General Science and Philosophy

   

Florentin Smarandache, a Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability (Fifth Edition)

Authors: Florentin Smarandache

The neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. were introduced by Florentin Smarandache in 1995. 1. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics that are used in engineering applications (especially for software and information fusion), medicine, military, airspace, cybernetics, physics. 2. Neutrosophic Logic is a general framework for unification of many existing logics, such as fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent logic, intuitionistic logic, etc. The main idea of NL is to characterize each logical statement in a 3D Neutrosophic Space, where each dimension of the space represents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the statement under consideration, where T, I, F are standard or non-standard real subsets of ]-0, 1+[ with not necessarily any connection between them. For software engineering proposals the classical unit interval [0, 1] is used. For single valued neutrosophic logic, the sum of the components is: 0 ≤ t+i+f ≤ 3 when all three components are independent; 0 ≤ t+i+f ≤ 2 when two components are dependent, while the third one is independent from them; 0 ≤ t+i+f ≤ 1 when all three components are dependent. When three or two of the components T, I, F are independent, one leaves room for incomplete information (sum < 1), paraconsistent and contradictory information (sum > 1), or complete information (sum = 1). If all three components T, I, F are dependent, then similarly one leaves room for incomplete information (sum < 1), or complete information (sum = 1). In a general Refined Neutrosophic Logic, T can be split into subcomponents T1, T2, ..., Tp, and I into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, where p+r+s = n ≥ 1. Even more: T, I, and/or F (or any of their subcomponents Tj ,Ik, and/or Fl) can be countable or uncountable infinite sets. 3. Neutrosophic Set. Let U be a universe of discourse, and M a set included in U. An element x from U is noted with respect to the set M as x(T, I, F) and belongs to M in the following way: it is t% true in the set, i% indeterminate (unknown if it is) in the set, and f% false, where t varies in T, i varies in I, f varies in F. Statically T, I, F are subsets, but dynamically T, I, F are functions/operators depending on many known or unknown parameters. Neutrosophic Set generalizes the fuzzy set (especially intuitionistic fuzzy set), paraconsistent set, intuitionistic set, etc. 4. Neutrosophic Probability is a generalization of the classical probability and imprecise probability in which the chance that an event A occurs is t% true - where t varies in the subset T, i% indeterminate - where i varies in the subset I, and f% false - where f varies in the subset F. In classical probability n_sup <= 1, while in neutrosophic probability n_sup <= 3+. In imprecise probability: the probability of an event is a subset T in [0, 1], not a number p in [0, 1], what’s left is supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is no indeterminate subset I in imprecise probability. 5. Neutrosophic Statistics is the analysis of events described by the neutrosophic probability. The function that models the neutrosophic probability of a random variable x is called neutrosophic distribution: NP(x) = ( T(x), I(x), F(x) ), where T(x) represents the probability that value x occurs, F(x) represents the probability that value x does not occur, and I(x) represents the indeterminate / unknown probability of value x.

Comments: 157 Pages.

Download: PDF

Submission history

[v1] 2016-04-07 04:48:26

Unique-IP document downloads: 100 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus