
Anomalous Spacetimes

Stephen J. Crothers
Queensland, Australia.

E-mail: thenarmis@yahoo.com

21 January 2007

The usual interpretations of solutions for Einstein’s gravitational field satisfy-
ing the static vacuum conditions contain anomalies that are not mathemati-
cally permissible. It is shown herein that the usual solutions must be modified
to account for the intrinsic geometry associated with the relevant line-elements.

1 Introduction

The standard solution in the case of the static vacuum
field of a single gravitating body, satisfying Einstein’s
field equations Rµν = 0, is (using G = c = 1),

ds2 =

„
1− 2m

r

«
dt2−

„
1− 2m

r

«−1

dr2−r2(dθ2+sin2 θdϕ2),

(1.1)

upon which it is routinely claimed that 2m < r < ∞ is
an exterior region and 0 < r < 2m is an interior region.
Notwithstanding the inequalities it is routinely allowed
that r = 2m and r = 0 by which it is also routinely
claimed that r = 2m marks a “removable” or “coor-
dinate” singularity and that r = 0 marks a “true” or
“physical” singularity [1].

The standard treatment of the foregoing line-element
proceeds from simple inspection of (1.1) and thereby
upon the following assumptions:

(a) that there is only one radial quantity defined on
(1.1);

(b) that r can approach zero, even though the line-
element (1.1) is singular at r = 2m;

(c) that r is the radial quantity in (1.1).

With these unstated assumptions, but assumptions
nonetheless, it is usual procedure to develop and treat of
black holes. However, all three assumptions are demon-
strably false at an elementary level.

2 That assumption (a) is false

Consider standard Minkowski space (using c = G = 1)
described by

ds2 = dt2 − dr2 − r2dΩ2, (2.1)

0 ≤ r < ∞,

where dΩ2 = dθ2 + sin2 θdϕ2. The spatial components
of (2.1) describe a sphere centred at the origin of the
coordinate system, i.e. at r = 0.

In relation to (2.1) calculate the radius R of the
sphere:

R =
∫ r

0

dr = r. (2.2)

Calculate the surface area of the sphere:

A =
∫ 2π

0

∫ π

0

r2 sin θdθdϕ = 4πr2 = 4πR2. (2.3)

Calculate the volume of the sphere:

V =
∫ 2π

0

∫ π

0

∫ r

0

r2 sin θdrdθdϕ =
4
3
πr3 =

4
3
πR3.

(2.4)
Call the square root of the coefficient of dΩ2 the radius of
curvature, Rc. Then on (2.1), Rc = r. Call the integral
of the square root of the term containing the square of
the differential element of the radius of curvature the
proper radius, Rp. Then for (2.1), according to (2.2),

Rp = r ≡ Rc. (2.5)

Thus, for Minkowski space, Rp ≡ Rc. This is because
Minkowski space is pseudo-Efcleethean∗.

Now consider (1.1). There

Rc = r,

Rp =
∫ √

r

r − 2M
dr 6= r = Rc.

Hence, RP 6= Rc in (1) in general. This is because (1.1)
is non-Efcleethean (it is pseudo-Riemannian). Thus, as-
sumption (a) is false.

∗For the geometry due to Efcleethees – usually and abominably
rendered Euclid.
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3 That assumption (b) is false

On (1.1),

Rp = Rp(r) =
∫ √

r

r − 2m
dr

=
√

r (r − 2m) + 2m ln
∣∣√r +

√
r − 2m

∣∣+ K, (3.1)

where K is a constant of integration.
For some value r0, Rp(r0) = 0, where r0 is to be

determined from (3.1). According to (3.1), Rp(r0) = 0
when r = r0 = 2m and K = −m ln 2m. Hence,

Rp = Rp(r) =
∫ √

r

r − 2m
dr =

=
√

r (r − 2m) + 2m ln
(√

r +
√

r − 2m√
2m

)
. (3.2)

Therefore, 2m < r < ∞ ⇒ 0 < Rp < ∞, where r ≡ Rc.
The inequality is required to maintain Lorentz signature,
since the line-element is undefined at r = 2m, which is
the only possible singularity on the line element. Thus,
assumption (b) is false.

4 That assumption (c) is false

Generalise (2.1) so that the centre of a sphere can be
located anywhere in Minkowski space, thus

ds2 = dt2 − (d |r − r0|)2 − |r − r0|2 dΩ2

= dt2 − (r − r0)
2

|r − r0|2
dr2 − |r − r0|2 dΩ2

= dt2 − dr2 − |r − r0|2 dΩ2, (4.1)

0 ≤ |r − r0| < ∞,

which is well-defined for all real r. The value of r0 is arbi-
trary. The spatial components of (4.1) describe a sphere
of radius D = |r − r0| centred at some point r0 on a com-
mon radial line through r and the origin of coordinates
at r = 0 (i.e. centred at the point of intersection of the
common radial line with the spherical surface r = r0).
If r0 = 0, (1.1) is recovered. One does not need to make
r0 = 0 so that the centre of the sphere coincides with
the origin of the coordinate system itself, at r = 0.

Then on (4.1),

Rc = |r − r0| ,

Rp =

Z |r−r0|

0

d |r − r0| =
Z r

r0

(r − r0)

|r − r0|
dr = |r − r0| ≡ Rc,

(4.2)

and so Rp ≡ Rc on (4.1), since (4.1) is pseudo-
Efcleethean. Setting D = |r − r0| for convenience, gen-
eralise (4.1) thus,

ds2 = A(C(D))dt2 −B(C(D))d
√

C(D)
2
− C(D)dΩ2,

(4.3)
where A(C(D)), B(C(D)), C(D) > 0. Then for Rµν = 0,
metric (4.3) has the solution,

ds2 =

(
1− α√

C(D)

)
dt2−

−

(
1− α√

C(D)

)−1

d
√

C(D)
2
− C(D)dΩ2, (4.4)

where α is a function of the mass generating the gravi-
tational field. Then

Rc = Rc(D) =
√

C(D),

Rp = Rp(D) =
∫ √ √

C(D)√
C(D)− α

d
√

C(D)

=
∫ √

Rc(D)
Rc(D)− α

dRc(D)

=
√

Rc(D) (Rc(D)− α)+

+α ln

(√
Rc(D) +

√
Rc(D)− α√

α

)
, (4.5)

where Rc(D) ≡ Rc (|r − r0|) = Rc(r). Clearly r is a pa-
rameter, located in Minkowski space according to (4.1),
(4.2) and (4.3).

Now r = r0 ⇒ D = 0, and so by (4.5), Rc(D =
0) = α and Rp(D = 0) = 0. One must ascertain
the admissible form of Rc(D) subject to the conditions
Rc(D = 0) = α and Rp(D = 0) = 0 and dRc(D) > 0,
along with the requirements that Rc(D) must produce
(1.1) from (4.4) at will, must yield Schwarzschild’s orig-
inal solution at will (which is not the line-element (1.1)
[2]), must produce Brillouin’s solution at will [3], and
must yield an infinite number of equivalent metrics [4].
The only admissible form satisfying these conditions is,

Rc = Rc(D) = (Dn + αn)
1
n ≡ (|r − r0|n + αn)

1
n = Rc(r),

(4.6)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.
Choosing r0 = 0, r > 0, n = 3,

Rc(r) =
(
r3 + α3

) 1
3 , (4.7)

and putting (4.7) into (4.4) gives Schwarzschild’s original
solution, defined on 0 < r < ∞.
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Choosing r0 = 0, r > 0, n = 1,

Rc(r) = r + α, (4.8)

and putting (4.8) into (4.4) gives Marcel Brillouin’s so-
lution, defined on 0 < r < ∞.

Choosing r0 = α, r > α, n = 1,

Rc(r) = (r − α) + α = r, (4.9)

and putting (4.9) into (4.4) gives line-element (1.1), but
defined on α < r < ∞, as found by Johannes Droste in
May 1916 [5]. Note that according to (4.9) (and in gen-
eral by (4.6)), r is not a radial quantity in the gravita-
tional field, because Rc(r) = (r−α)+α = D+α is really
the radius of curvature in (1.1), defined for 0 < D < ∞.
Thus, assumption (c) is false.

5 That the manifold is inextendable

That the singularity at Rp(r0) ≡ 0 is insurmountable is
clear by the following ratio,

lim
r→r±0

2πRc(r)
Rp(r)

= ∞.

Hagihara [6] has shown that all radial geodesics that
do not run into the boundary at Rc(r0) = α (i.e. that
do not run into the boundary at Rp(r0) = 0) are geodes-
ically complete.

Doughty [7] has shown that the acceleration a of a
test particle approaching the centre of mass at Rp = 0
is given by,

a =
√
−g00

(
−g11

)
|g00,1|

2g00
.

By (4.4) and (4.6), this gives,

a =
α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r → r±0 , a → ∞, independently of the
value of r0.

J. Smoller and B. Temple [8] have shown that the
Oppenheimer-Volkoff equations do not permit gravita-
tional collapse to form a black hole and that the alleged
interior of the Schwarzschild spacetime (i.e. 0 ≤ Rc(r) <
α is therefore disconnected from Schwarzschild spacetime
and so does not form part of the solution space.

N. Stavroulakis [9, 10, 11, 12] has shown that an ob-
ject cannot undergo gravitational collapse into a singu-
larity, or to form a black hole.

Suppose 0 ≤
√

C(D(r)) < α. Then (4.4) becomes

ds2 = −
(

α√
C
− 1
)

dt2 +
(

α√
C
− 1
)−1

d
√

C
2
−

−C(dθ2 + sin2 θdϕ2),

which shows that there is an interchange of time and
length. To amplify this set r = t̄ and t = r̄. Then

ds2 =
(

α√
C
− 1
)−1

Ċ2

4C
dt̄2 −

(
α√
C
− 1
)

dr̄2

−C(dθ2 + sin2 θdϕ2),

where C = C(t̄) and the dot denotes d/dt̄. This is a time
dependent metric and therefore bears no relation to the
problem of a static gravitational field.

Thus, the Schwarzschild manifold described by (4.4)
with (4.6) (and hence by (1.1)) is inextendable.

6 That the Riemann tensor scalar cur-
vature invariant is everywhere finite

The Riemann tensor scalar curvature invariant (the
Kretschmann scalar) is given by f = RµνρσRµνρσ. In
the case of (4.4) with (4.6) this is

f =
12α2

R6
c(r)

=
12α2

(|r − r0|n + αn)
6
n

.

A routine attempt to justify the standard assumptions
on (1.1) is the a posteriori claim that the Kretschmann
scalar must be unbounded at a singularity [13, 1]. No-
body has ever offered a proof that General Relativity
necessarily requires this. That this additional ad hoc
assumption is false is clear from the following ratio,

f(r0) =
12α2

(|r0 − r0|n + αn)
6
n

=
12
α4

.

In addition,

lim
r→±∞

12α2

(|r − r0|n + αn)
6
n

= 0,

and so the Kretschmann scalar is finite everywhere.

7 That the Gaussian curvature is
everywhere finite

The Gaussian curvature K of (4.4) is,

K = K(Rc(r)) =
1

R2
c(r)

,

where Rc(r) is given by (4.6). Then,

K(r0) =
1
α2

∀ r0,

and
lim

r→±∞
K(r) = 0,

and so the Gaussian curvature is everywhere finite.
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8 Conclusions

Using the spherical-polar coordinates, the general solu-
tion to Rµν = 0 is (4.4) with (4.6), which is well-defined
on

−∞ < r < ∞,

for any r0, −∞ < r0 < ∞, where r0 is entirely arbitrary,
and corresponds to

0 < Rp(r) < ∞, α < Rc(r) < ∞,

for the gravitational field. The only singularity that is
possible occurs at g00 = 0. It is impossible to get g11 = 0
because there is no value of the parameter r by which
this can be attained. No interior exists in relation to
(4.4) with (4.6), which contain the usual metric (1.1).

The radius of curvature Rc(r) does not in general
determine the radial geodesic distance to the centre of
curvature of Einstein’s gravitational field and is only to
be interpreted in relation to the Gaussian curvature by
the equation K = 1/R2

c(r). The radial geodesic distance
from the spherical geodesic surface with Gaussian curva-
ture K, to the centre of curvature, is given by the proper
radius, Rp(Rc(r)). The centre of curvature is located at
the point Rp(r0) = 0.

Expression (4.4) with (4.6) (and hence (1.1))
describes only a centre of mass located at Rp(r0) = 0 in
the gravitational field, ∀ r0. As such it does not take into
account the distribution of matter and energy in a gravi-
tating body, since α(M) is indeterminable in this limited
situation. One cannot generally just utilise a potential
function in comparison with the Newtonian potential to
determine α because α is subject to the distribution of
the matter of the source of the gravitational field. The
value of α must be calculated from a line-element de-
scribing the interior of the gravitating body, satisfying
Rµν − 1

2Rgµν = κTµν 6= 0. The interior line-element is
necessarily different to the exterior line-element of an ob-
ject such as a star. A full description of the gravitational
field of a star therefore requires two line-elements, not
one as is routinely assumed, and when this is done, there
are no singularities anywhere. The assumption that one
line-element is sufficient is false. Outside a star, (4.4)
with (4.6) describes the gravitational field in relation to
the centre of mass of the star, but α is determined by
the interior metric, which, in the case of the usual treat-
ment of (1.1), has gone entirely unrecognised, so that the
value of α is instead determined by a comparison with
the Newtonian potential.

Black holes are not predicted by General Relativity.
The Kruskal-Szekeres coordinates do not describe a co-
ordinate patch that covers a part of the gravitational
manifold that is not otherwise covered - they describe a
completely different pseudo-Riemannian manifold that
has nothing to do with Einstein’s gravitational field.
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