[9] **viXra:1702.0270 [pdf]**
*submitted on 2017-02-21 18:42:59*

**Authors:** Pairoaj Sungkung

**Comments:** 4 Pages. Very cool.

The simple case of Fiez identity for interacting four-fermion in four-dimensional space-time has been worked out explicitly.

**Category:** Mathematical Physics

[8] **viXra:1702.0249 [pdf]**
*submitted on 2017-02-19 15:20:15*

**Authors:** William O. Straub

**Comments:** 6 Pages.

The necessity of Weyl's vector field in his 1918 theory is examined.

**Category:** Mathematical Physics

[7] **viXra:1702.0244 [pdf]**
*replaced on 2017-02-26 21:01:18*

**Authors:** Victor Christianto

**Comments:** 4 Pages. This paper has been submitted to Prespacetime Journal

In a recent paper, Ershkov derived a system of two coupled Riccati ODEs as solution of non-stationary 3D Navier-Stokes equations. Now in this paper, we will solve these coupled Riccati ODEs using Maxima computer algebra package. The result seems to deserve further investigation in particular for finding non-stationary 3D Navier-Stokes equations for real fluid.

**Category:** Mathematical Physics

[6] **viXra:1702.0242 [pdf]**
*submitted on 2017-02-19 12:24:40*

**Authors:** Jean Akande, Damien K. K. Adjaï, Lucas H. Koudahoun, Biswanath Rath, Pravanjan Mallick, Rati Ranjan Sahoo, Fernando Y. J. Kpomahou, Marc D. Monsia

**Comments:** 13 pages

The quantization of second order dissipative dynamical systems is well known to be a complicated Sturm-Liouville problem. This work is devoted to the exact quantization of a given quadratic Liénard type oscillator equation. The bound state solutions of the resulting Schrödinger equation in terms of associated Laguerre polynomials and the possibility to recover the energy spectrum of the quantum harmonic oscillator are discussed following the specific values of system parameters, using the Nikiforov-Uvarov method.

**Category:** Mathematical Physics

[5] **viXra:1702.0231 [pdf]**
*submitted on 2017-02-18 09:09:57*

**Authors:** Gary D. Simpson

**Comments:** 10 Pages.

This text demonstrates that the complex i can be combined with a Hamilton style quaternion to produce a 5-D mathematical structure. Essentially, the complex plane is combined with an arbitrary unit vector. The complex i is shown to anti-commute with the unit vectors i, j, and k. The resulting geometry is shown to be an extension of Hamilton’s quaternions based upon the complex plane rather than real numbers. This new geometric structure is presented in Figure 1 and Equations 3 through 3.3. This configuration makes it possible to calculate the diameter of the proton at rest with the estimated value being 1.668 x 10-15 meter. This is within the accepted measured range of the proton diameter at 1.755(102) x 10-15 meter as given by the NIST, and it is very close to the proton diameter at 1.68174(78) x 10-15 meter as measured at the Paul Scherrer Institute in 2010 by using muonic hydrogen.

**Category:** Mathematical Physics

[4] **viXra:1702.0210 [pdf]**
*submitted on 2017-02-17 02:05:51*

**Authors:** Viktor Strohm

**Comments:** 3 Pages.

. In this paper we consider some problems of the origin of body rotation under the influence of the thermal radiation

**Category:** Mathematical Physics

[3] **viXra:1702.0182 [pdf]**
*replaced on 2018-06-06 12:24:38*

**Authors:** Chang Li

**Comments:** 2 Pages. version 2

This article proved two theorems and presented one conjecture about the real-zeros of Jones Polynomial of Torus. Topological quantum computer is related to knots/braids theory where Jones polynomials are characters of the quantum computing. Since the real-zeros of Jones polynomials of torus are observable physical quantities, except the real-zero at 1.0 there exists another distinguished real-zero in 1 < r < 2 for every Jones polynomial of Torus, these unique real zeros can be IDs of torus knots in topological quantum computing.

**Category:** Mathematical Physics

[2] **viXra:1702.0098 [pdf]**
*replaced on 2017-02-10 03:21:43*

**Authors:** Miguel A. Sanchez-Rey

**Comments:** 3 Pages.

From string theory to topstringy.

**Category:** Mathematical Physics

[1] **viXra:1702.0069 [pdf]**
*submitted on 2017-02-04 08:00:54*

**Authors:** M.W.Kalinowski

**Comments:** 37 Pages.

W pracy rozpatrujemy podstawy mechaniki kwantowej w języku logik kwantowych w zasto-
sowaniu do teorii parametrów ukrytych i możliwych uogólnień mechaniki kwantowej. Omawiamy
związek mechaniki kwantowej z logikami wielowartościowymi. Wprowadzamy system aksjoma-
tyczny Mackaya–Mączyńskiego ogólnego systemu mechanicznego. Badamy ogólne własności ob-
serwabli i ich reprezentacje boolowskie. Z aksjomatu QM mechaniki kwantowej wyprowadzamy
podstawowe postulaty tej mechaniki. Omawiamy hipotezę o parametrach ukrytych, dyskusję na
ich temat oraz paradoks EPR (Einsteina–Podolskiego–Rosena) wraz z nierównością Bella.

**Category:** Mathematical Physics