in (6).

7.2 Symmetric densities
For symmetric densities, consider W (η) = g0 +g2 η2 + · · ·+g2m η2m, and a = 0.

When m = 2, there is

ρ2(η) =
1
π
(g2 +2g4(η

2 +2b2))
√

4b2−η2, (16)

for η ∈ [−2b,2b], with the restriction conditions

g2 +2g4(η
2 +2b2)≥ 0, η ∈ [−2b,2b], (17)

2g2 b2 +12g4 b4 = 1. (18)

The free energy becomes

E(0) = g0 +
3
4
− lnb+

1
24

(2g2 b2−1)(9−2g2 b2), (19)

which agrees with the equation (5) obtained in (6) if we choose g2 = 1/2. If E(0) is taken as a function of 2g2b2, it has

a singular point at 2g2b2 = 2, or at g4 = gc
4, where gc

4 = −
g2

2
12 . This singular point is corresponding to the bound for the

condition (17) with g4 < 0, as well as the singularity ν/(ν−1) with ν = 2 in (14) (Theorem 2.3). In fact, for the first part,
g2+2g4(4b2+2b2) = 0 and (18) imply 12g4 =−g2

2. For the second part, if g2 = 1/2 in (18), then−12v2 dg4
dv = 2

( 1
v −

1
2

)
,

which implies v = 2 if dg4/dv = 0, where v = b2.
When m = 3, by Proposition 5, there is

ρ3(η) =
1
π
(g2 +2g4(η

2 +2b2)+3g6(η
4 +2b2

η
2 +6b4))

√
4b2−η2,

for η ∈ [−2b,2b], and (2) and (3) become

g2 +2g4(η
2 +2b2)+3g6(η

4 +2b2η2 +6b4)≥ 0, η ∈ [−2b,2b],
2g2b2 +12g4b4 +60g6b6 = 1.

Generally, the density is

ρm(η) =
1
π

k2m−2(η)
√

4b2−η2, η ∈ [−2b,2b], (20)

where

k2m−2(η) =
m

∑
j=1

jg2 j

j

∑
p=1

(
2 j−1
j− p

)
b2( j−p)

4p−1

p−1

∑
s=0

(
2p−1
2s+1

)
η

2(p−s−1)(η2−4b2)s, (21)

and

k2m−2(η)≥ 0, η ∈ [−2b,2b], (22)
m

∑
j=1

2 jg2 j

(
2 j−1

j

)
b2 j = 1. (23)

16



Here, the formula (21) is obtained from (1) and (2) by choosing g1 = g3 = · · · = g2m−1 = 0, a = 0, and then replacing j
by 2 j, and taking q = 2 j−1 and r = j− p.

By (7), there is for large R > 0,

k2m−2(η) =
1

2πi

∮
|λ |=R

ωm(λ )√
λ 2−4b2

dλ

λ −η
=

1
2πi

∮
|λ |=R

1
2W

′
(λ )

√
λ 2−4b2

dλ

λ −η
.

When W (η) = g2mη2m, there is k2m−2(η) = mg2m h(η), where h(η) is given by (9) which is from (6.151) in (10), and
(23) becomes (10).

Appendix A. Densities in other models

A.1. Density associated with Laguerre polynomials

Consider the Laguerre polynomials L(α)
n (x) (19),∫

∞

0
L(α)

m (x)L(α)
n (x)xα e−xdx = Γ(α +1)

(
n+α

n

)
δm,n

where α >−1, and Γ(·) is the Gamma function. Choose

Φn(x) = e−x/2xα/2(L(α)
n (x),L(α)

n−1(x))
T .

It can be verified that Φn(x) satisfies the following equation (27) (19)

∂

∂x
Φn = An(x)Φn,

where

An(x) =
1
x

(
− x−α

2 +n −n−α

n x−α

2 −n

)
.

and trAn(x) = 0. It can be calculated that

√
det(An) =

n
2x

√((
1+
√

n+α

n

)2
− x

n

)(
x
n −
(

1−
√

n+α

n

)2
)
. (A.1)

Let x = nλ , q = n
n+α

, λ+ = (1+ 1√
q )

2, and λ− = (1− 1√
q )

2. Then

1
(n+α)π

√
det(An(x)) dx =

q
2πλ

√
(λ+−λ )(λ −λ−) dλ , (A.2)

which gives the density obtained in (22) (23), and the density is used in econophysics and relevant researches for studying
the distribution of the positive eigenvalues, for example, see (35) (36).

A.2. Densities associated with the polynomials on unit circle
Consider the orthogonal polynomials pn(z)= zn+ · · · on the unit circle |z|= 1 with the potential function V (z)= s(z+z−1)
(4) (37) ∮

pm(z)pn(z)es(z+1/z) dz
2π i z

= hnδm,n

where the integral is on |z|= 1, and pn(z) is the complex conjugate of pn(z). On the unit circle, let

Φn(z) = e
s
2 (z+1/z)(z−n/2 pn(z),zn/2 pn(z))T .

Then by the equation (4.10) in (4), there is
∂

∂ z
Φn = An(z)Φn ,

where
An(z) =

(
s
2 +

s
2z2 +

n−2sxnxn+1
2z s(xn+1− xn

z )z
−1

s(xn− xn+1
z ) − s

2 −
s

2z2 −
n−2sxnxn+1

2z

)
,

trAn(z) = 0, and xn(= pn(0)) satisfies the discrete Painlevé II equation

n
s

xn =−(1− x2
n)(xn+1 + xn−1), (A.3)
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with xn ∈ [−1,1]. Then

√
det(An) = 1

i

√(
s
2 +

s
2z2 +

n−2sxnxn+1
2z

)2
+ s2

z

(
xn− xn+1

z

)(
xn+1− xn

z

)
. (A.4)

Let n/s = λ , and un =−xn+1/xn. Then λ/(1− x2
n) = un +1/un−1, or asymptotically as n,s→ ∞,

un ∼
[

λ

2(1−x2
n)
+

√(
λ

2(1−x2
n)

)2
−1

]−1

.

If λ = 2(1− x2
n) (≤ 2), then un ∼ 1, or xn+1 ∼−xn ∼ xn−1,

1
nπ

√
det(An(z)) dz∼ 2

πλ
cos

α

2

√
λ

2
− sin2 α

2
dα, (A.5)

where z = eiα , which gives the density (29) in (20) for weak-coupling; and if λ > 2, then un < 1, or xn→ 0,
1

nπ

√
det(An(z)) dz∼ 1

2π
(1+

2
λ

cosα) dα, (A.6)

which gives the density (24) in (20) for strong-coupling. It was obtained in (20) that the free energy for this model has
continuous first and second order derivatives with respect to λ , and the third order derivative is discontinuous at the critical
point λ = 2 or n/s = 2. At this critical point, the discrete Painlevé II equation can be reduced to the Painlevé II equation
as discussed in the Riemann-Hilbert problem (38).

Remark: This paper is published in J. Phys. A: Math. Theor. (2009), 205205. Further discussion can be found in C.
B. Wang, Application of Integrable Systems to Phase transitions, Springer-Verlag Berlin Heidelberg, 2013.
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Painlevé equation, Proc. Royal Soc. Lond. A 437 (1992), 1-24.

[2] A. P. Bassom, P. A. Clarkson, C. K. Law, and J. B. McLeod, Application of uniform asymptotics to the second
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