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Foreword

It is possible one thinks that the General Theory of Relativity
is a fossilized science, all achievements of which were reached
decades ago. In particular it is right — the mathematical appa-
ratus of Riemannian geometry, being a base of the theory, remains
unchanged. At the same time the mathematical technics have many
varieties: general covariant methods, the tetrad method, etc. De-
veloping the technics we can create new possibilities in theoretical
physics, unknown before.

This book develops the mathematical methods of chronometric
invariants — physical observable quantities in the General Theory
of Relativity, which had been introduced by Abraham Zelmanov,
a prominent cosmologist.

As you will see in this book, the mathematical methods create
new directions in the theory of fields. In particular, those are the
theory of the field of non-uniformities of time coordinates and
the theory of vortical gravitational fields. The first case gives a
possibility to express equations of the theory of gravitation in the
form like as Maxwell’s theory of electromagnetic fields. The theory
of vortical gravitational fields gives an exact formula for the speed
of gravitation and the new experimental statement to measure
the speed. This new method is different from Weber’s detector
in principle and is free of its specific technical problems.

In conclusion of this brief foreword, I would like to remember
Dr. Abraham Zelmanov, Prof. Kyril Stanyukovich, and Dr. Kyril
Dombrowski. Many years of our conversations in friendly media,
and their patient personal instructions reached me by all their
experience in theoretical physics. Actually, I am beholden to them.
They are gone, so any words of my acknowledgements can not be
heard. I would like to do only one — to satisfy their hopes.

April 28, 2004 Dmitri Rabounski

Chapter 1

THE MATHEMATICAL APPARATUS

This Chapter gives the mathematical apparatus of chronometric in-
variants — physical observable quantities in the General Theory of
Relativity, defining them as projections of four-dimensional quantities
on time lines and the spatial section of a given observer. In addition, the
main operators of tensor calculus are expressed through chronomet-
rically invariant quantities. This update of tensor algebra and the
analysis does calculations in the General Theory of Relativity simpler
in order to see their physical sense. In particular, it gives templates to
create field equations and other applications in the theory of fields.

§1.1 Introducing chronometric invariants

We are going to consider a four-dimensional pseudo-Riemannian
space — the basic space-time of the General Theory of Relativity.
Following Zelmanov [1, 2, 3, 4], we consider the space-time with
signature (+−−−), where time is real while spatial coordinates are
imaginary. The main reason of this choice is that three-dimensional
observable impulse, being the projection of four-dimensional im-
pulse vector on the observer’s spatial section, is positive in this
case. Besides we sign the space-time indices Greek and the spatial
indices Roman∗.

What are physical observable quantities in the General Theory of
Relativity? To answer the question is not a trivial problem, because
we need to define those actual projections of four-dimensional quan-
tities, which can be measured in practice. The problem had first
been solved by Zelmanov in 1944 [1], who had built a complete

∗It should be noted that Landau and Lifshitz in their famous The Classical
Theory of Fields [5] stick to other signature (−+++), where time is imaginary, spatial
coordinates are real and three-dimensional coordinate impulse (the spatial part of
four-dimensional impulse vector) is positive. Besides in their book the space-time
indices are Roman, the spatial indices — Greek.
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mathematical apparatus to calculate physical observable projections
in a four-dimensional pseudo-Riemannian space. He called his
mathematical apparatus the theory of chronometric invariants.

Other theorists of 1940’s (see Landau and Lifshitz [5], for in-
stance) also introduced observable time and observable spatial in-
terval like as Zelmanov defined those. But they did not arrive to
general mathematical methods to solve the problem, being limited
themselves only to this particular case. Only Cattaneo, an Italian
mathematician who developed his own approach to the problem,
was not far from the Zelmanov solution. Cattaneo published his
results on the theme in 1958 and later [6, 7, 8, 9]. Zelmanov appre-
ciated his works highly. Cattaneo also referred to Zelmanov.

Here is an essence of the Zelmanov mathematical apparatus.
From geometric viewpoint our three-dimensional space is a spatial
section x0= ct= const, which may be placed in any point of space-
time orthogonal to a time line xi= const. If a spatial section is
everywhere orthogonal to time lines, such space is known as holo-
nomic. If a spatial section is only locally orthogonal to time lines,
the space is non-holonomic. Frame of references of a real observer
includes a coordinate net spanned over a real reference body and a
real clock to which the observer refers his measurements. So, the
observer’s physical observable quantities should be projections of
four-dimensional quantities on the time line and the coordinate net
of his reference space. A four-dimensional monad (unit) vector

bα =
dxα

ds
, bαb

α = +1 , (1.1)

of the observer’s velocity in respect of his reference body, is the
operator of projection on his time line. A four-dimensional sym-
metric tensor hαβ, components of which are defined as

hαβ=−gαβ+bαbβ , hαβ=−gαβ+bαbβ , hβα=−g
β
α+bαb

β , (1.2)

is the operator of projection on his spatial section, because the
vector bα and the tensor hαβ have the necessary and sufficient
properties of such projecting operators. Namely, the properties are

hiαb
α = 0 , hαi h

k
α = δ

k
i . (1.3)

If an observer accompanies to his references (bi=0), then trans-
formation of coordinates realizes only transition from one coordi-
nate net to another within the same spatial section, transformation
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of time displaces the observer into another spatial section. There-
fore physical observable projections in the accompanying reference
frame shall be invariant in respect of the transformation of time,
so they shall be chronometrically invariant quantities. To calculate
chr.inv.-projections Zelmanov set forth a theorem as follows:

THEOREM We assume that Aij...k00...0 is the component of a world-
tensor, all upper indices of which are significant, while all m the
lower indices are zeroes. Next, we assume that B00...0 is the time
component of a covariant world-tensor of n-th rank. Then we have

A
ij...k ′
00...0 = A

ij...k
00...0

(
∂x0

∂x0′

)m
, B ′

00...0 = B00...0

(
∂x0

∂x0′

)n
, (1.4)

so forth, using g00 instead of B00...0, we obtain that the quantity

Qij...k =
A
ij...k
00...0

(g00)
m
2

(1.5)

is the component of a contravariant chr.inv.-tensor.

In accordance with the Zelmanov theorem, chr.inv.-projections
of an arbitrary four-dimensional vector Qα on time lines and the
spatial section are the quantities

bαQα =
Q0
√
g00

, hiαQ
α = Qi, (1.6)

chr.inv.-projections of any symmetric tensor of the 2nd rank Qαβ

are the next three quantities

bαbβQαβ =
Q00
g00

, hiαbβQαβ =
Qi0√
g00

, hiαh
k
βQ

αβ = Qik, (1.7)

in antisymmetric tensors of the 2nd rank just Q00=Q00=0.
For instance, projecting an interval of four-dimensional coordi-

nates dxα on time lines in the accompanying reference frame, we
obtain the chr.inv.-scalar

dτ =
√
g00 dt+

g0i
c
√
g00
dxi, (1.8)

which is an interval of physical observable time, while its projection
on the spatial section is the three-dimensional chr.inv.-vector dxi,
components of which coincide intervals of the spatial coordinates.
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Projecting the fundamental metric tensor gαβ on the spatial
section in the accompanying reference frame

hαi h
β
k gαβ = gik − bibk = −hik , (1.9)

we obtain that the chr.inv.-tensor

hik = −gik + bibk (1.10)

possesses all properties of the fundamental metric tensor in this
spatial section. In particular, the hik can lift and lower indices of
three-dimensional chr.inv.-quantities. So, it is the metric chr.inv.-
tensor or, in other word, the physical observable metric tensor.

The square of space-time interval ds2= gαβ dxαdxβ in the terms
of physical observable quantities is

ds2 = bαbβ dx
αdxβ − hαβ dx

αdxβ = c2dτ 2 − dσ2, (1.11)

where the chr.inv.-scalar dσ is a three-dimensional observable in-
terval in this spatial section

dσ2 = hαβ dx
αdxβ = hik dx

idxk. (1.12)

As it had been found by Zelmanov, any real reference space,
being the physical space of a real observer, has numerous observable
properties, expressed by three-dimensional chr.inv.-quantities Fi,
Aik, Dik, and Δijk. The quantities Fi and Aik are introduced as
follows. Chr.inv.-operators of derivation, marked with asterisk,

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
−
g0i
g00

∂

∂x0
(1.13)

are non-commutative
∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi
=
1

c2
Fi

∗∂

∂t
,

∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
=
2

c2
Aik

∗∂

∂t
,

(1.14)

this non-commutativity defines the antisymmetric chr.inv.-tensor
of angular velocities of the space rotation and the chr.inv.-vector of
gravitational inertial force

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk − Fkvi) , (1.15)
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Fi =
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

, (1.16)

where w is the gravitational potential of the field of the reference
body and vi is the linear velocity of the space rotation∗

√
g00 = 1−

w

c2
, vi = −c

g0i
√
g00

. (1.17)

So forth, components of the projecting operator bα in the accom-
panying reference frame are

b0 =
1

√
g00

, b0 =
√
g00 , bi = 0 , bi = −

1

c
vi , (1.18)

while components of the projecting operator hαβ are

h00 = 0 , h0i = 0 , hik = −gik +
1

c2
vivk , (1.19)

h00 =
1

g00
−
1− 1

c2
viv

i

√
g00

, h0i =
1

c
√
g00

vi, hik = −gik, (1.20)

h00 = 0 , hi0 = 0 , h0i = −
1

c
√
g00

vi , hik = −g
i
k = δ

i
k . (1.21)

A spatial section, being placed in a holonomic space, is every-
where orthogonal to time lines, i. e. there g0i=0 is true. In the
presence of g0i=0 we have vi=0, hence Aik=0. This implies that
non-holonomity of the space and its three-dimensional rotation
are the same. In a non-holonomic space g0i 6=0 and Aik 6=0 are
true. Hence Aik=0 is the necessary and sufficient condition of
holonomity of the space. So, the Aik is the tensor of the space
non-holonomity.

Zelmanov had also found that the chr.inv.-quantities Fi and Aik
are linked one to other by two identities

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

= 0 , (1.22)

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+
1

2
(FiAkm + FkAmi + FmAik) = 0 , (1.23)

∗As it could be proven from the main property of the fundamental metric tensor
gασgσβ = δ

β
α, being taken under the condition α=β=0, the square of the velocity

vi equals v2= c2(1− g00g00)=hikvivk, where vi=−c g0i
√
g00 .
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so we will refer to them as Zelmanov’s identities.
Chr.inv.-derivatives of the metric chr.inv.-tensor with respect

to time define the tree-dimensional symmetric chr.inv.-tensor Dik,
which is the rate of deformations of the space

Dik =
1

2

∗∂hik
∂t

, Dik = −
1

2

∗∂hik

∂t
, D = Dk

k =
∗∂ ln

√
h

∂t
, (1.24)

where h=det ‖hik‖,
√
−g=

√
h
√
g00 , and g=det ‖gαβ‖.

Observable non-uniformity of the space is defined by Christof-
fel’s chr.inv.-symbols Δijk=h

imΔjk,m, which are set up similar to
Christoffel’s regular symbols Γαμν = g

ασΓμν,σ, namely

Δijk = h
imΔjk,m =

1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

, (1.25)

Γαμν = g
ασ Γμν,σ =

1

2
gασ
(
∂gμσ
∂xν

+
∂gνσ
∂xμ

−
∂gμν
∂xσ

)

. (1.26)

From geometric viewpoint, the Christoffel symbols are coher-
ence coefficients of the space. So, the Christoffel chr.inv.-symbols
are physical observable coherence coefficients of the accompanying
reference space of the given observer.

Components of the Christoffel regular symbols are linked to
chr.inv.-chractersitics of the accompanying reference space of the
given observer by the next correlations

Di
k + A

∙i
k∙ =

c
√
g00

(

Γi0k −
g0kΓ

i
00

g00

)

, (1.27)

F k = −
c2 Γk00
g00

, giαgkβ Γmαβ = h
iqhksΔmqs. (1.28)

These are the main points of the Zelmanov mathematical appa-
ratus of chronometric invariants. To do using the apparatus in the
General Theory of Relativity easier, we need to express the basics
of tensor algebra and the analysis in the terms of chronometric
invariants. The next paragraphs will be focused on this problem.

§1.2 Tensor algebra

We assume a space with an arbitrary reference frame xα. In some
area of the space, there exists a geometric object G defined by
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n functions of the coordinates xα and the transformation rule to
calculate these n functions in any other reference frame x̃α, located
in this space.

A tensor object (tensor) of zero rank is any geometric object ϕ,
transformable according to the rule

ϕ̃ = ϕ
∂xα

∂x̃α
, (1.29)

where the index one-by-one takes numbers of all coordinate axis.
Any tensor of zero rank has a single component and is also known
as scalar. From geometric viewpoint, scalar is a point to which a
certain number is attributed.

Contravariant (upper-index) tensors of the 1st rank Aα and of
higher ranks Aα...σ are geometric objects with components, trans-
formable according to the rules

Ãα = Aμ
∂x̃α

∂xμ
, Ãα...σ = Aμ...τ

∂x̃α

∂xμ
∙ ∙ ∙
∂x̃σ

∂xτ
. (1.30)

For instance, contravariant tensor of the 1st rank is a vector,
contravariant tensor of the 2nd rank (bivector) is a parallelogram
constrained by two vectors, and so on.

Covariant (lower-index) tensors of the 1st rank Aα and of higher
ranks Aα...σ are geometric objects, transformable according to the
rules

Ãα = Aμ
∂xμ

∂x̃α
, Ãα...σ = Aμ...τ

∂xμ

∂x̃α
∙ ∙ ∙
∂xτ

∂x̃σ
. (1.31)

In particular, the gradient of a scalar field ϕ, i. e. the quantity

Aα=
∂ϕ
∂xα

, is covariant tensor of the 1st rank, because of taking into

account that ϕ̃=ϕ we have

∂ϕ̃

∂x̃α
=
∂ϕ̃

∂xμ
∂xμ

∂x̃α
=
∂ϕ

∂xμ
∂xμ

∂x̃α
. (1.32)

Mixed tensors are tensors of the 2nd rank or of higher ranks
with both upper and lower indices. For instance, mixed symmetric
tensor Aαβ is a geometric object, transformable according to the rule

Ãαβ = A
μ
ν

∂x̃α

∂xμ
∂xν

∂x̃β
. (1.33)

Tensor objects exist both in metric and non-metric spaces (in
non-metric spaces the distance between any two points can not be
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measured). Every tensor has an components, where a is dimension
of the tensor and n is the rank. So, a four-dimensional tensor of zero
rank has 1 component, a tensor of the 1st rank has 4 components,
a tensor of the 2nd rank has 16 components, and so on.

However the presence of indices (the number of axial compo-
nents) are found not in tensors only, but in other geometric objects
as well. Therefore, if we come across a quantity in by-component
notation, this is not necessarily a tensor quantity. For instance,
let us calculate Christoffel’s symbols (the coherence coefficients of
space) in a tilde-marked reference frame

Γ̃αμν = g̃
ασ Γ̃μν,σ , Γ̃μν,σ =

1

2

(
∂g̃μσ
∂x̃ν

+
∂g̃νσ
∂x̃μ

−
∂g̃μν
∂x̃σ

)

, (1.34)

proceeding from the quantities in a non-marked reference frame.
Because the fundamental metric tensor gαβ, just like any other
covariant tensor of the 2nd rank, is transformable to the rule

g̃μσ = gετ
∂xε

∂x̃μ
∂xτ

∂x̃σ
, (1.35)

we have
∂gετ
∂x̃ν

=
∂gετ
∂xρ

∂xρ

∂x̃ν
, (1.36)

and the first term in the brackets of (1.34) is

∂g̃μσ
∂x̃ν

=
∂gετ
∂xρ

∂xρ

∂x̃ν
∂xε

∂x̃μ
∂xτ

∂x̃σ
+gετ

(
∂xτ

∂x̃σ
∂2xε

∂x̃ν∂x̃μ
+
∂xε

∂x̃μ
∂2xτ

∂x̃ν∂x̃σ

)

. (1.37)

Following the same way, deducing the rest of the terms of the
tilde-marked Christoffel symbols (1.34), after transposition of free
indices we arrive to

Γ̃μν,σ = Γερ,τ
∂xε

∂x̃μ
∂xρ

∂x̃ν
∂xτ

∂x̃σ
+ gετ

∂xτ

∂x̃σ
∂2xε

∂x̃μ∂x̃ν
, (1.38)

Γ̃αμν = Γ
γ
ερ

∂x̃α

∂xγ
∂xε

∂x̃μ
∂xρ

∂x̃ν
+
∂x̃α

∂xγ
∂2xγ

∂x̃μ∂x̃ν
, (1.39)

so the Christoffel symbols are transformed not in the way tensors,
hence they are not tensors.

Adding up two same-type tensors of the n-rank gives a new
tensor of the same type and rank with components being sums of
the respective components of the tensors added up. For instance

Aα +Bα = Dα, Aαβ +B
α
β = D

α
β . (1.40)
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Tensor multiplication is permitted not only for same-type, but
for any tensors of any ranks. External multiplication of tensors of
the n-rank and m-rank gives a tensor of the (n+m)-rank

AαβBγ = Dαβγ , AαB
βγ = Dβγ

α . (1.41)

Contraction is multiplication of the same-rank tensors, when
indices are the same. Contraction of tensors by all indices gives a
scalar quantity, for instance

AαB
α = C , A

γ
αβB

αβ
γ = D . (1.42)

Often multiplication of tensors implies contraction by not all
indices, so the result is not a scalar quantity. Such multiplication is
referred to as internal multiplication, which implies contraction of
only some indices inside the multiplication

AασB
σ = Dα , AγασB

βσ
γ = Dβ

α . (1.43)

In Riemannian spaces, the metric has Riemannian quadratic
form ds2= gαβ dx

αdxβ. So the fundamental metric tensor, defining
geometric properties of the spaces, is the tensor of the 2nd rank gαβ.
The metric tensor can lower or lift indices in geometric objects, for
instance

gαβA
β = Aα , gμνgσρAμνσ = A

ρ. (1.44)

In Riemannian spaces the mixed fundamental metric tensor gβα
equals to the four-dimensional unit tensor

gβα= gασg
σβ = δβα , (1.45)

diagonal components of which are units, while the rest are zeroes.
The spatial part of the unit world-tensor δβα is the three-dimensional
unit tensor δki , so that

δβα =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 , δki =




1 0 0
0 1 0
0 0 1



 . (1.46)

Using the unit tensors, we can replace indices. For instance, for
four-dimensional quantities we can write down

δβαAβ = Aα , δνμδ
σ
ρA

μρ = Aνσ, (1.47)
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while for three-dimensional quantities we have, respectively

δki Ak = Ai , δmi δ
n
kA

ik = Amn. (1.48)

Contraction of any tensor of the 2nd rank with the fundamental
metric tensor gives a scalar quantity, known as the tensor spur or
its trace

gαβAαβ = A
σ
σ . (1.49)

For instance, as it easy to see, the spur of the fundamental
metric tensor in a four-dimensional Riemannian space equals the
number of coordinate axes

gαβ g
αβ = gσσ = g

0
0 + g

1
1 + g

2
2 + g

3
3 = 4. (1.50)

The metric chr.inv.-tensor hik (1.10) in the spatial section of
an observer, who accompanies to his reference body∗, possess all
properties of the fundamental metric tensor gαβ. Therefore the
tensor hik can lower, lift or replace indices in chr.inv.-quantities. For
instance, the spur of the tensor of the rate of the space deformations
Dik (1.24) equals

D = hikDik = D
n
n . (1.51)

Scalar product of two vectors Aα and Bα in a four-dimensional
pseudo-Riemannian space is the quantity

gαβA
αBβ = AαB

α = A0B
0 + AiB

i. (1.52)

If the both vectors are the same, their scalar product

gαβA
αAβ = AαA

α = A0A
0 + AiA

i (1.53)

is the square of the vector Aα. Consequently the length of any vector
is scalar. For instance, the length of the Aα is

A = |Aα| =
√
gαβAαAβ . (1.54)

In three-dimensional Euclidean space scalar product of two vec-
tors is a scalar quantity with module equal to the product of their
lengths, multiplied by cosine of the angle between them

AiB
i =

∣
∣Ai
∣
∣
∣
∣Bi
∣
∣ cos

(
Âi;Bi

)
. (1.55)

∗From geometric viewpoint, “the spatial section of an observer, who accompanies
to his reference body” implies “the three-dimensional observable space of the
observer”.
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Theoretically at every point of any Riemannian space a tangen-
tial flat space can be set, which basic vectors will be tangential to
the basic vectors of the Riemannian space in this tangential point.
Then the metric of the tangential flat space will be the metric of the
Riemannian space in this point. Therefore this statement is also true
in the Riemannian space, if we consider the angle between spatial
coordinate lines and replace Roman (three-dimensional) indices
with Greek ones. From here we can see that scalar product of two
orthogonal vectors is the projection of one vector on another and
equals zero. If the vectors are the same, the vector is projected on
itself.

Vector product of two vectors Aα and Bα is a tensor of the 2nd
rank V αβ, obtained from their external multiplication according to
the specific rule

V αβ =
[
Aα ;Bβ

]
=
1

2

(
AαBβ − AβBα

)
=
1

2

∣
∣
∣
∣
Aα Aβ

Bα Bβ

∣
∣
∣
∣ . (1.56)

As it easy to see, here the order in which vectors are multiplied
does matter, i. e. the order in which we write down tensor indices.
Therefore tensors obtained as vector products are antisymmetric
tensors. In any antisymmetric tensor V αβ =−V βα indices being
moved “reserve” their places as dots gασV σβ =V

∙β
α∙ , thus showing

from where the index was moved. In symmetric tensors there is no
need of “reserving” places for moved indices, because the order in
which they appear does not matter. In particular, the fundamental
metric tensor gαβ = gβα is symmetric, while Riemann-Christoffel’s
tensor of the space curvature Rα∙∙∙∙βγδ is symmetric in respect to
transposition by pair of its indices and is antisymmetric inside each
pair of the indices. It is evidently, only tensors of the 2nd rank or
of higher ranks may be symmetric or antisymmetric.

All diagonal components of any antisymmetric tensor by its
definition are zeroes, for example

V αα = [Aα;Bα] =
1

2
(AαBα − AαBα) = 0 . (1.57)

In three-dimensional Euclidean space the numerical value of
the vector product of two vectors is defined as the area of the
parallelogram they make and equals the product of their modules,
multiplied by sine of the angle between them

V ik =
∣
∣Ai
∣
∣
∣
∣Bk

∣
∣ sin

(
Âi;Bk

)
, (1.58)
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so any antisymmetric tensor of the 2nd rank is a pad, oriented in
the space according to the directions of its forming vectors.

Because any antisymmetric tensor, Vαβ for instance, possesses
the properties Vαα=0 and Vαβ =−Vβα, contraction of it with any
symmetric tensor Aαβ =AαAβ is zero

VαβA
αAβ = V00A

0A0 + V0iA
0Ai + Vi0A

iA0 + VikA
iAk = 0 . (1.59)

Chr.inv.-projections of an arbitrary antisymmetric tensor of the
2nd rank V αβ are the quantities

V00
g00

= 0 ,
V ∙i0∙√
g00

= −
V i∙∙0√
g00

, V ik = −V ki , (1.60)

where the 1st observable projection is zero, because in any anti-
symmetric tensor all diagonal components are zeroes.

§1.3 Pseudotensors

Asymmetry of tensor fields is defined by reference antisymmetric
tensors. In a Galilean reference frame∗ such references are Levi-
Civita’s tensors, namely — the four-dimensional completely anti-
symmetric unit tensor eαβμν for four-dimensional fields and the
three-dimensional completely antisymmetric unit tensor eikm for
three-dimensional fields. Components of the Levi-Civita tensors,
which have all indices different, are either +1 or −1 depending upon
the number of transpositions of indices. All the rest components, i. e.
those having at least two coinciding indices, are zeroes. Moreover,
for the signature (+−−−) we are using all non-zero components have
the sign opposite to their respective covariant components†. For
instance, in the Minkowski space we have

gασgβρgμτ gνγe
σρτγ = g00g11g22g33e

0123 = −e0123,

giαgkβgmγe
αβγ = g11g22g33e

123 = −e123
(1.61)

∗A Galilean frame of reference is the one that does not rotate, is not subject to
deformations and falls freely in the flat space-time of the Special Theory of Relativity
(Minkowski’s space). There lines of time are linear and so are three-dimensional
coordinate axes.

†Under the signature (−+++) Landau and Lifshitz used in The Classical Theory
of Fields [5] this is true for only the four-dimensional tensor eαβμν . Components
of the three-dimensional tensor eikm will have same signs as well as the respective
components of eikm.
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due to the signature conditions g00=1 and g11= g22= g33=−1. So
forth, components of the tensor eαβμν equal

e0123 = +1, e1023 = −1, e1203 = +1, e1230 = −1,

e0123 = −1, e1023 = +1, e1203 = −1, e1230 = +1,
(1.62)

and components of the tensor eikm are

e123 = +1, e213 = −1, e231 = +1,

e123 = −1, e213 = +1, e231 = −1.
(1.63)

Because we have free choice for the sign of the first component,
we assume e0123=−1 and e123=−1. The rest components will be
changed subsequently. In general, the world-tensor eαβμν is related
to the spatial tensor eikm as e0ikm= eikm.

Multiplying the four-dimensional antisymmetric unit tensor
eαβμν by itself, we obtain a regular tensor of the 8th rank with
non-zero components, which are given in the matrix

eαβμνeστργ = −








δασ δατ δαρ δαγ
δ
β
σ δ

β
τ δ

β
ρ δ

β
γ

δ
μ
σ δ

μ
τ δ

μ
ρ δ

μ
γ

δνσ δντ δνρ δνγ







. (1.64)

The rest properties of the tensor eαβμν are derived from the
previous by means of contraction of indices

eαβμνeστρν = −






δασ δατ δαρ
δ
β
σ δ

β
τ δ

β
ρ

δ
μ
σ δ

μ
τ δ

μ
ρ




 , (1.65)

eαβμνeστμν = −2

(
δασ δατ
δ
β
σ δ

β
τ

)

= −2
(
δασ δ

β
τ − δ

β
σ δ

α
τ

)
, (1.66)

eαβμνeσβμν = −6δ
α
σ , eαβμνeαβμν = −6δ

α
α = −24. (1.67)

Multiplying the three-dimensional antisymmetric unit tensor
eikm by itself we obtain a regular tensor of the 6th rank

eikmerst =






δir δis δit
δkr δks δkt
δmr δms δmt




 . (1.68)
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The rest properties of the tensor eikm can be expressed as
follows

eikmersm = −

(
δir δis
δkr δks

)

= δisδ
k
r − δ

i
rδ
k
s , (1.69)

eikmerkm = 2δ
i
r , eikmeikm = 2δ

i
i = 6. (1.70)

The completely antisymmetric unit tensor defines for a tensor
object its respective pseudotensor, marked with asterisk. For in-
stance, any four-dimensional scalar, vector and tensors of the 2nd,
3rd, and 4th ranks have respective four-dimensional pseudotensors
of the following ranks

V ∗αβμν= eαβμνV, V ∗αβμ= eαβμνVν , V
∗αβ=

1

2
eαβμνVμν ,

V ∗α =
1

6
eαβμνVβμν , V ∗ =

1

24
eαβμνVαβμν ,

(1.71)

where pseudotensors of the 1st rank V ∗α are sometimes called
pseudovectors, while pseudotensors of zero rank V ∗ are called
pseudoscalars. Any tensor and its respective pseudotensor are re-
ferred to as dual to each other to emphasize their common genesis.
In the same way, three-dimensional tensors have respective three-
dimensional pseudotensors

V ∗ikm = eikmV, V ∗ik = eikmVm ,

V ∗i =
1

2
eikmVkm , V ∗ =

1

6
eikmVikm .

(1.72)

Pseudotensors are called such because, in contrast to regular
tensors, they do not change being reflected in respect of one of the
axis. For instance, let us assume the reflection in respect of abscises
axis x1=−x̃1, x2= x̃2, x3= x̃3. Then the reflected component of an
antisymmetric tensor Vik orthogonal to x1 axis is Ṽ23=−V23, while
its dual component is

V ∗1 =
1

2
e1kmVkm =

1

2

(
e123V23 + e

132V32
)
= V23 ,

Ṽ ∗1=
1

2
ẽ1kmṼkm=

1

2
ek1mṼkm=

1

2

(
e213Ṽ23+e

312Ṽ32

)
=V23 .

(1.73)

Because four-dimensional antisymmetric tensors of the 2nd
rank and their dual pseudotensors are of the same rank, their

20 Chapter 1 The Mathematical Apparatus

contraction are pseudoscalars, so that

VαβV
∗αβ = Vαβ e

αβμνVμν = e
αβμνBαβμν = B

∗. (1.74)

The square of a pseudotensor V ∗αβ and the square of a pseudo-
vector V ∗i, expressed through their dual antisymmetric tensors of
the 2nd rank, are

V∗αβV
∗αβ = eαβμνV

μνeαβρσVρσ = −24VμνV
μν , (1.75)

V∗iV
∗i = eikmV

kmeipqVpq = 6VkmV
km. (1.76)

In inhomogeneous anisotropic pseudo-Riemannian spaces we
can not set a Galilean reference frame, so references of asymmetry
of tensor fields will depend upon inhomogeneity and anisotropy
of the space itself, which are defined by the fundamental metric
tensor. In this case a reference antisymmetric tensor is the four-
dimensional completely antisymmetric discriminant tensor

Eαβμν =
eαβμν
√
−g

, Eαβμν = eαβμν
√
−g . (1.77)

Here is the proof. Transformation of the unit completely anti-
symmetric tensor from a Galilean (non-tilde-marked) reference
frame into an arbitrary (tilde-marked) reference frame is

ẽαβμν = eσγετ
∂xσ

∂x̃α
∂xγ

∂x̃β
∂xε

∂x̃μ
∂xτ

∂x̃ν
= Jeαβμν , (1.78)

where J = det
∥
∥
∥∂x

α

∂x̃σ

∥
∥
∥ is called the Jacobian of the transformation

(the determinant of Jacobi’s matrix)

J = det

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∂x0

∂x̃0
∂x0

∂x̃1
∂x0

∂x̃2
∂x0

∂x̃3

∂x1

∂x̃0
∂x1

∂x̃1
∂x1

∂x̃2
∂x1

∂x̃3

∂x2

∂x̃0
∂x2

∂x̃1
∂x2

∂x̃2
∂x2

∂x̃3

∂x3

∂x̃0
∂x3

∂x̃1
∂x3

∂x̃2
∂x3

∂x̃3

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1.79)

Because the metric tensor gαβ is transformable just like any
covariant tensor of the 2nd rank, its determinant in the tilde-
marked reference frame is

g̃ = det ‖g̃αβ‖ = det

∥
∥
∥
∥gμν

∂xμ

∂x̃α
∂xν

∂x̃β

∥
∥
∥
∥ = J

2g . (1.80)
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Because in the Galilean (non-tilde-marked) frame of reference

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥
∥
∥
∥
∥
∥
∥
∥

= −1, (1.81)

then J2=−g̃2. Expressing ẽαβμν in an arbitrary frame of reference
as Eαβμν and writing down the metric tensor in a regular non-
tilde-marked form, we obtain Eαβμν = eαβμν

√
−g (1.77). In the same

way, we obtain the transformation rules for the components Eαβμν ,

because for them g= g̃J̃2, where J̃ = det
∥
∥
∥∂x̃

α

∂xσ

∥
∥
∥.

The discriminant tensor Eαβμν is not a physical observable quan-
tity. A physical observable reference of asymmetry of tensor fields
is the discriminant chr.inv.-tensor

εαβγ = hαμ h
β
ν h

γ
ρ bσE

σμνρ = bσE
σαβγ , (1.82)

εαβγ = h
μ
αh

ν
β h

ρ
γ b
σEσμνρ = b

σEσαβγ , (1.83)

which in the accompanying frame of reference, taking into account
that

√
−g=

√
h
√
g00, take the form

εikm = b0E
0ikm =

√
g00E

0ikm =
eikm
√
h
, (1.84)

εikm = b
0E0ikm =

E0ikm
√
g00

= eikm
√
h . (1.85)

With its help we can build chr.inv.-pseudotensors. For instance,
taking the antisymmetric chr.inv.-tensor of the space rotation Aik,
we obtain the chr.inv.-pseudovector of angular velocities of this
rotation Ω∗i= 1

2 ε
ikmAkm.

§1.4 Differential and derivative to the direction

In geometry a differential of a function is its variation between
two infinitely close points with coordinates xα and xα+ dxα. Re-
spectively, the absolute differential in a n-dimensional space is
the variation of a n-dimensional quantity between two infinitely
close points of n-dimensional coordinates in this space. In order to
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define the infinitesimal variation of a tensor quantity, we can not
use simple “difference” between its numerical values in the points
xα and xα+ dxα, because tensor algebra does not define the ratio
between values of a tensor at different points in space. This ratio
can be defined only using rules of transformation of tensors from
one reference frame into another. So, differential operators and the
results of their application to tensors must be tensors.

The absolute differential of a scalar ϕ is the scalar quantity

Dϕ =
∂ϕ

∂xα
dxα, (1.86)

which is the same that the regular differential dϕ. Expressing the
quantity with the terms of chronometric invariants, we obtain the
formula

Dϕ =
∗∂ϕ

∂t
dτ +

∗∂ϕ

∂xi
dxi, (1.87)

where is, aside for three-dimensional observable differential, also
an additional term, which takes into account that the absolute
displacement Dϕ is dependent from the flow of physical observable
time dτ .

The absolute differential of a contravariant vector Aα is

DAα = ∇σA
αdxσ =

∂Aα

∂xσ
dxσ+ΓαμσA

μdxσ = dAα+ΓαμσA
μdxσ, (1.88)

where ∇σAα is the absolute derivative of the vector Aα

∇σA
α =

∂Aα

∂xσ
+ ΓαμσA

μ. (1.89)

Let us deduce chr.inv.-projections of the absolute differential of
the vector Aα

T = bαDA
α =

g0αDA
α

√
g00

, Bi = hiαDA
α. (1.90)

Denoting chr.inv.-projections of the vector Aα as follows

ϕ =
A0
√
g00

, qi = Ai, (1.91)

we obtain the rest components of the vector Aα, which are

A0 =
ϕ+ 1c viq

i

√
g00

, Ai = −qi −
ϕ

c
vi . (1.92)
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Actually, to deduce the chr.inv.-projections (1.90) we need for-
mulas for the Christoffel symbols in the accompanying reference
frame. So forth, after some algebra we obtain the Christofel symbols
of the 1st kind Γαμ,ν in the accompanying reference frame

Γ00,0 = −
1

c3

(
1−

w

c2

) ∂w
∂t
, (1.93)

Γ00,i =
1

c2

(
1−

w

c2

)2
Fi +

1

c4
vi
∂w

∂t
, (1.94)

Γ0i,0 = −
1

c2

(
1−

w

c2

) ∂w
∂xi

, (1.95)

Γ0i,j = −
1

c

(
1−

w

c2

)(

Dij + Aij +
1

c2
Fjvi

)

+
1

c3
vj
∂w

∂xi
, (1.96)

Γij,0 =
1

c

(
1−

w

c2

)[

Dij−
1

2

(
∂vj
∂xi

+
∂vi
∂xj

)

+
1

2c2
(Fivj+Fjvi)

]

, (1.97)

Γij,k = −Δij,k +
1

c2

[

viAjk + vjAik +
1

2
vk

(
∂vj
∂xi

+
∂vi
∂xj

)

−

−
1

2c2
vk (Fivj + Fjvi)

]

+
1

c4
Fkvivj ,

(1.98)

and also the Christoffel symbols of the 2nd kind Γαμν , namely

Γ000 = −
1

c3

[
1

√
g00

∂w

∂t
+
√
g00 vkF

k

]

, (1.99)

Γk00 = −
1

c2
g00F

k, (1.100)

Γ00i =
1

c2

[

−
1

√
g00

∂w

∂xi
+ vk

(

Dk
i + A

∙k
i∙ +

1

c2
viF

k

)]

, (1.101)

Γk0i =
1

c

√
g00

(

Dk
i + A

∙k
i∙ +

1

c2
viF

k

)

, (1.102)

Γ0ij = −
1

c
√
g00

{

−Dij +
1

c2
vn×

×

[

vj (D
n
i + A

∙n
i∙ ) + vi

(
Dn
j + A

∙n
j∙

)
+
1

c2
vivjF

n

]

+

+
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

−
1

2c2
(Fivj + Fjvi)−Δ

n
ij vn

}

,

(1.103)
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Γkij = Δ
k
ij−

1

c2

[

vi
(
Dk
j + A

∙k
j∙

)
+ vj

(
Dk
i + A

∙k
i∙

)
+
1

c2
vivjF

k

]

, (1.104)

where Δijk are the Christoffel chr.inv.-symbols (1.25).
Substituting the formulas into (1.90), we arrive to the chr.inv.-

projections of the absolute differential of Aα in the final form

T = bαDA
α = dϕ+

1

c

(
−Fiq

idτ +Dikq
idxk

)
, (1.105)

Bi = hiσDA
σ = dqi +

(ϕ
c
dxk + qkdτ

) (
Di
k + A

∙i
k∙

)
−

−
ϕ

c
F idτ +Δimk q

mdxk.
(1.106)

A derivative to a direction of a function is its change in respect of
an elementary displacement along the given direction. The absolute
derivative to the direction in a n-dimensional space is a change of a
n-dimensional quantity in respect of an elementary n-dimensional
interval along the given direction. For instance, the absolute de-
rivative of a scalar function ϕ to a direction, defined by a curve
xα=xα (ρ), where ρ is a non-zero parameter along this curve, shows
the “rate” of change of this function

Dϕ

dρ
=
∂ϕ

∂xα
dxα

dρ
=
dϕ

dρ
, (1.107)

that in the accompanying reference frame is

Dϕ

dρ
=

∗∂ϕ

∂t

dτ

dρ
+

∗∂ϕ

∂xi
dxi

dρ
. (1.108)

The absolute derivative of a vector Aα to the direction of a curve
xα=xα (ρ) is the quantity

DAα

dρ
= ∇σA

α dx
σ

dρ
=
dAα

dρ
+ ΓαμσA

μ dx
σ

dρ
, (1.109)

which chr.inv.-projections are

bα
DAα

dρ
=
dϕ

dρ
+
1

c

(

−Fiq
i dτ

dρ
+Dikq

i dx
k

dρ

)

, (1.110)

hiσ
DAσ

dρ
=
dqi

dρ
+

(
ϕ

c

dxk

dρ
+ qk

dτ

dρ

)
(
Di
k + A

∙i
k∙

)
−

−
ϕ

c
F i
dτ

dρ
+Δimk q

m dx
k

dρ
.

(1.111)
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§1.5 Absolute divergence and rotor

A divergence of a tensor field is its “change” along a coordinate
axis. The absolute divergence of a n-dimensional tensor field is its
divergence in a n-dimensional space.

Algebraically, a divergence of a tensor field is a result of con-
traction of the field tensor with the operator of absolute derivation
∇. So, the divergence of a vector field Aσ is the scalar

∇σA
σ =

∂Aσ

∂xσ
+ ΓσσμA

μ, (1.112)

while the divergence of a field of the 2nd rank is the vector

∇σ F
σα =

∂F σα

∂xσ
+ ΓσσμF

αμ + ΓασμF
σμ, (1.113)

where, as it can be proven, the Γσσμ equals

Γσσμ=g
σρΓμσ,ρ=

1

2
gσρ
(
∂gμρ
∂xσ

+
∂gσρ
∂xμ

−
∂gμσ
∂xρ

)

=
∂ ln

√
−g

∂xμ
. (1.114)

To prove this, we take into account that σ and ρ here are free
indices, so they can change their sites. As a result, after contraction
with the tensor gρσ, the first and the last terms in the brackets
cancel each other and Γσσμ takes the form

Γσσμ =
1

2
gρσ

∂gρσ
∂xμ

. (1.115)

The quantities gρσ are components of a tensor reciprocal to the
tensor gρσ. For this reason, each component of the matrix gρσ is

gρσ =
aρσ

g
, g = det ‖gρσ‖ , (1.116)

where aρσ is the algebraic cofactor of the matrix’ element with
indices ρσ, equal to (−1)ρ+σ, multiplied by the determinant of the
matrix obtained by crossing the row and the column with the
numbers σ and ρ out of the matrix gρσ. As a result we obtain
aρσ = ggρσ. Because the determinant of the fundamental metric
tensor g= det ‖gρσ‖ by definition is

g =
∑

α0...α3

(−1)N(α0...α3) g0(α0)g1(α1)g2(α2)g3(α3) , (1.117)
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the value dg will be dg= aρσdgρσ = ggρσdgρσ, that finally gives

dg

g
= gρσdgρσ . (1.118)

Integration of the left part gives ln (−g), because the g is neg-
ative, while logarithm is defined for only positive functions. Then

d ln (−g) =
dg
g . Taking (−g)

1
2= 1

2 ln (−g) into account, we arrive to

d ln
√
−g =

1

2
gρσdgρσ , (1.119)

so Γσσμ (1.115) takes form

Γσσμ =
1

2
gρσ

∂gρσ
∂xμ

=
∂ ln

√
−g

∂xμ
, (1.120)

which has been proven (1.114).
Now we are going to deduce the divergence of a vector field

Aα (1.112) and of a tensor field of the 2nd rank Fαβ (1.113) in
chr.inv.-form.

The divergence of a vector field Aα is scalar, hence ∇σAσ can not
be projected on time lines and the spatial section, while it is enough
to express the formula through chr.inv.-quantities. Assuming ϕ and
qi notations for chr.inv.-projections of the vector Aα and taking into
account that √

−g =
√
h
√
g00 , (1.121)

after some algebra we have

∇σA
σ =

1

c

( ∗∂ϕ

∂t
+ ϕD

)

+
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
−
1

c2
Fiq

i, (1.122)

where the third term equals the Christoffel chr.inv.-symbols Δkji,
contracted by two symbols, so that

∗∂ ln
√
h

∂xi
= Δ

j
ji . (1.123)

Because of the evident analogy with the absolute divergence of
a four-dimensional vector field, Zelmanov called

∗∇i q
i =

∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qiΔ

j
ji (1.124)
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the chr.inv.-divergence of a three-dimensional vector field qi. In
addition to this, he called

∗∇̃i q
i = ∗∇i q

i −
1

c2
Fiq

i, (1.125)

the physical chr.inv.-divergence, in which the 2nd term takes into
account that the pace of time is different on the opposite walls of
an elementary volume. Therefore, if we measure durations of time
intervals at the opposite walls of the volume, the beginnings and
the ends of the interval will not coincide making them invalid for
comparison. Synchronization of clocks, realizing the property of
chronometric invariance, at the opposite walls of the volume will
give the true picture, i. e. the measured durations of the intervals
will be different.

The final equation for ∇σAσ will be

∇σA
σ =

1

c

( ∗∂ϕ

∂t
+ ϕD

)

+ ∗∇̃i q
i. (1.126)

The divergence of an antisymmetric tensor field Fαβ =−F βα

can be represented in the form

∇σ F
σα =

∂F σα

∂xσ
+ΓσσμF

αμ+ΓασμF
σμ =

∂F σα

∂xσ
+
∂ ln

√
−g

∂xμ
Fαμ, (1.127)

where the third term ΓασμF
σμ is zero because of contraction of the

Christoffel symbols Γασμ, symmetric by lower indices σμ, and the
antisymmetric tensor F σμ is zero (just like as a symmetric and an
antisymmetric tensors).

The divergence∇σ F σα is four-dimensional vector, so its chr.inv.-
projections are

T = bα∇σ F
σα, Bi = hiα∇σ F

σα = ∇σ F
iα. (1.128)

Denoting chr.inv.-projections of the field tensor Fαβ as

Ei =
F ∙i0∙√
g00

, Hik = F ik, (1.129)

we obtain the rest non-zero components of the tensor

F ∙00∙ =
1

c
vkE

k, (1.130)
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F ∙0k∙ =
1

√
g00

(

Ei −
1

c
vnH

∙n
k∙ −

1

c2
vkvnE

n

)

, (1.131)

F 0i =
Ei − 1c vkH

ik

√
g00

, F0i = −
√
g00Ei , (1.132)

F ∙ki∙ = −H
∙k
i∙ −

1

c
viE

k, Fik = Hik +
1

c
(viEk − vkEi) , (1.133)

and the square of the tensor Fαβ is

FαβF
αβ = HikH

ik − 2EiE
i. (1.134)

Substituting these components into (1.128), after some algebra
we arrive to

T =
∇σ F ∙σ0∙√
g00

=
∗∂Ei

∂xi
+ Ei

∗∂ ln
√
h

∂xi
−
1

c
HikAik , (1.135)

Bi = ∇σ F
σi =

∗∂Hik

∂xk
+Hik

∗∂ ln
√
h

∂xk
−
1

c2
FkH

ik−

−
1

c

( ∗∂Ei

∂t
+DEi

)

,

(1.136)

where Aik is the antisymmetric chr.inv.-tensor of the space rotation.
In the other notation, we have

T = ∗∇iE
i −

1

c
HikAik , (1.137)

Bi = ∗∇̃kH
ik −

1

c

( ∗∂Ei

∂t
+DEi

)

. (1.138)

So forth, we deduce chr.inv.-projections of the divergence of a
pseudotensor F ∗αβ, dual to the given antisymmetric tensor Fαβ

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν . (1.139)

We denote chr.inv.-projections of the pseudotensor F ∗αβ as

H∗i =
F ∗∙i0∙√
g00

, E∗ik = F ∗ik, (1.140)
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so there are evident correlations H∗i∼Hik and E∗ik∼Ei between
the quantities (1.140) and the chr.inv.-projections of the antisym-
metric tensor Fαβ (1.129), because of duality of the given tensors
Fαβ and F ∗αβ. Therefore, given that

F ∗∙i0∙√
g00

=
1

2
εipqHpq , F ∗ik = − εikpEp , (1.141)

the rest components of the pseudotensor F ∗αβ are

F ∗∙00∙ =
1

2c
vk ε

kpq

[

Hpq +
1

c
(vpEq − vqEp)

]

, (1.142)

F ∗∙0i∙ =
1

2
√
g00

[

ε
∙pq
i∙ Hpq +

1

c
ε
∙pq
i∙ (vpEq − vqEp)−

−
1

c2
εkpqvivkHpq −

1

c3
εkpqvivk (vpEq − vqEp)

]

,

(1.143)

F ∗0i =
1

2
√
g00

εipq
[

Hpq +
1

c
(vpEq − vqEp)

]

, (1.144)

F∗0i =
1

2

√
g00 εipqH

pq, (1.145)

F ∗∙ki∙ = ε
∙kp
i∙ Ep −

1

2c
vi ε

kpqHpq −
1

c2
vivm ε

mkpEp , (1.146)

F∗ik = εikp

(

Ep −
1

c
vqH

pq

)

, (1.147)

while its square is

F∗αβF
∗αβ = εipq (EpHiq − EiHpq) . (1.148)

Then the chr.inv.-projections of the divergence ∇σ F ∗σα are

∇σ F ∗∙σ0∙√
g00

=
∗∂H∗i

∂xi
+H∗i

∗∂ ln
√
h

∂xi
−
1

c
E∗ikAik , (1.149)

∇σ F
∗σi =

∗∂E∗ik

∂xi
+ E∗ik

∗∂ ln
√
h

∂xk
−
1

c2
FkE

∗ik−

−
1

c

( ∗∂H∗i

∂t
+DH∗i

)

,

(1.150)
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or, in the other notation

∇σ F ∗∙σ0∙√
g00

= ∗∇iH
∗i −

1

c
E∗ikAik , (1.151)

∇σ F
∗σi = ∗∇̃kE

∗ik −
1

c

( ∗∂H∗i

∂t
+DH∗i

)

. (1.152)

Aside for these we actually need to know chr.inv.-projections of
the divergence of symmetric tensors of the 2nd rank. So forth,
denoting chr.inv.-projections of a symmetric tensor Tαβ like as
Zelmanov did it, namely

T00
g00

= ρ ,
T i0√
g00

= Ki, T ik = N ik, (1.153)

after some algebra we obtain

∇σ T σ0√
g00

=
∗∂ρ

∂t
+ ρD +DikN

ik + c ∗∇iK
i −

2

c
FiK

i, (1.154)

∇σ T
σi = c

∗∂Ki

∂t
+ cDKi + 2c

(
Di
k + A

∙i
k∙

)
Kk+

+ c2 ∗∇kN
ik − FkN

ik − ρF i.
(1.155)

A rotor of a tensor field is that difference of covariant derivatives
of the field tensor, which from geometric viewpoint is the vortex
(rotation) of the field. Accordingly, the absolute rotor is the rotor
of a n-dimensional tensor field in a n-dimensional space. The rotor
of a four-dimensional vector field Aα is a covariant antisymmetric
tensor of the 2nd rank, defined as follows∗

Fμν = ∇μAν −∇ν Aμ =
∂Aν
∂xμ

−
∂Aμ
∂xν

, (1.156)

where ∇μAν is the absolute derivative of the Aα with respect to the
coordinate xμ

∇μAν =
DAν
dxμ

=
dAν
dxμ

− ΓσντAσ
dxτ

dxμ
=
∂Aν
∂xμ

− ΓσνμAσ . (1.157)

∗For example, see §98 in Raschewski’s well-known book Riemannian Geometry
and Tensor Analysis [10]. However naturally, rotor is not the tensor (1.156), but
its dual pseudotensor (1.158), because of the invariance in respect of reflection is
necessary for any rotations.
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The rotor, contracted with the four-dimensional absolutely anti-
symmetric discriminant tensor Eαβμν (1.77), is the pseudotensor

F ∗αβ = Eαβμν (∇μAν −∇ν Aμ) = E
αβμν

(
∂Aν
∂xμ

−
∂Aμ
∂xν

)

. (1.158)

So forth, we deduce components of an arbitrary rotor Fμν . Taking
into account that F00=F 00=0 just like for any other antisymmetric
tensor, after some algebra we obtain

F0i =
√
g00

(
ϕ

c2
Fi −

∗∂ϕ

∂xi
−
1

c

∗∂qi
∂t

)

, (1.159)

Fik =
∗∂qi
∂xk

−
∗∂qk
∂xi

+
ϕ

c

(
∂vi
∂xk

−
∂vk
∂xi

)

+

+
1

c

(

vi
∗∂ϕ

∂xk
− vk

∗∂ϕ

∂xi

)

+
1

c2

(

vi
∗∂qk
∂t

− vk
∗∂qi
∂t

)

,

(1.160)

F ∙00∙ = −
ϕ

c3
vkF

k +
1

c
vk
( ∗∂ϕ

∂xk
+
1

c

∗∂qk
∂t

)

, (1.161)

F ∙0k∙ = −
1

√
g00

[
ϕ

c2
Fk −

∗∂ϕ

∂xk
−
1

c

∗∂qk
∂t

+

+
2ϕ

c2
vmAmk +

1

c2
vkv

m

( ∗∂ϕ

∂xm
+
1

c

∗∂qm
∂t

)

−

−
1

c
vm
( ∗∂qm
∂xk

−
∗∂qk
∂xm

)

−
ϕ

c4
vkvmF

m

]

,

(1.162)

F ∙ik∙ = h
im

( ∗∂qm
∂xk

−
∗∂qk
∂xm

)

−
1

c
himvk

∗∂ϕ

∂xm
−

−
1

c2
himvk

∗∂qm
∂t

+
ϕ

c3
vkF

i +
2ϕ

c
A∙ik∙ ,

(1.163)

F 0k =
1

√
g00

[

hkm
( ∗∂ϕ

∂xm
+
1

c

∗∂qm
∂t

)

−
ϕ

c2
F k+

+
1

c
vnhmk

( ∗∂qn
∂xm

−
∗∂qm
∂xn

)

−
2ϕ

c2
vmA

mk

]

,

(1.164)

F ∙i0∙√
g00

=
giαF0α
√
g00

= hik
( ∗∂ϕ

∂xk
+
1

c

∗∂qk
∂t

)

−
ϕ

c2
F i, (1.165)
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F ik = giαgkβFαβ = h
imhkn

( ∗∂qm
∂xn

−
∗∂qn
∂xm

)

−
2ϕ

c
Aik, (1.166)

where (1.165) and (1.166) are chr.inv.-projections of the rotor Fμν .
Respectively, chr.inv.-projections of its dual pseudotensor F ∗αβ are

F ∗∙i0∙√
g00

=
g0αF

∗αi

√
g00

= εikm
[
1

2

( ∗∂qk
∂xm

−
∗∂qm
∂xk

)

−
ϕ

c
Akm

]

, (1.167)

F ∗ik = εikm
(
ϕ

c2
Fm −

∗∂ϕ

∂xm
−
1

c

∗∂qm
∂t

)

, (1.168)

where we deduced F ∗∙i0∙ = g0αF
∗αi= g0αE

αiμνFμν , using already ob-
tained components of the rotor Fμν .

§1.6 Laplace’s and d’Alembert’s operators

Laplace’s operator is the three-dimensional operator of derivation

Δ = ∇∇ = ∇2 = −gik∇i∇k , (1.169)

a four-dimensional generalization of which in pseudo-Riemannian
spaces is d’Alembert’s operator

= gαβ ∇α∇β . (1.170)

At first, let us apply the d’Alembert operator to a field of a four-
dimensional scalar ϕ, because in this case the calculations will be
much simpler (the absolute derivative of a scalar field ∇αϕ does not
contain the Christoffel symbols, becoming regular derivative)

ϕ = gαβ ∇α∇β ϕ = g
αβ ∂ϕ

∂xα

(
∂ϕ

∂xβ

)

= gαβ
∂2ϕ

∂xα∂xβ
. (1.171)

Components of the fundamental metric tensor gαβ will be for-
mulated with chr.inv.-quantities — see formula (1.20) for the com-
ponents gik and g0i, and footnote in p. 10 for the component g00. So
forth, we substitute the necessary components of the metric tensor
into the initial formula (1.171). As a result, we obtain a formula for
d’Alembertian of the scalar field ϕ, where all terms are chr.inv.-
quantities. This formula, taking asterisk as a brand of that all its
terms are filled in chr.inv.-form, is

∗ ϕ =
1

c2

∗∂2ϕ

∂t2
− hik

∗∂2ϕ

∂xi∂xk
=
1

c2

∗∂2ϕ

∂t2
− ∗Δ , (1.172)
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where we denote ∗Δ the Laplace chr.inv.-operator

∗Δ = −gik ∗∇i
∗∇k = h

ik
∗∂2

∂xi∂xk
. (1.173)

Now we apply the d’Alembert operator again. In this time, the
operator will be applied to an arbitrary four-dimensional vector
field Aα, namely

Aα = gμν ∇μ∇ν A
α. (1.174)

Because Aα is four-dimensional vector, chr.inv.-projections of
this quantity on time lines and the spatial section are

T = bσ Aσ = bσ g
μν ∇μ∇ν A

σ, (1.175)

Bi = hiσ Aσ = hiσ g
μν ∇μ∇ν A

σ. (1.176)

The chr.inv.-projections had been deduced by Borissova in 1998
as a result of very difficult algebra∗. They have the form

T = ∗ ϕ−
1

c3

∗∂

∂t

(
Fkq

k
)
−
1

c3
Fi

∗∂qi

∂t
+
1

c2
F i

∗∂ϕ

∂xi
+

+hikΔmik

∗∂ϕ

∂xm
− hik

1

c

∗∂

∂xi
[(Dkn + Akn) q

n] +
D

c2

∗∂ϕ

∂t
−

−
1

c
Dk
m

∗∂qm

∂xk
+
2

c3
AikF

iqk +
ϕ

c4
FiF

i −
ϕ

c2
DmkD

mk−

−
D

c3
Fmq

m −
1

c
ΔmknD

k
mq

n +
1

c
hikΔmik (Dmn + Amn) q

n,

(1.177)

Bi = ∗ Ai +
1

c2

∗∂

∂t

[(
Di
k + A

∙i
k∙

)
qk
]
+
D

c2

∗∂qi

∂t
+

+
1

c2
(
Di
k + A

∙i
k∙

) ∗∂qk

∂t
−
1

c3

∗∂

∂t

(
ϕF i

)
−
1

c3
F i

∗∂ϕ

∂t
+

+
1

c2
F k

∗∂qi

∂xk
−
1

c

(
Dmi+ Ami

) ∗∂ϕ

∂xm
+
1

c4
qkFkF

i +

∗To deduce chronometrically invariant d’Alembertian for a vector field in a
pseudo-Riemannian space is not a trivial task, because the Christoffel symbols are
not zeroes there. So, formulas for projections of the second derivatives take dozens
of pages. This is one of the reasons why applications of the theory of electromagnetic
field in The Classical Theory of Fields [5] and other books are mainly calculated in
a Galilean reference frame in the Minkowski space (the space-time of the Special
Theory of Relativity), where the Christoffel symbols are zeroes.
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+
1

c2
Δikmq

mF k −
ϕ

c3
DF i +

D

c2
(
Di
n + A

∙i
n∙

)
qn −

−hkm
{ ∗∂

∂xk
(
Δimnq

n
)
+
1

c

∗∂

∂xk
[
ϕ
(
Di
m + A

∙i
m∙

)]
+

+
(
ΔiknΔ

n
mp −Δ

n
kmΔ

i
np

)
qp +

ϕ

c

[
Δikn (D

n
m + A

∙n
m∙) −

−Δnkm
(
Di
n + A

∙i
n∙

)]
+Δikn

∗∂qn

∂xm
−Δnkm

∗∂qi

∂xn

}

,

(1.178)

where ∗ ϕ and ∗ qi are results of that we have applied the d’Alem-
bert operator to the chr.inv.-projections ϕ and qi of the vector Aα

∗ ϕ =
1

c2

∗∂2ϕ

∂t2
− hik

∗∂2ϕ

∂xi∂xk
, (1.179)

∗ qi =
1

c2

∗∂2qi

∂t2
− hkm

∗∂2qi

∂xk∂xm
. (1.180)

D’Alembertian from a tensor field, being equalized to zero or not,
gives the d’Alembert equations for the same field. From physical
viewpoint these are the equations of propagation of waves of the
field. If the d’Alembertian is not zero, the waves are enforced by
the field sources like charges or currents (the d’Alembert equations
with the sources). If the d’Alembert operator for the field is zero,
then these are the equations of propagation of free waves of the
given field, so the waves are not related to the field charges or
currents. If the space-time area we are considering for the tensor
field in this question is filled with also another medium, then the
d’Alembert equations will gain an additional term in their right
parts to characterize the media, which can be obtained from the
equations that define it.

§1.7 Conclusions

Of course this brief account can not fully cover such a vast field like
tensor calculus. Moreover, there is even no need in doing that here.
Detailed accounts of tensor algebra and the analysis can be found
in numerous mathematical books indirectly related to the General
Theory of Relativity∗. Besides, many specific techniques of this

∗For instance, the excellent book Riemannian Geometry and Tensor Analysis,
written by Raschewski [10].
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science, which occupy substantial part of mathematical textbooks,
are not used in theoretical physics. For this reason this Chapter
gives only a basic introduction into tensor algebra and the analysis,
which is necessary for understanding applications of the methods
of chronometric invariants to the theory of fields∗. For instance,
if we now come across an antisymmetric tensor or a differential
operator, we do not have to undertake special calculations of their
components or physical observable projections, but may rather use
templates already obtained in this Chapter.

♦

∗For other applications of the mathematical methods of chronometric invariants
to numerous problems in the General Theory of Relativity, see [11, 12].

Chapter 2

THE FIELD OF NON-UNIFORMITY OF TIME

This Chapter looks the field of non-uniformities of time coordinates.
Equations of motion, expressed through the field tensor, show that
particles move along time lines because of rotation of the space itself.
Maxwell-like equations of the field display its sources, which are de-
rived from gravitation, rotations, and inhomogeneity of the space.
Energy-momentum tensor of the field sets up that it is an inhomo-
geneous viscous media, which is in the state of ultrarelativistic gas.
Waves of the field are transverse, the wave pressure is derived from
mainly sub-atom processes — exciting/relaxing atoms produce the
positive/negative wave pressure, that lead to testing the whole theory.

§2.1 Observable time density, defining the field

As it is well-known [5], dS=m0cds is an elementary action to
displace a free mass-bearing particle of the rest-mass m0 at an
interval of four-dimensional distance ds. What is a matter doing
this action? To answer this question let us substitute the square of
the interval ds2= gαβ dxαdxβ into the action. As a result we see that

dS = m0cds = m0c
√
gαβ dxαdxβ , (2.1)

so the particle moves in space-time along geodesic lines (free mo-
tion), because of carrying by the field of the fundamental metric
tensor gαβ. At the same time Einstein’s equations link the metric
tensor gαβ to the energy-momentum tensor of matter through the
four-dimensional curvature of space-time. This implies that grav-
itational field is linked to the field of the space-time metric in
the frames of the General Theory of Relativity. From this reason
ones regularly conclude, that the action (2.1) to displace free mass-
bearing particles is produced by gravitational field.

Let us find which field will be shown by the action (2.1) as a
source of free motion, if the space-time interval ds therein would
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be written with the terms of physical observable quantities (chro-
nometric invariants). Using chr.inv.-formula for the interval (1.11),
we can write down the action (2.1) to displace a free mass-bearing
particle in the form

dS = m0c
√
bαbβ dxαdxβ − hαβ dxαdxβ . (2.2)

If the particle rests in respect of the observer’s reference body,
then its observable displacement along his spatial section is dxi=0,
so the chr.inv.-vector of its observable velocity vi equals zero

vi =
dxi

dτ
= 0 . (2.3)

Such particle moves along only its own time line. In this case,
in the accompanying reference frame we have

hαβ dx
αdxβ = hik dx

idxk = 0 , (2.4)

hence the action is
dS = m0c bαdx

α , (2.5)

so the mass-bearing particle moves freely along time lines because
of carrying by solely the vector field bα.

What is physical sense of this field? The monad vector bα (1.1)
is the operator of projection on time lines (non-uniform, in general
case) of a real observer, which accompanies to his reference body.
This implies that the vector field bα defines the geometrical struc-
ture of the real space-time along time lines. Projecting an interval of
four-dimensional coordinates dxα on the time line of a real observer
in his accompanying reference frame, we obtain an interval of real
physical time dτ (1.8) he observes

dτ =
1

c
bαdx

α =
√
g00 dt+

g0i
c
√
g00
dxi =

(
1−

w

c2

)
dt−

1

c2
vidx

i. (2.6)

If the observer get back his measurements in the same spatial
point, in other word — along the same time line, then

dτ =
(
1−

w

c2

)
dt . (2.7)

This formula (2.7) and the previous (2.6) lead us to the con-
clusion that components of the observer’s monad vector bα define a
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“density” of physical observable time in his accompanying reference
frame. As it is easy to see, the density of observable time depends on
gravitational potential and, in the general case (2.6), on rotation of
the space. Hence, the vector field bα in the accompanying reference
frame is the field of non-uniformity of observable time references.
For this reason, we will refer to the field as the field of density of
observable time.

In the same way, a field of the tensor hαβ =−gαβ + bαbβ project-
ing four-dimensional quantities on the observer’s spatial section is
the field of density of the spatial section.

From geometric viewpoint, we can illustrate the conclusions
in this way. The vector field bα and the tensor field hαβ of the
accompanying reference frame of an observer, located in a four-
dimensional pseudo-Riemannian space, “split” the space into time
lines and a spatial section, properties of which (like as inhomoge-
neity, anisotopy, curvature, etc.) depend on physical properties of
the observer’s reference body. Being this “splitting” is processed,
the field of the fundamental metric tensor gαβ, standing the geo-
metrical structure of this space, “splits” as well (2.2). Its “trans-
verse component” is the field of density of time, a four-dimensional
potential of which is the monad vector bα. The “longitudinal com-
ponent” of this splitting is the field of density of the spatial section.

In the case, where a free mass-bearing particle is at rest in
respect of the observer and his reference body (its observable ve-
locity in the spatial section is vi=0), its four-dimensional motion is
realized along only time lines. Such particle is moved by only the
transverse component bα of the splitting of gαβ, i. e. because of only
the field of time density. Therefore, if a free particle moves along
the spatial section (vi 6=0) because of only the field of time density,
such motion is possible under only some limitations on geometrical
properties of this space (see §2.4 below).

§2.2 Introducing the field tensor

Looking at components (1.18) of the four-dimensional vector po-
tential bα of the field of time density taken in the accompanying
reference frame (bi=0), we see that its chr.inv.-projections equal,
respectively

ϕ =
b0
√
g00

= 1 , qi = bi = 0 . (2.8)
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In the same way that ones introduce Maxwell’s tensor of electro-
magnetic fields, we introduce the tensor of the field of time density
as the rotor of its four-dimensional vector potential

Fαβ = ∇α bβ −∇β bα =
∂bβ
∂xα

−
∂bα
∂xβ

. (2.9)

Taking into account that F00=F 00=0 just like for any antisym-
metric tensor of the 2nd rank, after some algebra we obtain the rest
components of the field tensor Fαβ

F0i =
1

c2
√
g00 Fi , Fik =

1

c

(
∂vi
∂xk

−
∂vk
∂xi

)

, (2.10)

F ∙00∙ = −
1

c3
vkF

k, F ∙i0∙ = −
1

c2
√
g00 F

i, (2.11)

F ∙0k∙ = −
1

√
g00

(
1

c2
Fk +

2

c2
vmAmk −

1

c4
vkvmF

m

)

, (2.12)

F ∙ik∙ =
1

c3
vkF

i +
2

c
A∙ik∙ , (2.13)

F 0k = −
1

√
g00

(
1

c2
F k +

2

c2
vmA

mk

)

, F ik = −
2

c
Aik. (2.14)

From here we can easy obtain chr.inv.-projections of the field
tensor. So forth we assume denotations of the projections just like
for chr.inv.-projections of the Maxwell tensor [12] to display their
physical sense. We will refer to the time projection

Ei =
F ∙i0∙√
g00

= −
1

c2
F i, Ei = hikE

k = −
1

c2
Fi (2.15)

of the field tensor Fαβ (2.9) as “electric”. The spatial projection

Hik = F ik = −
2

c
Aik, Hik = himhknF

mn = −
2

c
Aik (2.16)

of the field tensor will be referred to as “magnetic”. So, the “elec-
tric” and the “magnetic” observable components of the field of
time density display themselves as gravitational inertial force and
rotation of the space, respectively. In accordance with the above,
two particular cases of the field are possible. These are:
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1. If the field of time density has Hik=0 and Ei 6=0, then the field
is of strictly “electric” kind. This particular case corresponds
to a holonomic (non-rotating) space filled with gravitational
force fields;

2. The field of time density is of “magnetic” kind, if therein
Ei=0 andHik 6=0. This is a non-holonomic space, where fields
of gravitational inertial forces are homogeneous or absent. This
case is possible also if, according to chr.inv.-definition (1.16)
of the force

Fi =
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00 = 1−

w

c2
, (2.17)

its “gravitational” part (the first term, which is the force
of gravitational attraction) would be fully reduced with the
“inertial” part (the second term — centrifugal force of inertia).

This implies that the field of observable time density, deriving
from inhomogeneity of coordinates along real time lines, is linked
to the presence of the next forces:

• gravitational force — the gradient of gravitational potential,
which is the first term in the chr.inv.-definition of gravita-
tional inertial force Fi ;

• centrifugal force of inertia — the second term in the Fi ;

• other forces linked to the space rotation, defined by the tensor
Aik (1.15) — Coriolis’ force [1], for instance.

In addition to the field tensor Fαβ (2.9), we introduce the field
pseudotensor F ∗αβ, components of which will be used in equations
of the field in §2.5, and also the field invariants. We define the
pseudotensor F ∗αβ of the field of time density dual to the given
field tensor Fαβ (2.9) in the regular way

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (2.18)

where the four-dimensional completely antisymmetric discriminant

tensors Eαβμν = e
αβμν
√
−g

and Eαβμν = eαβμν
√
−g (1.77), transforming

regular tensors into pseudotensors in inhomogeneous anisotropic
pseudo-Riemannian spaces are not physical observable quantities.
The completely antisymmetric unit tensor eαβμν , being defined in
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a Galilean reference frame in the Minkowski space [5], also has
not this quality. Therefore we employ the discriminant chr.inv.-
tensors εαβγ = bσEσαβγ (1.82) and εαβγ = b

σEσαβγ (1.83), which in
the accompanying reference frame are

εikm = b0E
0ikm =

eikm
√
h
, εikm = b

0E0ikm = eikm
√
h . (2.19)

Using the components of the field tensor Fαβ we have deduced
(2.10–2.14), we obtain chr.inv.-projections of the field pseudotensor
F ∗αβ (2.18). The chr.inv.-projections are

H∗i =
F ∗∙i0∙√
g00

= −
1

c
εikmAkm = −

2

c
Ω∗i, (2.20)

E∗ik = F ∗ik =
1

c2
εikmFm , (2.21)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of angular ve-
locities of the space rotation. Relations of them to the chr.inv.-
projections of the field tensor Fαβ express themselves just like for
any chr.inv.-pseudotensors by the formulas

H∗i =
1

2
εimnHmn H∗i =

1

2
εimnH

mn, (2.22)

εipqH∗i =
1

2
εipqεimnH

mn =
1

2
(δpmδ

q
n − δ

q
mδ

p
n)H

mn = Hpq, (2.23)

εikpH
∗p = Eik , E∗ik = −εikmEm . (2.24)

So forth, we introduce invariants J1=FαβFαβ and J2=FαβF ∗αβ

for the field of time density. Their formulas are

J1 = FαβF
αβ =

4

c2
AikA

ik −
2

c4
FiF

i, (2.25)

J2 = FαβF
∗αβ = −

8

c3
FiΩ

∗i, (2.26)

so the field of time density can be spatially isotropic (one of the
invariants becomes zero) under the next particular conditions:

• invariant AikAik of the field of rotation of the space and in-
variant FiF i of the field of gravitational inertial force are
proportional one to another AikAik= 1

2c2
FiF

i ;
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• the acting gravitational inertial force Fi is orthogonal to the
pseudovector Ω∗i of the space rotation (the equality FiΩ∗i=0
is true);

• both of the conditions are realized together.

§2.3 Motion along time lines

Time lines are geodesics by definition. In accordance with the least
action principle, an action replacing a particle along a geodesic line
is the least. Actually, the least action principle implies that geodesic
lines are also lines of the least action. This is physical viewpoint.

In the same time a geometric viewpoint is also exist. From
this geometric viewpoint, motion of a particle is parallel transfer
of its four-dimensional impulse vector along its four-dimensional
trajectory and tangential to the trajectory at any of its point. Geo-
desic lines (lines of the least distance) are a particular case of
parallel transfer lines. In Riemannian spaces, the length of any
transferred vector remains unchanged in its parallel transfer along
geodesic lines, so absolute derivative of the vector equals zero. The
latest is known as equations of parallel transfer. So, we have a
possibility to deduce equations of motion of free particles in two
different ways:

1. Using the least action principle, we can take variation of the
action a field carrying a free particle spent and then equalize
the variation to zero. This way leads to equations of motion
derived from the least action principle;

2. We can take absolute derivative of the four-dimensional im-
pulse vector of the free particle with respect to interval along
its trajectory, then we equalize the derivative to zero. Those
will be equations of motion, deduced employing the parallel
transfer method.

However it does not the fact that the resulting equations will
be the same, because lines of the least action are only a particular
case of parallel transfer lines. For instance, as it had been obtained
earlier [12], the equations are different for charged particle in elec-
tromagnetic fields. The reason was that its motion is non-geodesic,
because electromagnetic fields deviate charged particles from geo-
desic lines. As soon as the equations had been compared, some
additional conditions of the motion had been created. However,
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because time lines are geodesics by their definition, they are lines
of the least action under any conditions. For this reason equations
of motion along time lines, deriving from the least action principle
or the parallel transfer method must be the same.

In this §2.3 we are going to consider a free mass-bearing particle,
which is at rest in respect of an observer and his reference body.
Such particle moves along only time lines, so the particle displaces
because of action of solely the field of non-uniformity of time
coordinates — the field of time density, produced by the observer’s
reference body.

The action the field of time density spends to displace a free
mass-bearing particle of the rest-mass m0 is dS=m0c bαdx

α (2.5).
Because of the least action, variation of the integral of the action
along geodesic lines equals zero

δ

∫ b

a

dS = 0 , (2.27)

that, after substituting dS=m0c bαdx
α, gives

δ

∫ b

a

dS = m0c δ

∫ b

a

bαdx
α = m0c

∫ b

a

δbαdx
α +m0c

∫ b

a

bαdδx
α, (2.28)

∫ b

a

bαdδx
α = bαδx

α
∣
∣
∣
b

a
−
∫ b

a

dbαδx
α = −

∫ b

a

dbαδx
α. (2.29)

Given that δbα=
∂bα
∂xβ

δxβ and dbα=
∂bα
∂xβ

dxβ, we arrive to

δ

∫ b

a

dS = m0c δ

∫ b

a

bαdx
α = m0c δ

∫ b

a

(
∂bβ
∂xα

−
∂bα
∂xβ

)

dxβδxα. (2.30)

This variation is zero, according to the least action principle.
Hence along time lines we have the condition

m0c

(
∂bβ
∂xα

−
∂bα
∂xβ

)

dxβ = 0 . (2.31)

This condition, being divided by the interval ds, gives general
covariant equations of motion of the particle

m0c Fαβ U
β = 0 , (2.32)
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wherein Fαβ is the tensor of the field of time density and Uβ is the
four-dimensional velocity of the particle∗.

Taking their projections in the accompanying reference frame
and multiplying the projections by c2, we obtain chr.inv.-equations
of motion of the particle in the general form

m0c
3F0σU

σ

√
g00

= 0 , m0c
2F i∙∙σU

σ = 0 , (2.33)

where the scalar equation shows a work to displace the particle per
second, while the vector equations show an observable acceleration
of the particle with its mass.

It is interesting to note, the left part of the general covariant
equations, which is the acting force, both in general covariant form
and its chr.inv.-projections we have obtained has the same form that
Lorentz’ force, which displace charged particles in electromagnetic
fields [12]. From mathematical viewpoint this fact implies that
the field of time density acts mass-bearing particle as well as
electromagnetic field moves electric charge.

Taking into account that formula (1.11) gives

ds2 = c2dτ 2
(

1−
hik dx

idxk

c2dτ 2

)

= c2dτ 2
(

1−
v2

c2

)

, (2.34)

we arrive to

Uα =
dxα

ds
=

1

c
√
1− v2

c2

dxα

dτ
, (2.35)

U0 =

1
c2
vkv

k + 1

√
g00

√
1− v2

c2

, U i =
1

c
√
1− v2

c2

vi. (2.36)

Using the obtained components of the field tensor Fαβ (2.10–
2.14) and taking into account that the observable velocity of the

∗Do not mix this vector Uα= dxα

ds
with the monad vector bα= dxα

ds
(1.1),

because they are built on different displacements dxα. The monad bα contains
displacement of the observer in respect of his reference body, while the vector
Uβ contains displacement of the particle. However, if the particle moves along only
time lines (its spatial displacement in respect of the observer is dxi=0) and the
observer accompanies to his reference body (his spatial displacement is dxi=0),
then the four-dimensional velocity Uα of the particle and the observer’s velocity bα

are the same.
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particle we are considering is vi=0, we transform the chr.inv.-
equations of motion (2.33) to the final form. The scalar equation
becomes zero. The vector equations of motion becomes very simple

m0F
i = 0 , (2.37)

or, substituting the “electric” observable component Ei=− 1
c2
F i

(2.15) of the field of time density,

m0c
2Ei = 0 . (2.38)

The obtained equations lead us to the next conclusions:

1. Becoming zero the scalar equation testifies: if a free mass-
bearing particle moves in space-time along only time lines
(the particle is at rest in respect of the observer in his spatial
section), then the “electric” and the “magnetic” components
of the field of time density do not produce a work to displace
the particle. Such particle falls freely along its own time line
under the field of time density;

2. Looking at the vector equations of motions, we see that Ei=0
there. So the particle falls freely along its own time line,
because of carrying by solely the “magnetic” component Hik=
=−2cAik 6=0 of the field of time density;

3. Inhomogeneity of the spatial section (the Christoffel chr.inv.-
symbols Δijk) or its deformations (the chr.inv.-tensor of the
deformation rate Dik) do not effect on free motion along time
lines.

In other word, the “magnetic” component Hik=−2cAik of the
field of time density as if “screws” particles into time lines (a
very relative analogy). No other sources, which could be causes
to move particles along time lines. Because observable particles
with whole the spatial section move from past into future, hence
Hik 6=0 everywhere in our real world. So, our real space is strictly
non-holonomic Aik 6=0.

This pure theoretical result bring us into the very important
conclusion that a “start” non-holonomity of the real space shall be
under any conditions, that is a “primordial non-orthogonality” of
the real spatial section to time lines. Additional physical conditions
like as three-dimensional rotations of the reference body (or other
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bodies) shall be here only an “add-on”, intensifying or reducing this
invisible start-rotation of the space in dependence on their relative
directions∗.

The condition Ei=0 (or F i=0, that is the same) also implies that
during the free mass-bearing particle moves along only time lines
(free falling in the field of time density) the force of gravitation,
acting the particle, is fully reduced by the acting centrifugal force

1
√
g00

∂w

∂xi
=

∗∂vi
∂t

, (2.39)

so such particle is at the condition of weightlessness. As soon as
the condition (2.39) has been broken, then the “electric” compo-
nent of the field of time density becomes non-zero Ei 6=0 and the
component begin to move the particle along the spatial section. This
case will be subjected in the next §2.4.

§2.4 Conditions of motion along the spatial section

We are going to consider the general case, where a free mass-
bearing particle moves freely not only along time lines, but also
along the spatial section. Such particle does not accompany to the
observer and his reference body. Chr.inv.-equations of motion in
this general case had been deduced by Zelmanov [1] as parallel
transfer equations, they have the form

dE

dτ
−mFiv

i +mDikv
ivk = 0 ,

d

dτ

(
mvi

)
−mF i + 2m

(
Di
k + A

∙i
k∙

)
vk +mΔinkv

nvk = 0 .

(2.40)

∗Similar conclusion had also been given by astronomer Kozyrev [13], who had
a base his studies of interior of stars. In particular, aside the fundamental “start”
self-rotation of the space, he had arrived to the conclusion that additional rotations
shall produce a non-uniformity of observable time around rotating bulk bodies like
as stars or planets. From his consideration, non-uniformity of time can also be a
result of a re-distribution of energy or, to the contrary, re-distribution of energy can
produce a non-uniformity of time. The consequences should be displayed better in
the interaction of the components of bulk double stars [14]. He was also the first who
used the term “the field of density of time”. It is interesting that his arguments,
deriving from pure phenomenology like as an analysis of astronomical observations,
did not link to Riemannian geometry and the mathematical apparatus of the
General Theory of Relativity. Kozyrev got attempts to ground his phenomenological
conclusions by the methods of Classical Mechanics [13].
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As a matter of fact that equations like these, being obtained from
the least action principle, must be the same, because the particle
moves along a geodesic line which is also the least action line.

Let us express the equations through the “electric” and the
“magnetic” observable components of the field of time density.
Substituting Ei=− 1

c2
F i and Hik=−2cAik into the Zelmanov equa-

tions (2.40), we obtain

dE

dτ
+mc2Eiv

i +mDikv
ivk = 0 ,

d

dτ

(
mvi

)
+mc2

(

Ei+
1

c
Hikvk

)

+2mDi
kv
k+mΔinkv

nvk=0 .

(2.41)

Looking at the equations, we see that the particle moves freely
along the spatial section because of two factors:

1. First, the particle is carried with the field of time density by
its “electric” Ei 6=0 and “magnetic” Hik 6=0 components;

2. Second, the particle is also moved by forces, produced by
the field of “density” of the spatial section that is the field
of the observable metric tensor hik=−gik+ 1

c2
vivk. We have

not a formula to express the forces yet. However the obtained
vector equations show, these forces must display themselves
as an effect of inhomogeneity Δink and deformations Dik of
the spatial section. As we can see from the scalar equation,
the field of inhomogeneities of the spatial section does not
produce a work to displace free mass-bearing particles, only
the field of the spatial deformations produces the work.

In particular, the particle can be moved freely along the spatial
section, because of carrying by solely the field of time density.
Then, as it easy to see from the obtained equations (2.41), the next
conditions are true

Dikv
ivk = 0 , Di

k = −
1

2
Δinkv

n, (2.42)

so it may be possible in the next particular cases:

• if the spatial section does not deformations Dik=0;

• if, aside the absence of the deformations (Dik=0), the spatial
section is homogeneous Δink=0.

∗

∗However the first condition Dik =0 would be sufficient.
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The scalar equations of motion (2.41) also show that, under the
particular conditions (2.42), the energy dE to displace the particle
at dxi equals the work

dE = −mc2Eidx
i (2.43)

the field “electric” component Ei spends for this displacement.
The vector equations of motion in this particular case show that
the “electric” and the “magnetic” components of the field of time
density, accelerate the particle just like external forces∗

dpi

dτ
= −mc2

(

Ei +
1

c
Hikvk

)

. (2.44)

Looking at the right parts of the equations (2.43, 2.44), we
see that they have the form identic to the right parts of chr.inv.-
equations of motion of charged particle in electromagnetic field [12].
This fact is in accordance with our conclusion we have obtained in
the previous §2.3 that the field of time density acts mass-bearing
particle as well as electromagnetic field moves electric charge.

§2.5 Equations of the field of time density

As it is well-known, the theory of electromagnetic field, filled in
a pseudo-Riemannian space, characterizes the field by a system of
equations known also as the field equations:

• Lorentz’ condition sets that the four-dimensional vector po-
tential Aα of the field remains unchanged just like any four-
dimensional vector in a pseudo-Riemannian space

∇σ A
σ = 0 ; (2.45)

• the charge conservation law (the continuity equation) shows
that the field-inducing charge can not be destroyed, but mere-
ly re-distributed in the space

∇σ j
σ = 0 , (2.46)

where jα is the four-dimensional current vector, its observ-
able projections are the chr.inv.-scalar of the charge density

∗Here the chr.inv.-vector pi=mvi is the three-dimensional observable impulse
of the particle.
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ρ= 1
c
√
g00

j0 and the chr.inv.-vector of the current density ji,

which are sources inducing the field;

• Maxwell’s equations show properties of the field, represented
by components of the field tensor Fαβ and its dual pseudoten-
sor F ∗αβ, in their link to the field-inducing sources. The first
group of the Maxwell equations contains the field sources ρ
and ji, the second group do not contain the sources

∇σ F
ασ =

4π

c
jα, ∇σ F

∗ασ = 0 . (2.47)

All the equations had been deduced in chr.inv.-form for electro-
magnetic field earlier. In particular, the Maxwell chr.inv.-equations

∗∇iE
i −

1

c
HikAik = 4πρ

∗∇kH
ik −

1

c2
FkH

ik −
1

c

( ∗∂Ei

∂t
+ EiD

)

=
4π

c
ji





I, (2.48)

∗∇iH
∗i −

1

c
E∗ikAik = 0

∗∇k E
∗ik −

1

c2
FkE

∗ik −
1

c

( ∗∂H∗i

∂t
+H∗iD

)

= 0





II, (2.49)

which actually are chr.inv.-projections of the Maxwell general co-
variant equations (2.47), had first been obtained for an arbitrary
field potential by del Prado and Pavlov [15], the Zelmanov research-
students, after as Zelmanov asked them to do this. Zelmanov aimed
to apply the results to electromagnetic field. But the complete theo-
ry of electromagnetic field in the terms of chronometric invariants
had been built only in 1990’s [12], after as Zelmanov has been gone.

From mathematical viewpoint the general covariant equations
of a field is a system of 10 equations in 10 unknowns (the Lorentz
condition, the charge conservation law, and two groups of the Max-
well equations), which define the given vector field Aα and the
field-inducing sources in a pseudo-Riemannian space. Actually,
equations like these should be exist for any four-dimensional vector
field, the field of time density included. The difference must be that
the field equations shall be filled in some changed form, according to
a formula of the specific vector potential. Therefore we are going to
deduce similar equations for the vector field bα we are considering,
actually — the equations of the field of time density.
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After some algebra, taken into account that chr.inv.-projections
of the potential of the field of time density bα equal ϕ=1 and qi=0,
the Lorentz condition for the field of time density ∇σ bσ =0 becomes
the equality

D = 0 . (2.50)

It should be noted that the spur of the tensor of the spatial
deformations becoming zero D=hikDik=D

n
n =0 does not imply

equality zero of the tensor Dik itself. Naturally, using definition
(1.24) of the tensor Dik, we obtain

D = hikDik =
1

2
gik
[ ∗∂gik
∂t

−
1

c2

∗∂

∂t
(vivk)

]

, (2.51)

so the condition D=0 implies merely

∗∂gik
∂t

=
1

c2

(

vi
∗∂vk
∂t

+ vk
∗∂vi
∂t

)

, (2.52)

where the derivative from vi in respect to time is centrifugal force
of inertia, i. e. the “inertial” part of gravitational inertial force Fi
(1.16). In general, the tensor Dik is the rate of changes of the
observable metric hik of an elementary area, taken on the wall of
an elementary volume of the space we are considering. Its square
DikD

ik is the square of the rate. Its spur D=hikDik is the rate of
expansion of whole the elementary volume, that is not the same
that the quantity DikDik.

To do future calculations simpler, we collect chr.inv.-projections
of the tensor of the field of time density Fαβ and of the field
pseudotensor F ∗αβ together

Ei = −
1

c2
Fi , Hik = −

2

c
Aik, (2.53)

H∗i = −
2

c
Ω∗i, E∗ik =

1

c2
εikmFm , (2.54)

and take Zelmanov’s identities for the discriminant chr.inv.-tensors
[1] into account

∗∂εimn
∂t

= εimnD ,
∗∂εimn

∂t
= −εimnD , (2.55)

∗∇k εimn = 0 ,
∗∇k ε

imn = 0 . (2.56)
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Substituting the chr.inv.-projections into (2.48, 2.49) and ac-
cepting D=0 according to the Lorentz condition we have obtained
(2.50), we arrive to Maxwell-like chr.inv.-equations for the field of
time density∗. After similar terms collected the equations arrive to
the final form

1

c2
∗∇i F

i −
2

c2
AikA

ik = − 4πρ

2

c
∗∇k A

ik −
2

c3
FkA

ik −
1

c3

∗∂F i

∂t
= −

4π

c
ji





I, (2.57)

∗∇i Ω
∗i +

1

c2
FiΩ

∗i = 0

∗∇k
(
εikmFm

)
−
1

c2
εikmFkFm + 2

∗∂Ω∗i

∂t
= 0





II. (2.58)

The “charge” conservation law ∇σ jσ =0 (the continuity equa-
tion), after substituting chr.inv.-projections ϕ= cρ and qi= ji of the
“current” vector jα, take the chr.inv.-form

1

c2

∗∂

∂t

(
AikA

ik
)
+
1

c2
Fi

∗∂Aik

∂xk
−

∗∂2Aik

∂xi∂xk
−

1

2c2
F i

∗∂Δ
j
ji

∂t
+

+

(
1

c2
FiΔ

j
jk +

∗∂Δ
j
jk

∂xi
+Δ

j
jiΔ

l
lk

)

Aik −
1

c4
FiFkA

ik = 0 ,

(2.59)

because the field-inducing sources ρ and ji, expressing themselves
from the 1st group of the Maxwell-like equations (2.57), are

ρ = −
1

4πc2
(
∗∇i F

i − 2AikA
ik
)
, (2.60)

ji = −
1

2π
∗∇kA

ik −
1

2πc2
FkA

ik −
1

4πc2

∗∂F i

∂t
. (2.61)

∗Really, it would be possible to deduce the Maxwell-like chr.inv.-equations
direct, projecting the general covariant equations ∇σFασ = 4π

c jα and ∇σF ∗ασ =0.
However this frontal method does not shortest way. It would be easier to substitute
observable components of a field tensor, specific for the field we are considering,
into the Maxwell chr.inv.-equations (2.48) and (2.49) because the electromagnetic
field potential Aα and the field tensor Fαβ are given there in the generalized form
as an arbitrary vector and an arbitrary antisymmetric tensor of the 2nd rank. As
a matter of fact that the resulting Maxwell-like equations, being obtained the both
ways, will be the same.
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In particular, if no “currents” of the field of time density here
(ji=0), the continuity equation ∇σ jσ =0 becomes the condition

∗∂

∂t

(
AikA

ik
)
−
1

2

∗∂2F i

∂t ∂xi
−
1

2
F i

∗∂Δ
j
ji

∂t
−
1

2
Δ
j
ji

∗∂F i

∂t
= 0 , (2.62)

which in a non-deforming homogeneous space is
∗∂

∂t

(
AikA

ik
)
−
1

2

∗∂2F i

∂t ∂xi
= 0 . (2.63)

So, the Lorentz condition (2.50), the Maxwell-like equations
(2.57, 2.58), and the continuity equation (2.59) we have obtained
are the chr.inv.-equations of the field of time density. As we can
see from the equations, the field characterizes itself by the next
peculiarities:

1. The Lorentz condition (2.50), becoming zero spur of the tensor
of the spatial deformations D=hikDik=0, implies that a de-
forming elementary volume, filled with the field of time den-
sity, does not expand, because its deformations at different
directions reduce one another∗. In other word, the value of
the elementary volume of the field of time density remains
unchanged under its deformations;

2. The 1st group (2.57) of the Maxwell-like equations defines
sources ρ and ji, which induce the field of time density:

“Charge” ρ displays itself as the difference between inho-
mogeneity ∗∇i F i of the field of gravitational inertial force and
invariant AikAik of the field of the space rotation. If the acting
force is F i=0 (it is possible, if the force field is homogeneous
∗∇i F i=0 or is absent F i=0), then the “charge” ρ is produced
by only the space rotation;

“Currents” ji of the field of time density are produced by in-
homogeneity ∗∇kAik of the field of the space rotation, correct-
ed with higher order terms depending on non-orthogonality
of the fields Aik and Fi (the second term FkA

ik), and also on
non-stationarity of the acting gravitational inertial force (the
third term). If the acting force is F i=0, then the “currents”
ji of the field of time density are produced by solely inhomo-
geneity of rotations of the space;

∗From geometric viewpoint, the spur of the tensor Dik is the rate of expansion
of an elementary volume.
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3. The Maxwell-like equations of the 2nd group (2.58) show
properties of the “magnetic” component H∗i=−2c Ω

∗i of the
field of time density in their link to the space rotation:

Inhomogeneity ∗∇iΩ∗i of the field of rotations of the space
depends on non-orthogonality of the angular velocity Ω∗i of
the rotations to the acting gravitational inertial force Fi;

If the acting force is Fi=0, then rotations of the space are
homogeneous ∗∇i Ω∗i=0 and stationary Ω∗i= const;

4. To analyse the continuity equation (2.59) would be difficult
in this general form. In particular case, when the space is
homogeneous and also has not “currents” of the field of time
density ji=0, the continuity equation takes the simplified
form (2.63), which sets up that the “charge” ρ inducing the
field of time density remains unchanged.

§2.6 Waves of the field of time density

Let us turn d’Alembert’s equations. Now we we are going to obtain
the equations for the field of time density.

D’Alembert’s operator = gαβ ∇α∇β, being applied to a field, can
be not zero or equal zero. The first case is known as the d’Alembert
equations with the field-inducing sources, while the second case is
known as the d’Alembert equation without the sources. If sources
of a field are absent, then the field is free. This is a wave. So, the
d’Alembert equations without the sources are equations of propa-
gation of waves of the field.

From this reason, the d’Alembert equations for the vector po-
tential bα of the field of time density we are taking without the
sources

bα = 0 (2.64)

are the equations of propagation of waves of the field of time density.
Chr.inv.-projections of the equations are

bσ bσ = 0 , hiσ bσ = 0 . (2.65)

So forth, we substitute chr.inv.-projections ϕ=1 and qi=0 of
the field potential bα into the d’Alembert chr.inv.-equations of an
arbitrary vector field (1.177, 1.178). Then, taking into account that
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the Lorentz condition for the field bα is D=0 (2.50), after some
algebra we arrive to the d’Alembert chr.inv.-equations without the
sources for the field of time density

1

c2
FiF

i −DikD
ik = 0 ,

1

c2

∗∂F i

∂t
+ hkm

{ ∗∂Di
m

∂xk
+

∗∂A∙im∙
∂xk

+Δikn (D
n
m − A

∙n
m∙)−

−Δnkm
(
Di
n − A

∙i
n∙

)
}

= 0 .

(2.66)

Unfortunately, a term like 1
a2
∂2qi

∂t2
containing the linear speed a

of the waves is not here, because of qi=0. For this reason we have
not a possibility to say something on the speed of waves traveling in
the field of time density. In the same time the obtained equations
(2.66) display other peculiarities of this wave field:

1. The scalar equation implies that the rate of deformations of a
surface element, taken in the field of time density waves, is
powered by the value of the acting gravitational inertial force.
If Fi=0, then the observable spatial metric hik is stationary
— the area of the surface element remains unchanged;

2. The vector equations are more difficult. Their analysis would
be easier, if the space is homogeneous Δikn=0 and the field
of gravitational inertial force is stationary Fi= const. In this
particular case the vector equations set up that in the space,
filled with the field of time density waves, the spatial structure
of the field of the space deformations is the same that the field

of the space rotation
∗∂Di

m

∂xk
=

∗∂Ai∙∙m
∂xk

.

Aside the above, we can conclude something more on waves of
the field of time density, if we equalize the field-inducing sources
ρ (2.60) and ji (2.61) to zero, because a field without its-inducing
sources is a field of waves. As a result we obtain the conditions

∗∇i F
i = 2AikA

ik , (2.67)

∗∇k A
ik = −

1

c2
FkA

ik −
1

2c2

∗∂F i

∂t
, (2.68)

which, taking a place in the presence of waves traveling in the field
of time density, may be formulated as follows:
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3. Inhomogeneity of the acting gravitational inertial force ∗∇i F i

in the wave field increases with the value of the angular
velocity Aik of the space rotation;

4. Inhomogeneity of rotations of an element of the space, filled
with the wave field, namely — the quantity ∗∇k Aik, is derived
from non-orthogonality of the acting force Fi to the field Aik

and from non-stationarity of the force Fi.

§2.7 Energy-momentum tensor of the field

Taking general covariant equations of motion along time lines a
base, we are going to deduce energy-momentum tensor for the
field of time density. It is possible to do in the next way.

The general covariant equations of motion of a free point-mass
particle along time lines m0c Fαβ U

β =0 (2.32), being taken in con-
travariant (upper-index) form, are

m0cF
α∙
∙σ U

σ = 0 , (2.69)

where Uσ is the four-dimensional velocity of the particle. The
left part of the equations has the dimension [ gram/sec ] as well as
a four-dimensional force. Actually, as it was mentioned in §2.3,
such particle moves, because of carrying by solely the field of time
density.

If the free-moving particle is not a point-mass, then the particle
can be represented a current of the field of time density jα. On the
other hand, the currents are defined by the 1st group ∇σFασ = 4πc j

α

of the Maxwell-like equations of the field. In this case the general
covariant equations of motion (2.69), drawing analogy to currents
of electromagnetic field, take the form

μFα∙∙σ j
σ = 0 . (2.70)

The numerical coefficient μ here is a new fundamental constant.
This new constant having the dimension [ gram/sec ] provides the
dimension [ gram/cm2×sec2 ] to the left part of the equations, so it get
the left part a current of the acting four-dimensional force (2.69)
through 1 cm2 per 1 second. The numerical value of this constant μ
can be found from measurements of the wave pressure of the field
of time density (see §2.10 below). However it does not except that
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future studies of the problem will have became an analytic formula
for μ, linking the constant to other fundamental constants.

Chr.inv.-projections of the equations (2.70)

μF0σj
σ

√
g00

= 0 , μF i∙∙σj
σ = 0 , (2.71)

after substituting components of the field tensor Fαβ (2.10–2.14),
take the form

μEk j
k = 0 ,

μc

(

ρEi −
1

c
Hi∙
∙k j

k

)

= 0 ,
(2.72)

where Ei is the “electric” component and Hik is the “magnetic”
component of the field of time density. Sources ρ and ji inducing
the field are defined by the 1st group of the Maxwell-like chr.inv.-
equations (2.57).

Actually, the term∗

fα = μFα∙∙σ j
σ (2.73)

in the left part of the general covariant equations of motion (2.70)
can be transformed with the 1st Maxwell-like group ∇βF σβ = 4πc j

σ

to the form

fα =
μc

4π
Fασ∇βF

σβ =
μc

4π

[
∇β
(
FασF

σβ
)
− F σβ ∇βFασ

]
, (2.74)

where the second term equals

F σβ ∇βFασ =
1

2
F σβ (∇βFασ +∇σFβα) =

= −
1

2
F σβ (∇βFσα+∇σFαβ)=−

1

2
F σβ∇σFαβ=

1

2
F σβ∇αFσβ .

(2.75)

Using this formula, we transform the current fα (2.73) to the
form

fα =
μc

4π
∇β

(

−FασF
βσ +

1

4
δβαFpqF

pq

)

, (2.76)

fα =
μc

4π
∇β

(

−Fα∙∙σ F
βσ +

1

4
gαβFpqF

pq

)

. (2.77)

∗From physical viewpoint, this term is a current of the acting four-dimensional
force, produced by the field of time density.
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Now we write down the current fα in the form

fα = ∇β T
αβ (2.78)

just like as the theory of electromagnetic field does it to extract
the energy-momentum tensor Tαβ. Following this way, we arrive
to the energy-momentum tensor of the field of time density

Tαβ =
μc

4π

(

−Fα∙∙σ F
βσ +

1

4
gαβFpqF

pq

)

, (2.79)

a form of which is the same that the energy-momentum tensor of
electromagnetic field [5, 12] to within the coefficient of its dimen-
sion. As it is easy to see, the tensor is symmetric so its spur is zero
T σσ = gαβ T

αβ =0.
Let us deduce chr.inv.-projections of the energy-momentum

tensor of the field of time density

q =
T00
g00

, J i =
c T i0√
g00

, U ik = c2T ik, (2.80)

substituting the necessary components of the field tensor Fαβ (2.10–
2.14). After some algebra we obtain

q =
μ

4πc

(

AikA
ik +

1

2c2
FkF

k

)

, (2.81)

J i = −
μ

2πc
FkA

ik, (2.82)

U ik = −
μc

4π

(

4Ai∙∙mA
mk+

1

c2
F iF k+ApqA

pqhik−
1

2c2
FpF

phik
)

. (2.83)

In accordance with their dimensions, the chr.inv.-projections
have the next physical meanings:

• the time observable projection q [ gram/cm×sec2 ] is that energy
[ gm×cm2/sec2 ] the field of time density contains in 1 cm3. Actu-
ally, the scalar q is the observable density of the field;

• the mixed observable projection J i [ gram/sec3 ] is that energy
the field of time density transferred through 1 cm2 per second,
in other word this is the observable density of the field mo-
mentum;

• the spatial observable projection U ik [ gm×cm/sec4 ] is the tensor
of the observable density of momentum flux of the field, in
other word — the field strength tensor.
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§2.8 Physical properties of the field

As it had been proven by Zelmanov [3], the strength chr.inv.-tensor
U ik of a field, being taken in covariant (lower-index) form, can be
represented as follows

Uik = p0hik − αik = phik − βik , (2.84)

where αik is the tensor of viscous strengthes of the field

αik = βik +
1

3
αhik , α = hikαik = α

n
n (2.85)

called the viscosity of the 2nd kind. Its anisotropic part βik, called
the viscosity of the 1st kind, displays itself as anisotropic deforma-
tions of the space. The quantity p0 is that pressure inside the media,
which equalizes its density in the absence of the viscosity, p is the
true pressure of the media∗. The tensors of viscous strengthes αik
and βik are chr.inv.-quantities by their definitions (2.84, 2.85).

Extracting the tensors of viscous strengthes αik and βik from
the strength tensor Uik of the field of time density, we are going to
deduce the equation of state of the field.

Transforming the strength tensor of the field of time density
U ik (2.83) into covariant form and also keeping the formula for q
(2.81) in the mind, we write down

Uik = −qc
2hik −

μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk −

1

c2
FmF

mhik

)

, (2.86)

that, after equalized to the same value Uik= p0hik−αik (2.84), gives
the equilibrium pressure in the field

p0 = −qc
2, (2.87)

while the tensor of viscous strengthes of the field is

αik =
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk −

1

c2
FmF

mhik

)

. (2.88)

∗Equation of state of a distributed media is the relation between the pressure
p inside the media and its density q. In a non-viscous media or when viscous
strengthes of a media are isotropic, the true pressure p is equal to the equilibrium
pressure p0. For instance, the equation of state of a dust media has the form p=0.
Ultra-relativistic gases have the equation of state p= 1

3
qc2. The equation of state

of the matter inside of atomic nuclei is p= qc2. Vacuum and μ-vacuum have the
equation of state p=−qc2, see Chapter 5 in [12].
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Because the spur of this tensor αik, as it easy to see, is not zero

α = hikαik = −
μc

π

(

AikA
ik +

1

2c2
FkF

k

)

6= 0 , (2.89)

the tensor αik=βik+ 1
3 αhik has the non-zero anisotropic part

βik=
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk−

1

3c2
FmF

mhik+
4

3
AmnA

mnhik

)

, (2.90)

so the viscous strengthes of the field of time density are anisotropic.
As it easy to see, the anisotropy increases with the value ApqApq of
the space rotation.

Because the viscous strengthes αik are anisotropic, the equilib-
rium pressure p0=−qc2 and the true pressure p inside the media
are different. The true pressure is

p =
μc

12π

(

AikA
ik +

1

2c2
FkF

k

)

, (2.91)

that gives the equation of state of the field of time density

p =
1

3
qc2. (2.92)

It is interesting that the way we used here is

p = p0 −
1

3
α = −qc2 +

4

3
qc2 =

1

3
qc2, (2.93)

so the main goal into the true pressure is derived from the viscous
strengthes αik of the field. For this reason we conclude that the
field of time density is “super-viscous” media.

Finally, we write the strength tensor Uik= phik−βik of the field
in the form

Uik =
1

3
qc2hik − βik . (2.94)

So, having this analysis of the energy-momentum tensor of
the field of time density, we can extract something on physical
properties of the field:

1. In general, the field of time density is non-stationary distrib-
uted media, because of the field density may be

q =
μ

4πc

(

AikA
ik +

1

2c2
FkF

k

)

6= const , (2.95)
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so the field becomes stationary q= const under stationary
rotation Aik= const of the space and stationary gravitational
inertial force Fi= const;

2. The field of time density bears momentum, because of

J i = −
μ

2πc
FkA

ik 6= 0 , (2.96)

in general. So, the field can transfer impulse. The field does
not transfer impulse J i=0, if the space does not rotate Aik=0.
The absence of gravitation does not effect that the field can
transfer impulse, because the “inertial” part of gravitational
inertial force Fi (1.16) remains unchanged even in the absence
of gravitational fields;

3. So, the field of time density can be represented as an emitting
media J i 6=0 in a non-holonomic (rotating) space. In a non-
rotating (holonomic) space the field has not a possibility to
produce radiations;

4. The field of time density is viscous media. This viscosity αik
(2.88), deriving from non-zero rotation of the space or from
gravitational inertial force, is anisotropic. The anisotropy βik
increases with the speed of the space rotation Aik. The field
is viscous anisotropic anyhow, because its viscous strengthes
become αik=0 and βik=0 if only Aik=0 and Fi=0 together.
However in this case the field density is q=0, so the field itself
disappears;

5. Therefore the equilibrium pressure p0 does not possess phys-
ical sense for the field of time density, real is only the true
pressure p= p0− 1

3α;

6. The equation of state of the field of time density p= 1
3 qc

2

(2.92) sets up that the field is a media, filled in the state of
ultrarelativistic gas. Actually the obtained equation of state
p= 1

3 qc
2 implies that at positive density of the media its inner

pressure becomes positive — the media compresses.

§2.9 Action of the field without its sources

Looking at §27 of The Classical Theory of Fields [5] we see, that an
elementary action for the whole system consisting an electromag-
netic field and a single charged particle, which are located in a
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pseudo-Riemannian space, contains three parts∗

dS = dSm+dSmf+dSf = m0cds+
e

c
Aαdx

α+aFαβ F
αβdV dt , (2.97)

where Aα is the four-dimensional electromagnetic field potential,
Fαβ =∇αAβ−∇βAα is the electromagnetic field tensor, dV = dxdydz
is an elementary thee-dimensional (spatial) volume filled with this
field.

The first term Sm is “that part of the action which depends
only on the properties of the particles, that is, just the action for
free particles. . . The quantity Smf is that part of the action which
depends on the interaction between the particles and the field. . .
Finally Sf is that part of the action which depends only on the
properties of the field itself, that is, Sf is the action for a field in the
absence of charges. Up to now, because we were interested only in
the motion of charges in a given electromagnetic field, the quantity
Sf , which does not depend on the particles, did not concern us, since
the term can not act the motion of particles. Nevertheless this term
is necessary when we want to find equations determining the field
itself”.

To find a formula for the action Sf , note that the action Sf
we are considering must be depended of only the properties of
the field. So the action must be taken over the space volume,
filled with the field. The action must be scalar, only the 1st field

∗In accordance with the least action principle, the action must have minimum,
so integral of the action between a pair of world points and the action itself must
be positive. A negative action could makes a quantity with arbitrarily large negative
absolute value, which can not have minimum. Taken a pseudo-Riemannian space
with the signature (−+++), where time is imaginary, spatial coordinates are real,
and three-dimensional coordinate impulse is positive, Landau and Lifshitz in §3 of
The Classical Theory of Fields wrote “the clock at rest always indicates a greater
time interval than the moving one. Thus we arrive at the result that the integral,
taken between a given pair of world points, has its maximal value if it is taken along
the straight world line joining these two points”. Therefore they put “minus” before
the action.

To the contrary, we stick to a pseudo-Riemannian space with Zelmanov’s signature
(+−−−), where time is real and spatial coordinates are imaginary, because in
this case three-dimensional observable impulse is positive. In a space with such
signature, a regular observer, moving from past into future, observe his own flow of
observable time positive always dτ > 0. Any particle, moving from past into future,
has also the positive change of its own time coordinate dt> 0 in respect of the
observer’s clock [11, 12]. Therefore, following Zelmanov, we always have “plus”
before the action.
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invariant J1=Fαβ Fαβ has this property. The 2nd field invariant
J2=Fαβ F∗αβ is pseudoscalar, not scalar, go into the detailed dis-
cussion with Landau and Lifshitz.

“The numerical value of a depends on the choice of units for
measurement of the field. We note that after the choice of a definite
value for a and for the units of measurement of field, the units for
measurement of all other electromagnetic quantities are determined.

From now we shall use the Gaussian system of units; in this
system a is a dimensionless quantity equal to 1

16π . In addition
to the Gaussian system, one also uses the Heaviside system, in
which a= 1

4 . In this system of units the field equations have more
convenient form (4π does not appear) but on the other hand, π
appears in the Coulomb law. Conversely, in the Gaussian system
the field equations contain 4π, but the Coulomb law has a simple
form”.

As a result of the cited §27 of The Classical Theory of Fields we
have

dSf = aFαβ F
αβdV dt =

1

16πc
Fαβ F

αβdΩ , (2.98)

where dΩ= cdtdV = cdtdxdydz is an elementary four-dimensional
volume. So the action of the whole system of electromagnetic field
and a single charged particle located in it (2.97) takes the final form

dS = m0cds+
e

c
Aαdx

α +
1

16πc
Fαβ F

αβdΩ . (2.99)

In accordance with this consideration, we can represent an el-
ementary action for the whole system consisting the field of time
density and a single mass-bearing particle, which falls freely along
time lines in a pseudo-Riemannian space, as follows

dS = dSm + dSmt = m0cds+ amtFαβF
αβdΩ =

= m0c bαdx
α + amtFαβF

αβdΩ ,
(2.100)

where Fαβ is the tensor of the field of time density, amt is a constant
consisting of other fundamental constants.

The first term Sm here is that part of the action, which displays
the interaction between the particle and the field of time density
carrying the particle into free motion along time lines. The second
term Smt depending on only the properties of the field itself is the
action for the field in absence of its sources.
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In the absence of the field of time density the second term Smt
is zero, only Sm=m0cds remains here. The field of time density is
absent if no the space rotation Aik=0 and the field of gravitational
inertial force Fi=0, so if the conditions g0i=0 and g00=1 are true.
This situation is possible in a pseudo-Riemannian space with the
unit diagonal metric, which is the Minkowski space of the Special
Theory of Relativity, where no any gravitation and the rotation.
However, if we like to consider the real space, then we are forced to
take the field of time density into account. So, we need to consider
the both terms Sm and Smt together.

The constant amt, according to the dimensions, is the same that
the constant μ in the energy-momentum tensor of the field of time
density (see §2.7), taken with the numerical coefficient a= 1

16π ,
because we used the Gaussian system of units here.

As a result, we obtain the action (2.100) in the final form

dS = dSm + dSmt = m0c bαdx
α +

μ

16π
FαβF

αβdΩ . (2.101)

Because an action for a system is expressed through Lagrange’s
function L of the system as dS=Ldt, we take the action dSmt in the
form

dSmt =
μc

16π
FαβF

αβdV dt = Ldt , (2.102)

which show the Lagrangian of an elementary volume dV = dxdydz
of the field. Following this way, we obtain the Lagrangian density
in the field of time density

Λ =
μc

16π
FαβF

αβ =
μ

4πc

(

AikA
ik −

1

2c2
FiF

i

)

. (2.103)

The term AikA
ik here, being expressed through the pseudo-

vector of angular velocities of the space rotation Ω∗i, is

AkmA
km = εkmnΩ

∗nAkm = 2Ω∗nΩ
∗n, (2.104)

because of

εnkmΩ
∗n =

1

2
εnpqεnkmApq =

1

2

(
δ
p
kδ
q
m − δ

q
kδ
p
m

)
Apq = Akm , (2.105)

Ω∗n =
1

2
εnkmA

km, (2.106)
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so the space rotation plays the first violin, defining the Lagrangian
density in the field of time density.

Rotation velocities we observe in macro-processes are incom-
mensurably small in comparison with rotations of atoms and the
particles. For instance, in the 1st Bohr orbit in an atom of hydrogen,
measuring the value of Λ in the units of the energy-momentum
constant μ, we have Λ' 9.1×1021μ. On the Earth surface near the
equator the value is Λ' 2.8×10−20μ, so it is in order of 1042 less
than in atoms. Therefore, because the Lagrangian of a system is the
difference between its kinetic and potential energies, we conclude
that the field of time density produces its main energy flux in atom
and sub-atom interactions, while the energy flux produced by the
field in macro-processes is neglected.

§2.10 Plane waves of the field

In general, because the electric Ei and the magnetic Hik strengthes
of the field of time density are

Ei = −
1

c2
Fi , Hik = −

2

c
Aik, (2.107)

the chr.inv.-vector of its momentum density J i (2.82) can be written
as follows

J i = −
μ

2πc
FkA

ik = −
μc

4π
EkH

ik. (2.108)

We are going to consider a particular case, where the field
depends on only one coordinate. Waves of such field traveling along
the sole direction are known as plane waves.

We assume that the field depends on only axis x1=x, so only
component J1 of the field momentum density J i is non-zero here.
Then a plane wave of the field travels along the axis x1=x. Assum-
ing that the space rotates in xy plane, we have

J1 = −
μ

2πc
FkA

1k = −
μ

2πc
F2A

12, (2.109)

because in this particular case only the components A12=−A21 are
non-zeroes. Replacing the tensor Aik with the pseudovector Ω∗m of
the space rotation

εmikΩ∗m =
1

2
εmikεmpqA

pq =
1

2

(
δipδ

k
q − δ

k
p δ

i
q

)
Apq = Aik, (2.110)
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we can re-write formula (2.109) in the form

J1 = −
μ

2πc
F2 ε

123Ω∗3 . (2.111)

As it easy to see, while a plane wave of the field travels along
the axis x1=x, the field “electric” and “magnetic” strengthes are
directed along the axes x2= y and x3= z, i. e. orthogonal to the
direction the wave travels. Therefore waves of the field of time
density are transverse waves.

§2.11 The wave pressure

As well as Landau and Lifshitz did it in §47 of The Classical Theory
of Fields [5], we define the wave pressure of a field as the total flux
of energy-momentum of the field, passing through an unit area of
a wall. Actually, the wave pressure Fi is the sum

Fi = Tikn
k + T ′ikn

k (2.112)

of spatial components of the energy-momentum tensor Tαβ in a
wave, falling on the wall, and of the energy-momentum tensor
T ′αβ in the reflected wave, projected on the unit spatial vector ~n(k)
orthogonal to the wall surface.

In accordance with the general definition for the chr.inv.-tensor
of strengthes of a field Uik= c2hiαhkβ Tαβ = c2Tik [1], we have

Fi =
1

c2
(
Uikn

k + U ′ikn
k
)
, (2.113)

where Uik= c2Tik and U ′ik= c
2T ′ik are the chr.inv.-tensors of the field

strengthes in the falling wave and in the reflected wave. So, the
three-dimensional vector of wave pressure Fi has the property of
chronometric invariance.

Employing formulas

q =
μ

4πc

(

AikA
ik +

1

2c2
FkF

k

)

, (2.114)

Uik=−
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk+AmnA

mnhik−
1

2c2
FmF

mhik

)

, (2.115)

we have obtained for the field of time density, we are going to find
the pressure a wave of the field exerts on a wall.
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We consider the problem in a weak gravitational field, assuming
its potential w and the attracting force of gravity negligible. We can
do it, because the formulas (2.114) and (2.115) contain gravitation
in only higher order terms. So the space rotation plays the first
violin in the wave pressure Fi of the field of time density. In such
weak field the gravitational inertial force acts, because of only its
inertial part

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

=−
∂vi
∂t
,

√
g00=1−

w

c2
=1 . (2.116)

A plane wave travels along a sole spatial direction, we assume
axis x1=x. In this case the chr.inv.-tensor of the field strengthes
Uik has the sole non-zero component U11. All the rest components of
the strength tensor Uik are zeroes, that simplifies this consideration.

We assume also that the space rotates around the axis x3= z
(the rotation is in xy plane) at the constant angular velocity Ω

A12 = −A21 = −Ω , A13 = 0 , A23 = 0 , (2.117)

so the linear velocity of this rotation vi=Aikxk has the components

v1 = −Ωy , v2 = Ωx , v3 = 0 . (2.118)

Then components of the acting gravitational inertial force are

F1 = −
∂v1
∂t

= Ω
∂y

∂t
= Ωv2 = Ω

2x , (2.119)

F2 = −
∂v2
∂t

= Ω2y , F3 = 0 . (2.120)

Calculating the quantities

AikA
ik = 2A12A

12 = 2Ω2, (2.121)

A1mA
m∙
∙1 = A1mA

mnh1n = A12A
21h11 = −Ω

2h11 , (2.122)

we arrive to

q =
μ

4πc

[

2Ω2 +
1

2c2
Ω4
(
x2 + y2

)
]

, (2.123)

U11 =
μc

4π

[

2Ω2h11 −
1

c2
Ω4x2 +

1

2c2
Ω4
(
x2 + y2

)
h11

]

. (2.124)
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We assume a coefficient of the reflection < as the ratio between
the density of the field energy q ′ in the reflected wave to the
energy density q in the falling wave. Actually, because of q ′=<q,
the reflection coefficient < is the energy loss of the field after the
reflection.

So forth we assume x=x0=0 at the reflection point on the
surface of the wall. Then we have U11= qc2h11, that after substi-
tuting into (2.113) gives the pressure

F1 = (1 + <) qh11n
1 (2.125)

a plane wave of the field of time density exerts on the wall.
To bring this formula into final form in a Riemannian space

becomes a problem, because coordinate axes in Riemannian spaces
are curved and inhomogeneous in general. From this reason we can
not define the angles between directions in a Riemannian space
itself, the angle of incidence and the reflection angle of a wave for
instance. At the same time, to take this problem in the Minkowski
space of the Special Theory of Relativity, like as Landau and Lifshitz
did it for the pressure of plane electromagnetic waves [5], would be
senseless — because in the Minkowski space we have g00=1 and
g0i=0, then Fi=0 and Aik=0 by their definitions, so no the field
of time density there.

To solve this problem correctly in a Riemannian space, let us
introduce a locally geodesic reference frame as well as Zelmanov
did it. So forth we introduce a locally geodesic reference frame in
the point of reflection of a wave on the surface of a wall. Within
infinitesimal vicinities of any point of such reference frame the
fundamental metric tensor is

g̃αβ = gαβ +
1

2

(
∂2g̃αβ
∂x̃μ∂x̃ν

)

(x̃μ − xμ) (x̃ν − xν) + . . . , (2.126)

i. e. its components at a point, located in the vicinities, are different
from the those at the point of reflection to within only the higher
order terms, values of which can be neglected. Therefore, at any
point of a locally geodesic reference frame the fundamental metric
tensor can be accepted constant, while the first derivatives of the
metric (the Christoffel symbols) are zeroes.

As a matter of fact that within infinitesimal vicinities of any
point, located in a Riemannian space, a locally geodesic reference
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frame can be set. In the same time, at any point of this locally
geodesic reference frame a tangential flat Euclidean space can be
set so that this reference frame, being a locally geodesic for the
Riemannian space, is the global geodesic for that tangential flat
space.

The fundamental metric tensor of a flat Euclidean space is con-
stant, so the values of g̃μν , taken in the vicinities of a point of
the Riemannian space, converge to the values of the tensor gμν in
the flat space tangential at this point. Actually, this means that we
can build a system of basic vectors ~e(α), located in this flat space,
tangential to curved coordinate lines of the Riemannian space.

In general, coordinate lines in Riemannian spaces are curved,
inhomogeneous, and are not orthogonal to each other (if the space is
non-holonomic). Coordinate lines of the pseudo-Riemannian space
of the General Theory of Relativity included. The lengths of the
basic vectors are sometimes very different from the unit.

Let us denote d~r =(dx0, dx1, dx2, dx3) a four-dimensional vector
of infinitesimal displacement. Then

d~r=~e(α)dx
α, (2.127)

where components of the basic vectors ~e(α) tangential to these
coordinate lines are

~e(0) = (e
0
(0), 0, 0, 0) , ~e(1) = (0, e

1
(1), 0, 0) ,

~e(2) = (0, 0, e
2
(2), 0) , ~e(3) = (0, 0, 0, e

3
(3)) .

(2.128)

Scalar product of the vector d~r with itself gives d~rd~r= ds2. On
the other hand, we can write the same as follows ds2= gαβ dxαdxβ .
Therefore

gαβ = ~e(α)~e(β) = e(α)e(β) cos (x
α;xβ) . (2.129)

In accordance with this formula, we have

g00 = e
2
(0) . (2.130)

Gravitational potential is w= c2(1−
√
g00). So, the length of the

time basic vector ~e(0) tangential to the time line x0= ct is

e(0) =
√
g00 = 1−

w

c2
, (2.131)
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the value is the lesser than the unit the greater is the gravitational
potential w.

In accordance with the same formula (2.129), we have

g0i = e(0)e(i) cos (x
0;xi) , (2.132)

gik = e(i)e(k) cos (x
i;xk) , (2.133)

so the linear velocity of the space rotation is

vi = −c e(i) cos (x
0;xi) (2.134)

and the metric chr.inv.-tensor hik=−gik+ 1
c2
vivk takes the form

hik = e(i)e(k)

[
cos (x0;xi) cos (x0;xk)− cos (xi;xk)

]
. (2.135)

Now, let us get back to that formula for the pressure F1 (2.125),
a plane wave of the field of time density traveling along the axis
x1=x exerts on a wall. As a result, we have

F1 = (1 + <) q
[
cos2 (x0;x1) + 1

]
n(1)e

2
(1) cos (x

1;n1) , (2.136)

because the signature conditions (+−−−) we have assumed imply
that the spatial coordinate axes in the pseudo-Riemannian space
are directed opposite to the same axes xi in the tangential flat
Euclidean space.

So forth we denote cos (x1;n1)= cos θ, where θ is the reflection
angle. Assuming e(1)=1, n(1)=1, and v(1)= v we obtain the wave
pressure FN=F1 cos θ normal to the wall surface

FN = (1 + <)

(

1 +
v2

c2

)

q cos2 θ , (2.137)

q =
μ

2πc
Ω2
(

1 +
v2

4c2

)

, (2.138)

that at low rotational velocities gives∗

FN = (1 + <) q cos
2 θ , (2.139)

∗Compare this formula (2.139) with the normal pressure FN= (1+<) q cos2 θ
exerted by a plane electromagnetic wave in the Minkowski space, see §47 in The
Classical Theory of Fields [5]. From this comparison we see that the wave pressure
of the field of time density depends on the reflection coefficient 06<6 1 in the
same way that the pressure of electromagnetic waves.
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q =
μ

2πc
Ω2. (2.140)

It should be noted that the most of rotations we observe can
be placed slow. The reason is that the maximal of the known
velocities is taken by an electron in the 1st Bohr orbit, the velocity
is vb= 2.1877×108 cm/sec. Therefore the ratio of a rotational linear

velocity to the light velocity v
2

c2
, taking its maximal numerical value

in the 1st Bohr orbit, reaches only 5.326×10−5.
The presence of wave pressure in the field of time density opens

a way to measure a numerical value of the energy-momentum
constant μ of the field. For instance a gyroscope, rotating around
the axis x3= z, will be a source of circular waves of the field
of time density propagating in xy plane∗. In this case the field
strengthes chr.inv.-tensor Uik has the non-zero components U11,
U12, U21. However, as it easy to calculate, the normal wave pressure
of the circular wave will be different from the pressure of the plane
wave (2.137) in only higher order terms. The same situation will be
for spherical waves of the field. Therefore the normal pressure, the
waves exert on a wall orthogonal to the direction x1=x, shall be
equal to the value

FN =
μ

2πc
(1 + <)Ω2 (2.141)

to within of higher order terms withheld. Rotations at 6×103 rpm
(Ω= 100 rps) are accessible for modern gyroscopes, however ro-
tations in atoms are much more, taking their maximal angular
velocity 4.1341×1016 rps in the 1st Bohr orbit. A torsion balance
can register forces, values of which are about 10−5 din. Then in
accordance with the formula (2.141), if an experiment will have
discovered the wave pressure FN≈ 10−5 din/cm2, derived from atomic
transformations, the constant’s numerical value will be in order of
μ≈ 10−28 gram/sec.

Of course this is a crude supposition, based on only the limits
of measurement precision. Anyhow, the exact numerical value of
the energy-momentum constant μ will be arrived from special
measurements with torsion balance.

∗In a real experiment such gyroscope, being a non-absolute thin disk, will be a
source of spherical waves of the field of time density which propagate at all spatial
directions. Merely the waves will have a maximal amplitude in the gyroscope’s
rotation plane xy.
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§2.12 Physical conditions in atoms

As it have been obtained in §2.7, chr.inv.-projections of the energy-
momentum tensor of the field of time density are physical ob-
servable characteristics of the field — its density q, its momentum
density J i, and its strength tensor Uik, which are

q =
μ

4πc

(

AikA
ik +

1

2c2
FkF

k

)

, (2.142)

J i = −
μ

2πc
FkA

ik = −
μ

2πc
Fk ε

ikmΩ∗m , (2.143)

Uik=−
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk+AmnA

mnhik−
1

2c2
FmF

mhik

)

. (2.144)

The formulas must work everywhere, in atoms included. In the
same time, physical conditions in atoms are under control of Bohr’s
quantum postulates. So looking at an atom from outside, we can
represent it as a tiny gyroscope, rotations of which are defined by
the quantum rules. The quantified rotations of electrons are sources
of the field of time density, which shall be perceptible, because of
the super-rapid angular velocities up to the maximal value in the 1st
Bohr orbit Ωb= 4.1341×1016 rps. This is a way to formulate physical
conditions, under which the field of time density is in atoms.

So forth, taking the formulas into account, we formulate the
physical conditions with the postulates, which actually are a result
of that we have applied the Bohr postulates to the field of time
density in atoms.

POSTULATE I The field of time density in atoms remains unchanged
in the absence of outer effects. An atom radiates or absorbs waves of
the field of time density in only transitions of the electrons between
their stationary orbits.

Naturally, when an atom is in a stable state, then all the electrons
are located in their orbits. Such stable atom, having a quantum set
of the orbital angular velocities, must possess numerous quantum
values of the density of time. The values are set up with the second
postulate∗.

∗To introduce the second postulate we assume a reference frame in an atom,
where an electron rotates around the nucleus at the angular velocity Ω in xy plane.
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POSTULATE II The field of time density is quantified in atoms. Its
energy density and the momentum density take quantum numerical
values which, in accordance with the quantization of electron orbits,
in n-th stationary orbit are

qn =
μ

2πc

(

1 +
v2n
4c2

)
v2n
R2n

, (2.145)

Jn =
√
(JiJ i)n =

μ

2πc
Ω3nRn =

μ

2πc

v3n
R2n

. (2.146)

As a matter of fact that qn and Jn take their maximal numerical
values in an atom in the 1st Bohr orbit where, measuring the values
in the units of the energy-momentum constant μ to within four
significant digits, we have

qn=1 = 9.074×1021 μ erg/cm3, (2.147)

Jn=1 = 1.985×1030 μ erg/cm2×sec . (2.148)

Then A12=−A21=−Ω, A13=0, A23=0. So out of all components of Ω∗i solely the
Ω∗3 is non-zero, which equals

Ω∗3 =
1

2
ε3mnAmn =

1

2

(
ε312A12 + ε

321A21
)
= ε312A12 =

e312
√
h
A12 = −

Ω
√
h
,

Ω∗3 =
1

2
ε3mnA

mn = ε312A
12 = e312

√
hA12 = −

√
hΩ .

Calculating h=det ‖hik‖ here, we note that components of the linear velocity
vi=Aikx

k of the space rotation in this reference frame are v1=−Ωy, v2=Ωx,
v3=0. So forth we obtain

h11 = 1 +
1

c2
Ω2y2, h22 = 1 +

1

c2
Ω2x2, h12 = −

1

c2
Ω2xy , h33 = 1 ,

h = det ‖hik‖ = h11h22 −
(
h12
)2
= 1 +

1

c2
Ω2
(
x2 + y2

)
.

In the 1st Bohr orbit we have

1

c2
Ω2
(
x2 + y2

)
=
1

c2
Ω2R2 ≈ 5.3×10−7,

so we can accept h≈ 1 to within of higher order terms withheld. Looking back at
formulas for Ω∗3 and Ω∗3, we see that the space rotates in atoms at the constant
angular velocity

Ω∗3=−Ω , Ω∗3=−Ω ,

then in the assumed reference frame we have AikA
ik=2A12A

12=2Ω∗3Ω
∗3=2Ω2,

and also

F1 = −
∂v1
∂t

= Ω2x , F2 = −
∂v2
∂t

= Ω2y , F3 = 0 ,

that is taken into account in the Postulate II.
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Calculating the field density in the neighbour quantum levels n
and n+1, we take into account that the n-th orbital radius relates
to the 1st Bohr radius as Rn=n2Rb. As a result we obtain

q = qn−qn+1=
μ

2πc
Ω2b

{[
1

n6
−

1

(n+1)6

]

+
v2b
4c2

[
1

n8
−

1

(n+1)8

]}

, (2.149)

so the difference between the field density in the neighbour levels
is inversely proportional to n7 at n� 1

q = qn − qn+1 ≈
1

n7
3μ

πc
Ω2b , (2.150)

and q→ 0 at the quantum numbers n→∞.
Theoretically, non-zero the field density q 6=0 must result a flux

of the field momentum (this flux is characterized by the field
strength tensor Uik= 1

3 qc
2hik−βik). Then an electron, moving in

its orbit, should be radiating a momentum flux of the field of time
density (waves of the field). Because of the momentum loss for the
radiation, the electron would be decreasing its own angular velocity,
that contradicts to experimental facts on the stability of atoms in
the absence of outer effect. To remove this contradiction the third
postulate is.

POSTULATE III An atom radiates a quantum portion of momentum
flux of the field of time density, when an electron transits from n-
th quantum level into (n+1)-th level in the atom. When an electron
transits from (n+1)-th level into n-th level, then the atom absorbs
the same portion of the momentum flux, which is

U11=U
n
11−U

n+1
11 =

μc

2π
Ω2b

{[
1

n6
−

1

(n+1)6

]

−
v2b
4c2

[
1

n8
−

1

(n+1)8

]}

. (2.151)

We assume in this formula that the atom radiates/absorbs a
plane wave of the field of time density, which travels along x1=x
axis. Taking the formula at n� 1, we have

U11 = U
n
11 − U

n+1
11 ≈

1

n7
3μc

π
Ω2b , (2.152)

that at the quantum numbers n→∞ gives U11→ 0. So, at the high
quantum numbers n� 1 we have the ratio

U11 = qc
2. (2.153)
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In accordance with the correspondence principle, any result of
quantum theory at the high quantum numbers must become the
same result, obtained in the frames of classical approach. Following
this way we take definitions for q (2.142) and Uik (2.144), obtained
using the methods of classical theory, into consideration under that
h≈ 1 in atoms (see §2.12). As a result we arrive to the formulas

q =
μ

2πc
Ω2
(

1 +
v2

4c2

)

≈
μ

2πc
Ω2, (2.154)

Uik =
μc

2π
Ω2
(

h11 −
v2

2c2
+
v2

4c2
h11

)

≈
μc

2π
Ω2, (2.155)

which lead to the same relationship

U11 = qc
2, (2.156)

that quantum theory have given (2.153). So, the correspondence
principle is true for the field of time density in atoms.

Postulate III has two consequences, which put wave pressure in
the field of time density into dependence on sub-atom processes.

CONSEQUENCE I An exciting atom, radiating the momentum flux
of the field of time density, produces positive wave pressure in
the field.

So, when an atom is excited, then its electron is displaced from
n-th quantum orbit into (n+1)-th orbit and so forth. Such atom
radiates a wave of the field of time density, a pressure of which
is positive. Calculating this positive pressure, orthogonal to the
surface of a wall, at the high quantum numbers n� 1 we obtain

FN = (1 + <) q cos
2 θ , (2.157)

where θ is the reflection angle, < is the reflection coefficient.

CONSEQUENCE II When an atom absorbs the momentum flux of the
field of time density, then wave pressure in the field near the atom
becomes negative.

As a matter of fact that the negative wave pressure, produced
by a relaxing atom in its field of time density, must be

FN = − (1 + <) q cos
2 θ . (2.158)
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That is, in accordance with the theory, exciting atoms must
radiate waves of the field of time density. One of effects derived
from the radiation must be positive pressure of the waves. To
the contrary, relaxing atoms, absorbing waves of the field of time
density, must be sources of negative wave pressure in the field near
them. The predicted repulsion/attraction produced by sub-atom
processes, being outside actions of electromagnetic or gravitational
fields, are peculiarities of only the theory of the field of time density
that here. Therefore the given conclusions open wide possibilities
to check the whole theory in practice.

In particular case, for instance, if a torsion balance will have
registered the repulsing/attracting wave pressure FN, derived from
exciting/relaxing sub-atom processes, then we will have obtain
the numerical value of the energy-momentum constant μ. After
substituting q (2.150) into the wave pressure FN, assuming cos θ=1,
we arrive to the necessary formula for experimental calculations

μ =
πcn7

3Ω2b

FN
(1 + <)

. (2.159)

§2.13 Conclusions

Let us collect the main results we have obtained in this Chapter
together.

Projecting an interval of four-dimensional coordinates dxα on
the time line of an observer, who accompanies to his references
(bi=0), we obtain an interval of physical time dτ = 1c bαdx

α he ob-
serves. Observations in the same spatial point give dτ =

√
g00 dt,

so the operator of projection on time lines bα defines observable
non-uniformity of time references in the accompanying reference
frame.

So, non-uniformities of time references in the observer’s spatial
section can be represented as the field of “density” of observable
time τ . The projecting operator bα is the field “potential”, chr.inv.-
projections of which are ϕ=1 and qi=0.

The field tensor Fαβ =∇α bβ−∇β bα was introduced in the way
as well as Maxwell’s tensor of electromagnetic field. Its chr.inv.-
projections Ei=− 1

c2
F i and Hik=−2cAik are derived from gravi-

tational inertial force and rotation of the space. We called Ei the
“electric” observable component and Hik the “magnetic” observable
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component of the field of time density. In the same way we intro-
duced the field pseudotensor F ∗αβ dual to the tensor Fαβ.

The field of time density can be spatially isotropic (one of its
invariants J1=FαβFαβ or J2=FαβF ∗αβ becomes zero) under the
conditions:

• invariant AikAik of the field of the space rotation and invariant
FiF

i of the field of gravitational inertial force reduce one
another;

• the acting force Fi is orthogonal to pseudovector Ω∗i of the
space rotation, i. e. the equality FiΩ∗i=0 is true;

• both of the conditions are realized together.

Equations of motion of a free mass-bearing particle, being ex-
pressed through the “electric” Ei and the “magnetic” Hik compo-
nents of the field of time density, group them into an acting force,
a form of which is like Lorentz’ force. So, the field of time density
acts mass-bearing particle as well as electromagnetic field moves
electric charge. In particular, if the particle moves along only time
lines (the particle is at rest in respect of the observer in his spatial
section), the equations show follows:

1. The “electric” and the “magnetic” components of the field of
time density do not produce a work to displace the particle;

2. In this case Ei=0, so the particle falls freely along its own
time line, because of carrying by solely the “magnetic” com-
ponent Hik 6=0 of the field of time density;

3. Inhomogeneity Δijk of the spatial section or its deformations
Dik do not effect on free motion along time lines.

In other word, the space rotation Aik as if “screws” particles
into time lines. Because observable particles with whole the spatial
section move from past into future, a “start” non-holonomity Aik 6=0
shall be in our real space, that is a “primordial non-orthogonality”
of the real spatial section to time lines. Additional conditions shall
be only an “add-on” intensifying or reducing this start-rotation of
the space.

In general case, when a free mass-bearing particle moves also
along the spatial section, its displacement realizes because of two
factors:

1. The particle is carried with the field of time density by its
“electric” Ei 6=0 and “magnetic” Hik 6=0 components;
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2. The particle is also moved by forces, which display themselves
as effects of inhomogeneity Δink and deformations Dik of the
space. From these, only the field of spatial deformations pro-
duces work to displace the particle.

A system of equations of the field of time density consists of
Lorentz’ condition ∇σ bσ =0, Maxwell-like equations ∇σFασ = 4πc j

α

and ∇σF ∗ασ =0, and also the continuity equation ∇σ jσ =0, which
define the main properties of the field:

1. The Lorentz condition becoming zero spur D=hikDik=0 of
the tensor of the spatial deformations, implies that a deforming
elementary volume, filled with the field of time density, does
not expand;

2. The 1st group of the Maxwell-like equations defines sources ρ
and ji, inducing the field of time density:

“Charge” ρ displays itself as the difference between inhomo-
geneity ∗∇i F i of the field of gravitational inertial force and
invariant AikAik of the field of the space rotation;

“Currents” ji of the field of time density are derived from
inhomogeneity ∗∇kAik of the space rotation, corrected with
higher order terms depending on the Aik and Fi;

3. The Maxwell-like equations of the 2nd group show properties
of the “magnetic” component H∗i=−2c Ω

∗i of the field in their
link to the space rotation:

Inhomogeneity ∗∇i Ω∗i of the space rotation depends on non-
orthogonality of its angular velocity Ω∗i to the acting force Fi;

If the acting force is Fi=0, then the space rotation is homo-
geneous ∗∇i Ω∗i=0 and stationary Ω∗i= const;

4. The continuity equation sets up that in a homogeneous space
(Δink=0) without the field “currents” (ji=0) the “charge” ρ
inducing the field remains unchanged.

Any field without its-inducing sources is wave. Thus d’Alem-
bert’s equations without the sources we have deduced for the field
of time density in couple with the field sources equalized to zero
define the main properties of waves of the field:

1. The rate of deformations of a surface element in waves of the
field of time density is powered by the value of the acting
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gravitational inertial force Fi. If the force is Fi=0, then the
observable spatial metric hik is stationary;

2. If the space, filled with waves of the field of time density, is
homogeneous Δikn=0 and the acting force field is stationary
Fi= const there, then the spatial structure of the space defor-
mations is the same that the space rotation;

3. Inhomogeneity of the acting force ∗∇i F i in the wave field
increases with the speed of the space rotation Aik;

4. Inhomogeneity of rotations ∗∇k Aik in a space element, filled
with the wave field, is derived from non-orthogonality of the
acting force Fi to the field Aik, and also from non-stationarity
of the force Fi.

Energy-momentum tensor Tαβ we have deduced for the field of
time density has the observable projections: chr.inv.-scalar q of the
field density; chr.inv.-vector J i of the field momentum density, and
chr.inv.-tensor U ik of the field strengthes. Their specific formulas
define physical properties of the field:

1. The field of time density is non-stationary distributed media
q 6= const, it becomes stationary q= const under stationary ro-
tation Aik= const of the space and stationary gravitational
inertial force Fi= const;

2. The field bears momentum (J i 6=0, in general case), so it can
transfer impulse. The field does not transfer impulse J i=0,
if the space is holonomic Aik=0. The absence of gravitation
does not effect that the field can transfer impulse;

3. In a rotating space Aik 6=0 the field is emitting media J i 6=0;

4. The field is viscous. This viscosity αik, deriving from the space
rotation or from gravitational inertial force, is anisotropic. The
anisotropy βik of the viscosity increases with the speed of the
rotation. The field is viscous anisotropic under any conditions;

5. The equation of state of the field is p= 1
3 qc

2, so the field is
filled in the state of ultrarelativistic gas. At positive density
of the media its pressure becomes positive — the media com-
presses.

Having a plane wave of the field considered, we have concluded
that waves of the field of time density are transverse. Calculations
of the wave pressure showed that the main goal into the pressure
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is arrived from atom and sub-atom transformations, because of
high rotational velocities are there. So forth we have formulated
physical conditions, under which the field of time density is in
atoms. Being results of Bohr’s postulates applied to the field, the
physical conditions have two substantial consequences:

CONSEQUENCE I An exciting atom, radiating the momentum flux
of the field of time density, produces positive wave pressure in
the field.

CONSEQUENCE II When an atom absorbs the momentum flux of the
field of time density, then wave pressure in the field near the atom
becomes negative.

Possible experimental tests of the conclusions may be based
on that the predicted repulsion/attraction, produced by sub-atom
processes, being outside of known effects of electromagnetic or
gravitational fields, are peculiarities of only this theory.

So, the results we have obtained in this Chapter imply that even
if non-uniformity of time references is a tiny correction to ideal
time, a field of this non-uniformity that is the field of time density
does more fundamental effect on observable phenomena, than ones
presupposed before.

♦

Chapter 3

THE SPEED OF GRAVITATION

This Chapter defines the speed of gravitation as a speed of waves,
traveling in the field of gravitational inertial force. This speed, deriving
from d’Alembert’s equations of the field, is equal to the light velocity
corrected with gravitational potential. This approach leads to the new
experiment to measure the speed of gravitation, which is not linked to
deviation of geodesic lines and quadrupole mass-detectors. Considering
vortical gravitational fields, a tensor of which is the rotor of gravita-
tional inertial force, we conclude that regular are traveling waves of
the force, while the standing waves are linked to exotic conditions.

§3.1 Preliminaries

D’Alembert’s operator = gαβ∇α∇β is the four-dimensional gener-
alization of Laplace’s operator Δ=−gik∇i∇k in pseudo-Riemannian
spaces. We take a pseudo-Riemannian space with the signature
(+−−−), where time is real and spatial coordinates are imaginary,
because the projection of four-dimensional impulse on the spatial
section of any given observer is positive in this case. In touch to the
operators we are considering it implies that the time term in the
d’Alembert operator will be positive, while the spatial terms will
be negative. For instance, oversimplifying the pseudo-Riemannian
space to Minkowski’s space (the flat, homogeneous, and isotropic
space-time of the Special Theory of Relativity) we have

=
1

c2
∂2

∂t2
−Δ , Δ =

∂2

∂x1∂x1
+

∂2

∂x2∂x2
+

∂2

∂x3∂x3
. (3.1)

Applying the d’Alembert operator = gαβ∇α∇β to a tensor field
(any rank tensor field welcome, zero rank included) we obtain the
d’Alembert equations of the field. The resulting equations may be
equal to zero or not. The non-zeroes are the d’Alembert equations
of the field containing its-inducing sources like as “charges” or
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“currents”. If no the field-inducing sources, then the field is free.
This is a field of free traveling waves. So, the d’Alembert equations
equalized to zero are equations of propagation of waves of the field.

As a matter of fact that in a pseudo-Riemannan space, which
is inhomogeneous, anisotropic, and curved in general case, the
d’Alembert operator have more compound form than it is in the
Minkowski space (3.1). So, more additional terms and functional
coefficients are there, which take the space inhomogeneity, the
anisotropy, and the curvature into account. However the second
derivatives in respect to time and spatial coordinates remain, they
are possible with functional coefficients, which can reach different
numerical values, zero included.

In general case the time term of the d’Alembert equations can be

represented in the form 1
a2
∂2

∂t2
, which includes the linear velocity

a of waves traveling in the field. For this reason, considering the
d’Alembert equations without the sources, we can conclude some-
thing on the speed of waves of the field.

So, being applied to gravitational fields, the d’Alembert equa-
tions can give a possibility to calculate the speed of propagation of
gravitational attraction (the speed of gravitation) and to propose
an experiment measuring the speed in practice. In the same time
the result may be different in the dependence of a way we define
the speed as the velocity of waves of the metric or something else.
Accordingly, different in principle will be the final “experimentum
crucis” to measure the speed of gravitation.

A regular approach set forth the speed of propagation of gravi-
tational attraction as follows [5, 16]. One considers the space-time
metric gαβ = g

(0)

αβ + ζαβ, composed of a Galilean metric g(0)αβ (wherein
g(0)00 =1, g

(0)

0i =0, g
(0)

ik =−δik) plus tiny corrections ζαβ defining a weak
gravitational field. Because ζαβ are tiny, we can lift and lower
indices with the Galilean metric tensor g(0)αβ. The contravariant ten-
sor ζαβ is defined with the main peculiarity of the fundamental
metric tensor gασgσβ = δ

β
α applied to this case as (g(0)ασ + ζασ) g

σβ = δ
β
α.

Besides the approach defines gαβ and g= det ‖gαβ‖ to within higher
order terms as gαβ = g(0)αβ− ζαβ and g= g(0)(1+ ζ), where ζ= ζσσ . As
it was shown forth [16, 5], because ζαβ are tiny we have a possibility
to take Ricci’s tensor Rαβ =R...σασβ (the Riemann-Christoffel cur-
vature tensor Rαβγδ contracted by two indices) to within a first
approximation of higher order terms withheld. As a result the Ricci
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tensor for the metric gαβ = g
(0)

αβ + ζαβ arrives to the form

Rαβ =
1

2
g(0)μν

∂2ζαβ
∂xμ∂xν

=
1

2
ζαβ , (3.2)

that simplifies Einstein’s equations Rαβ − 1
2 gαβ R=−κTαβ +λgαβ,

wherein this case means R= g(0)μνRμν . In the absence of substance
and λ-fields (Tαβ =0, λ=0), that is in emptiness, the Einstein equa-
tions for the metric gαβ = g

(0)

αβ + ζαβ become to the equations

ζβα = 0 , (3.3)

go into details of the speculations with Eddington [16] or with Lan-
dau and Lishitz [5].

From geometric viewpoint these are the d’Alembert equations
of the corrections ζαβ defining a weak gravitational field in the
metric gαβ = g

(0)

αβ + ζαβ. So, the equations (3.3) are equations for
waves, which propagate in the field of weak corrections of metric.
Actually, the waves are weak waves of the metric. Because the
second derivatives of the metric (the space-time curvature) are
not zero herein, then the 1st derivatives defining deformation of
space shall be non-zeroes as well. From this reason ones concluded
that waves of the corrections ζαβ of the metric are also waves of
deformation of space. Considered a flat wave of the field ζαβ that
propagates at a sole spatial direction x1=x, we see

(
1

c2
∂2

∂t2
−
∂2

∂x2

)

ζβα = 0 , (3.4)

so weak waves of the metric ζαβ travel with the light velocity in an
empty space.

This approach leads to an experiment, based on that geodesic
lines of two infinitely close test-particles deviate in a field of waves
of the metric. A system of two real particles connected through
a spring (that is a quadrupole mass-detector) shall react to the
waves. This problem collected much literature, looking it from
different viewpoints. In particular, a solution of the problem with
the mathematical methods of chronometric invariants had been
given in [17, 18]. The most of attempts to register waves of the
metric in deviating test-particles were linked with Weber’s detector
since 1968. Those experiments have not arrived to a result yet,
because of problems with measuring precision [19] and some other
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theoretical problems, mentioned in [18]. So, the velocity of waves
of the metric is not measured until now.

Actual is the next question. Is the approach that above the best?
Really, the resulting d’Alembert equations (3.3) are derived from
the formula of the Ricci tensor (3.2), which was obtained under the
substantial simplifications of higher order terms withheld. Edding-
ton in his The Mathematical Theory of Relativity [16] wrote that
a source of this approximation is a specific reference frame which
differences from Galilean reference frames with the tiny corrections
ζαβ, an origin of which could be very different, not only gravitation.
If we take the corrections ζαβ under the substantial simplifications
that the above (a geometrical sense of those is not clear), then
waves of the “add-on” ζαβ to the metric gαβ will propagate with
the light velocity. If the “add-on” would be chosen otherwise, then
the speed of the waves would be another, not the velocity of light.
So, the result of the approach depends on our choice of a specific
reference frame. This is a “vicious circle”, Eddington wrote.

As an alternative to this approach, Eddington considered waves
of invariant RαβμνRαβμν of the metric gαβ = g

(0)

αβ + ζαβ. Following
this way, after some algebra, he had arrived to that this case is
depended on those simplifications that the above, so he had arrived
to the same d’Alembert equations ζ

β
α =0.

So, we can conclude that the regular approach has got its own
drawbacks as follows:

1. This approach gives a possibility to obtain the Ricci tensor and
hence the d’Alembert equations of the metric to within only a
first approximation of higher order terms withheld. From this
reason the velocity of waves of the metric, being calculated
this way, does not finally exact theoretical result;

2. Besides, as Eddington noted it, a source of this approximation
is a specific reference frame which differences from Galilean
reference frames with tiny corrections, an origin of which may
be very different, not only gravitation. In general, a nature of
this approximation is not clear;

3. Third, two bodies attract one another because of gravitational
forces, so from physical viewpoint a speed to transfer gravita-
tional interaction is the velocity of propagation of gravitational
force. A wave traveling in the field of gravitational force is
not the same that a wave of the metric. These are different
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tensor fields in a four-dimensional pseudo-Riemannian space∗.
For instance, waves of the metric are possible in homogene-
ous gravitational fields, however waves of gravitational force
field as well as gravitational attraction itself are absent there,
because the gradient of the field potential w is zero. When a
quadrupole mass-detector registers a signal, then the detector
reacts a wave of the metric in accordance with this experiment
theory. Therefore it is possible that quadrupole mass-detectors
would be good to discover waves of the metric, however the
experiment is only oblique to measure the speed of gravitation.

The mentioned reasons lead us to consider gravitational waves
as waves traveling in the field of gravitational force, that provides
two important advantages:

1. The mathematical methods of chronometric invariants define
gravitational inertial force Fi (1.16) without the Riemann-
Christoffel curvature tensor that is without the second de-
rivatives of the metric. As a result, using the mathematical
methods we have a possibility to obtain the exact d’Alembert
equations for the field of gravitational inertial force, hence we
can to found an exact formula defining the velocity of the
waves traveling in the field;

2. Experiments to register waves of the field of gravitational
inertial force can take a base other in principle “detectors”
like as planets or their satellites, that does not link to the
quadrupole mass-detector experiment and its own specific
technical problems. So, this approach opens a way to set
up other in principle experiments to measure the speed of
gravitation.

This new approach in details and the results the approach has
found will be a subject of the next Paragraphs.

§3.2 The new approach

Four-dimensional generalizations of the chr.inv.-quantities Fi, Aik,
Dik had been obtained by Zelmanov in 1960’s [20]

Fα = −2c
2bβaβα , Aαβ = ch

μ
αh

ν
βaμν , Dαβ = ch

μ
αh

ν
βdμν , (3.5)

∗This does not except that the velocities of these waves may be equal.
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where the auxiliary quantities aαβ and dαβ have the form

aαβ =
1

2
(∇α bβ −∇β bα) =

1

2

(
∂bβ
∂xα

−
∂bα
∂xβ

)

, (3.6)

dαβ =
1

2
(∇α bβ +∇β bα) . (3.7)

Note, as it have been shown in the previous Chapter, the vortex
Fαβ =2aαβ defines the field of non-uniformity of time coordinates
in pseudo-Riemannian spaces.

So, in this Chapter we are going to consider a field of the
gravitational inertial force

Fα = −2c
2bβaβα = −c

2bβ
(
∂bα
∂xβ

−
∂bβ
∂xα

)

. (3.8)

As it is not difficult to see, chr.inv.-projections of this four-
dimensional vector Fα are

ϕ =
F0
√
g00

= 0 , qi = F i =
1

√
g00

hik
(
∂w

∂xk
−
∂vk
∂t

)

, (3.9)

hence its covariant (lower-index) chr.inv.-component is Fi=hikF k

(1.16). The d’Alembert equations of the vector field Fα=−2c2a∙ασ∙b
σ

without its-inducing sources

Fα = 0 (3.10)

are the equations of propagation of waves traveling in the field.
Chr.inv.-projections of the equations are

bσ F σ = 0 , hiσ F σ = 0 . (3.11)

Actually, to obtain the projections in detailed form is the same
that to express

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 (3.12)

through chr.inv.-quantities. It should be noted that this is not very
easy process, so long introduction into chronometric invariants was
given in Chapter 1 to support someone who would like to pass this
way independently. I think, those should be enough to approve the
calculations. A help here is that the chr.inv.-projection of the vector
Fα on time line is zero (3.9). Everyone can check the resulting
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equations by substituting ϕ=0 and qi=F i into the d’Alembert
chr.inv.-equations for an arbitrary vector field (see §1.6).

Following this way after some algebra we obtain to the d’Alem-
bert chr.inv.-equations for the field Fα=−2c2a∙ασ∙b

σ without its-
inducing sources (3.11) in the final form

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
+Dk

m

∗∂Fm

∂xk
+

+hik
∗∂

∂xi
[(Dkn + Akn)F

n]−
2

c2
AikF

iF k +
1

c2
FmF

mD+

+ΔmknD
k
mF

n − hikΔmik (Dmn + Amn)F
n = 0 ,

(3.13)
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c2

∗∂2F i

∂t2
− hkm

∗∂2F i

∂xk∂xm
+
1

c2
(
Di
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k∙

) ∗∂F k
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+

+
1

c2

∗∂
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k∙

)
F k
]
+
1

c2
D
∗∂F i
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+
1

c2
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∗∂F i

∂xk
+

+
1

c2
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∙i
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FnD +

1

c2
ΔikmF

kFm +
1

c4
FkF
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(
ΔimnF

n
)
+
(
ΔiknΔ
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i
np

)
F p+

+Δikn

∗∂Fn

∂xm
−Δnkm

∗∂F i

∂xn

}

= 0 ,

(3.14)

where we select the d’Alembert chr.inv.-operator and the Laplace
chr.inv.-operator according to Zelmanov’s definitions of those [1]

∗ =
1

c2

∗∂2

∂t2
− hik

∗∂2

∂xi∂xk
, ∗Δ = −gik ∗∇i

∗∇k = h
ik

∗∂2

∂xi∂xk
. (3.15)

Called on the chr.inv.-derivatives (1.13), we transform the first
term in the vector d’Alembert equations (3.14) to the form

1

c2

∗∂2F i

∂t2
=

1

c2g00

∂2F i

∂t2
+

1

c4
√
g00

∗∂w

∂t

∗∂F i

∂t
,

√
g00=1−

w

c2
, (3.16)

which show that waves of the field of gravitational inertial force
travel with a velocity uk, a modulus of which is

u =
√
ukuk = c

(
1−

w

c2

)
. (3.17)

Because waves of the field of gravitational inertial force transfer
gravitational interaction, the waves speed (3.17) is the speed of
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gravitation as well. The speed depends on the potential w of the
field itself∗, that lead us to the next conclusions:

1. In a weak gravitational field, a potential of which is neglected
w→ 0 but its gradient is non-zero Fi 6=0, the speed of gravita-
tion is equal to the velocity of light;

2. The speed of gravitation shall be lesser than the light velocity
near bulk bodies like as stars or planets, where gravitational
potential is perceptible. On the Earth surface the gravitational
potential is w' 6.27×1011 cm2/sec2, so slowing gravitational
waves down in an Earth laboratory shall be about w

c2
' 7×10−10

that is nothing but 21 cm/sec less than the light velocity. The
solar field is stronger, its potential at the radius of the Sun
equals w' 1.9×1015 cm2/sec2. Hence, slowing gravitation down
near the Sun shall be w

c2
' 2.1×10−6 and the speed of gravita-

tion shall be 6.3×104 cm/sec slow than light;

3. Under the particular condition w= c2, when gravitational col-
lapse occurs, the speed of propagation of gravitational inertial
force becomes zero.

Let us consider a method to measure the speed of gravitation,
representing gravitational waves as the waves of gravitational force.
The idea to measure the speed of gravitation as a speed to transfer
the attracting force between space bodies had been proposed by
mathematician Dombrowski in his conversation with me a decade
before. The Weber detectors are inapplicable to put this idea into
experiment, because they react to deviating geodesic lines of close
test-particles in the wave field of the metric. The idea did not
move experiment that time, however those friendly conversation
stimulated me to make the theoretical study that here. As a result
we have the mathematical representation of the speed of gravitation
as a velocity of waves traveling in the field of gravitational inertial
force we have calculated from the obtained d’Alembert equations.

∗It is interesting, formula (1.16) defining the chr.inv.-vector Fi consists of two
term, only the first of which is gravitational force. The second term is centrifugal
inertial force, caused by rotation of the observer’s space. The d’Alembert equations
we have obtained contain the force Fi in its general form. If a gravitational field is
homogeneous or absent, then the “gravitational” term of the force Fi becomes zero.
Only the “inertial” term remains. In this case the obtained d’Alembert equations
will be the same for centrifugal forces of inertia, so waves of the inertial force field
will propagate under the same conditions as well as gravitation.

88 Chapter 3 The speed of gravitation

So, we have a possibility to compose a specific experiment to mea-
sure the speed of the waves in practice. An essence of the pro-
pounded experiment is as follows.

The Moon attracts the Earth surface looking to her stronger
than the opposite. As a result, the flow “hump” in the ocean surface
follows the moving Moon that produce ebbs and flows. Analogous
“hump” follows the Sun, however its height is more lesser. A sat-
ellite in an Earth orbit have the same ebb and flow oscillations, its
orbit lowers and lifts for a little following the Moon and the Sun as
well. A satellite being it flies in airless space does not any friction
to the contrary of viscous water in the ocean. A satellite is a perfect
system without inertia, the system reacts to flow carrying of the
Moon or the Sun instantly.

If the speed to transfer gravitation would be infinite (as Classical
Mechanics predicts it), then the maximal rise of the lunar flow
wave in a satellite orbit that is the satellite’s maximal rise above
the Earth should be coincided with the moment of the lunar upper
culmination at the same Earth point under the satellite. If the speed
of gravitation is limited, in this case the moment of the satellite’s
maximal flow rise should be late from the lunar culmination with
the time that waves of gravitational force field traveled from the
Moon to the satellite. Similar lateness shall be exist also on the
flow carrying the satellite by the Sun.

The Earth gravitational field is not absolute symmetric, because
of the imperfect terrestrial globe. A real satellite reacts to defects
of the Earth gravitational field during its orbital flight around the
Earth. Because of those defects, the height of a satellite’s orbit
oscillates about decades of centimeters that would be substantial
noise in the propounded experiment. From this reason a geostation-
ary satellite would be the best. Such satellite having an equatorial
orbit requiring an angular velocity the same as that of the Earth, so
the satellite’s position in an orbit is fixed in respect of the Earth. As
a result, the height of a geostationary satellite above the Earth does
not depend on defects of the Earth gravitational field. The height
could be measured by a laser range-finder with high precision
almost without interruption, that give a possibility to register the
moment of the maximal flow rise of the satellite perfectly.

In accordance with our approach, gravitational attraction is
transferred with waves of the field of gravitational inertial force.
The potential of the Earth gravitational field on the Earth surface
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is so little w' 6.27×1011 cm2/sec2, so the speed of gravitation that
is the formula (3.17) we have obtained equals the light velocity
minus a tiny correction of 21 cm/sec nearly the Earth, that is within
measurement precision. Hence forth we can put the speed of grav-
itation in an Earth laboratory equalized to the velocity of light.
Keeping this in mind, we conclude that the maximum of the lunar
flow wave in a satellite orbit shall be about 1 second late from
the lunar upper culmination. The lateness of the flow wave of the
Sun shall be about 500 second after the upper transit of the Sun.
Astronomical methods give culmination moments of the Moon and
the Sun with the necessary high precision. A question is how much
precisely could be registered the moment of the maximal flow rise
of a satellite in its orbit, because the real maximum can be “fuzzy”
in time. Anyhow this problem focuses on merely to choice the
lunar flow effect or the solar flow effect to measure the speed of
gravitation in the frames of the new approach.

§3.3 Effect of the curvature

We are going to consider the obtained d’Alembert chr.inv.-equations
of the field of gravitational inertial force. Let us take the equations
in a space, which is homogeneous Δikm=0 and its metric is station-
ary hik= const (the latest is true if the space does not deformations
Dik=0). In this particular case the d’Alembert chr.inv.-equations
(3.13, 3.14) take the form

1
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FkF
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)
+
1

c2
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∗∂F i

∂t
+hik
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∂xi
(AknF
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iF k = 0 , (3.18)
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+
1

c2
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∗∂F i

∂xk
+
1

c4
FkF

kF i = 0 .

(3.19)

This implies that waves of gravitational inertial force can be
even in a non-deforming homogeneous space. Waves of the metric
are linked to the space-time curvature deriving from the Riemann-
Christoffel curvature tensor. If the first derivatives of the metric
(that means deformation of the space) are zeroes, then its second
derivatives (the space-time curvature) are zeroes as well. Therefore
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no any waves of the metric in a non-deforming space, while waves
of gravitational inertial force are possible therein.

Under the particular conditions plus the space does not rotate,
the d’Alembert equations become still more simpler
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c2
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= 0 , (3.20)
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so waves of gravitational inertial force are possible even in a non-
deforming non-rotating homogeneous space (a metric of which is
diagonal, because all the mixed components are zeroes g0i=0).

In connection with this fact the next question would be interest-
ing. How much acts the curvature on waves of gravitational inertial
force?

To answer the question, let us remind that Zelmanov had built
a chr.inv.-tensor of the curvature [1]. This tensor, describing the
curvature of a three-dimensional space of an observer (the observ-
able curvature of his spatial section), possesses all properties of
the Riemann-Christoffel curvature tensor in the three-dimensional
space and in the same time has the property of chronometric invari-
ance. It was made in the same way that the Riemann-Christoffel
tensor was built, deriving from the non-commutativity of the sec-
ond derivatives from an arbitrary vector taken in the given space.
Taken the second chr.inv.-derivatives from an arbitrary vector

∗∇i
∗∇kQl −

∗∇k
∗∇iQl =

2Aik
c2

∗∂Ql
∂t

+H
...j
lkiQj , (3.22)

he obtained the chr.inv.-tensor

H
...j
lki =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
im , (3.23)

which is like Schouten’s tensor from the theory of non-holonomic
manifolds [21]. The tensor H ...j

lki algebraically differences from the
Riemann-Christoffel tensor, because of the presence of rotation of
the space Aik in the formula (3.22). Nevertheless its generalization
gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) , (3.24)
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which has all algebraical properties of the Riemann-Christoffel
tensor in this three-dimensional space. Therefore Zelmanov called
Ciklj the curvature chr.inv.-tensor, which actually is the tensor
of the observable curvature of the observer’s spatial section. Its
contraction step-by-step gives

Ckj = C
...i
kij∙ = h

imCkimj , C = C
j
j = h

ljClj , (3.25)

where the chr.inv.-scalar C is the scalar observable curvature of
the spatial section.

The Riemann-Christoffel tensor has 256 components, while only
20 of those are significant∗. Its chr.inv.-projections

Xik = −c2
R∙i∙k0∙0∙
g00

, Y ijk = −c
R
∙ijk
0...√
g00

, Zijkl = c2Rijkl (3.26)

had been deduced by Zelmanov in lower-indices-form [1], they are

Xij=
∗∂Dij
∂t

−
(
Dl
i+A

∙l
i∙

)
(Djl+Ajl)+

1

2
(∗∇iFj+

∗∇jFi)−
1

c2
FiFj , (3.27)

Yijk =
∗∇i (Djk + Ajk)−

∗∇j (Dik + Aik) +
2

c2
AijFk , (3.28)

Ziklj = DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c
2Ciklj , (3.29)

where we have Y(ijk)=Yijk+Yjki+Ykij =0 like it is in the Riemann-
Christoffel tensor. Contraction of the spatial observable projection
Ziklj step-by-step gives

Zil = DikD
k
l −DilD + AikA

∙k
l∙ + 2AikA

k∙
∙l − c

2Cil , (3.30)

Z = hilZil = DikD
ik −D2 − AikA

ik − c2C . (3.31)

As it was shown in Synge’s book [22], in a pseudo-Riemannian
space of a constant four-dimensional curvature K = const the next
correlations take a place

Rαβγδ=K (gαγ gβδ−gαδgβγ) , Rαβ=−3Kgαβ , R=−12K. (3.32)

∗Because of the Riemann-Christoffel tensor is symmetric by each pair of indices
Rαβγδ =Rγδαβ , antisymmetric in respect to transformation inside the each pair
Rαβγδ =−Rαβδγ , and has the peculiarity Rα(βγδ)=0 that stands for transpositions
by the “inner” three indices.
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Having the formulas in the mind, after some algebra we obtain

R0i0k = −Khik g00 , (3.33)

R0ijk =
K

c

√
g00 (vjhik − vkhij) , (3.34)

Rijkl = K
[
hikhjl − hilhkj +

1

c2
vi (vlhkj − vkhjl) +

+
1

c2
vj (vkhil − vlhik)

]
,

(3.35)

so the observable projections Xik, Y ijk, and Zijkl of the Riemann-
Christoffel tensor in a constant curvature space are

Xik = c2Khik, Y ijk = 0 , Zijkl = c2K
(
hikhjl−hilhjk

)
. (3.36)

So forth we take the covariant component Zijkl contracted step-
by-step in a constant curvature space

Zijkl = c
2K (hikhjl − hilhjk) , Zjl = Z

i...
∙jil = 2c

2Khjl , (3.37)

Z = Z
j
j = 6c

2K , (3.38)

and then equalize the Z (3.38) to the same quantity in an arbitrary
curvature space (3.31). As a result, we obtain a correlation between
the four-dimensional curvature K and the observable spatial curva-
ture C in the constant curvature space. The correlation is

6c2K = DikD
ik −D2 − AikA

ik − c2C . (3.39)

Let us consider this formula in relation to our study on grav-
itational waves. If the four-dimensional curvature of a constant
curvature space is zero K =0, and also the space does not defor-
mations Dik=0, then no waves of the metric there exactly. In such
space the observable three-dimensional curvature

C = −
1

c2
AikA

ik (3.40)

is non-zero C 6=0, if the space rotates Aik 6=0. In the absence of
deformations and rotation of the space, its three-dimensional ob-
servable curvature becomes zero C =0. However even in this simply
case, the obtained d’Alembert equations (3.20, 3.21) show the pres-
ence of waves of gravitational inertial force.



3.4 Vortical gravitational fields 93

As a matter of fact that gravitational attraction is an everyday
reality in our world, so waves of gravitational inertial force trans-
ferring the attraction shall be incontrovertible. This fact forces us
to choice one of the alternatives:

1. Waves of gravitational inertial force depend on the space cur-
vature, then the real space-time is not constant curvature
space;

2. Either waves of gravitational inertial force do not depend on
the curvature.

§3.4 Vortical gravitational fields

As a matter of fact that the attracting force of gravity is absent in
homogeneous gravitational fields, because the gradient of gravita-
tional potential w is zero everywhere there. So waves of gravitational
inertial force Fα also take not a place in homogeneous gravitational
fields. Therefore it is reasoning to consider the field of the vector
potential Fα as a media transferring gravitational attraction via
waves of the force.

So forth we introduce the tensor of the field as a rotor of its
four-dimensional vector potential Fα as well as Maxwell’s tensor of
electromagnetic fields, namely

Fαβ = ∇αFβ −∇β Fα =
∂Fβ
∂xα

−
∂Fα
∂xβ

. (3.41)

We will refer to Fαβ (3.41) as the tensor of vortical gravitational
field, because actually this is a four-dimensional vortex of the
acting gravitational inertial force Fα.

Taking into account that chr.inv.-projections of the field poten-
tial Fα= gαβFβ =−2c2a∙ασ∙b

σ (3.5) are

ϕ =
F0
√
g00

= 0 , qi = F i = hikFk , (3.42)

after some algebra we arrive to components of the field tensor Fαβ
(3.41). The components are

F00 = F
00 = 0 , F0i = −

1

c

√
g00

∗∂Fi
∂t

, (3.43)

Fik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

+
1

c2

(

vi
∗∂Fk
∂t

− vk
∗∂Fi
∂t

)

, (3.44)
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F ∙00∙ =
1

c2
vk

∗∂Fk
∂t

, F ∙i0∙ =
1

c

√
g00 h

ik
∗∂Fk
∂t

, (3.45)

F ∙0k∙ =
1

√
g00

[
1

c

∗∂Fk
∂t

−
1

c3
vkv

m
∗∂Fm
∂t

+
1

c
vm
(∗∂Fm
∂xk

−
∗∂Fk
∂xm

)]

, (3.46)

F ∙ik∙ = h
im

( ∗∂Fm
∂xk

−
∗∂Fk
∂xm

)

−
1

c2
himvk

∗∂Fm
∂t

, (3.47)

F 0k =
1

√
g00

[
1

c
hkm

∗∂Fm
∂t

+
1

c
vnhmk

( ∗∂Fn
∂xm

−
∗∂Fm
∂xn

)]

, (3.48)

F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

. (3.49)

Using the formulas, we obtain chr.inv.-projections of the field
tensor Fαβ. We will refer to its time projection

Ei =
F ∙i0∙√
g00

=
1

c
hik

∗∂Fk
∂t

, Ei = hikE
k =

1

c

∗∂Fi
∂t

(3.50)

as the “electric” observable component of the vortical gravitational
field. Its spatial projection will be called the “magnetic” observable
component of the field

Hik = F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

, (3.51)

Hik = himhknH
mn =

∗∂Fi
∂xk

−
∗∂Fk
∂xi

, (3.52)

which, after using the Zelmanov 1st identity∗ (1.22), takes the form

Hik = 2himhkn
∗∂Amn
∂t

, Hik = 2
∗∂Aik
∂t

. (3.53)

The “electric” observable component Ei (3.50) of a vortical grav-
itational field display itself as non-stationarity of the acting gravita-
tional inertial force F i. The “magnetic” observable component Hik
(3.52) display itself as the presence of spatial vortexes of the force
F i or, that is the same, as non-stationarity of the space rotation Aik
(see formula 3.53). So, two different kinds of the vortical fields are
possible, namely:

∗The identity links spatial vortexes of gravitational inertial force to non-
stationarity of rotation of the observer’s space.
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1. Vortical gravitational fields of “electric” kind, in which Hik=0
and Ei 6=0. In this case vortexes of the acting gravitational
inertial force F i are absent that is the same as if the space
rotation is stationary. So, a vortical field of this kind is derived
from only its own “electric” component Ei (3.50) that is non-
stationarity of the force F i. Note, vortical gravitational fields of
“electric” kind are possible both in a non-holonomic (rotating)
space if its rotation is stationary, and also in a holonomic space
because the zero rotation can be assumed the ultimate case of
stationary rotations;

2. The “magnetic” kind of vortical gravitational fields charac-
terizes with Ei=0 and Hik 6=0. Such vortical field is derived
from only its own “magnetic” component Hik that is spatial
vortexes of the acting force F i and non-stationary rotation of
the space. Therefore vortical gravitational fields of “magnetic”
kind are possible if only the space is non-holonomic. Because
the obtained d’Alembert equations (3.13, 3.14) under the con-
dition Ei=0 do not depend on time, “magnetic” vortical grav-
itational fields are a media of standing waves of gravitational
inertial force.

In addition, we introduce the pseudotensor F ∗αβ of the field dual
to the field tensor

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (3.54)

where the four-dimensional completely antisymmetric discriminant
tensors Eαβμν and Eαβμν (1.77) transform regular tensors into
pseudotensors in inhomogeneous anisotropic pseudo-Riemannian
spaces.

Using the components of the tensor Fαβ (3.43–3.49), we obtain
chr.inv.-projections of the field pseudotensor F ∗αβ, which are

H∗i =
F ∗∙i0∙√
g00

=
1

2
εikm

( ∗∂Fk
∂xm

−
∗∂Fm
∂xk

)

, (3.55)

E∗ik = F ∗ik = −
1

c
εikm

∗∂Fm
∂t

, (3.56)

where εikm (1.82) and εikm (1.83) are the discriminant chr.inv.-
tensors. Taking the Zelmanov 1st identity (1.22) and the formula to
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differentiate εikm (2.55) into account, we can write the “magnetic”
component H∗i (3.55) down as follows

H∗i = εikm
∗∂Akm
∂t

= 2

( ∗∂Ω∗i

∂t
+Ω∗iD

)

, (3.57)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of the angular
velocity of the space rotation, the spur D=hikDik=Dn

n of the tensor
Dik (1.24) is the rate of relative expansion of an elementary volume
filled with the field.

So forth, calculating invariants J1=FαβFαβ and J2=FαβF
∗αβ

for a vortical gravitational field, we arrive to the formulas

J1=h
imhkn

(∗∂Fi
∂xk

−
∗∂Fk
∂xi

)(∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, (3.58)

J2 = −
2

c
εimn

( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

) ∗∂Fi
∂t

, (3.59)

which, having the Zelmanov 1st identity (1.22) substituted, are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, (3.60)

J2 = −
4

c
εimn

∗∂Amn
∂t

∗∂Fi
∂t

= −
8

c

( ∗∂Ω∗i

∂t
+Ω∗iD

)∗∂Fi
∂t

. (3.61)

The formulas we have obtained for the field invariants imply,
that a vortical gravitational field is spatially isotropic (one of the
invariants becomes zero) in the next cases:

• if the field is of strictly “electric” kind (Ei 6=0, Hik=0), so
spatial vortexes of gravitational inertial force are absent and
the space rotation (if it rotates) is stationary, then the invari-
ants are

J1 = −
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, J2 = 0 , (3.62)

• if the field is of strictly “magnetic” kind (Hik 6=0, Ei=0), so
it is a non-stationary rotating space filled with the spatial
vortexes Fik of gravitational inertial force which does not
depend on time, then

J1 = F
m∙
∙k F

∙k
m∙ = 4h

imhkn
∗∂Aik
∂t

∗∂Amn
∂t

, J2 = 0 , (3.63)
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• if J1=0, that could be if the next condition is true (however
its geometrical sense is not clear)

himhkn
∗∂Aik
∂t

∗∂Amn
∂t

=
1

2c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

. (3.64)

Thus anisotropic can be only a mixed vortical gravitational field
bearing both the “electric” and the “magnetic” components as well.
Strictly “electric” or “magnetic” vortical gravitational fields are
spatially isotropic always.

Taking this conclusion with the peculiarity that gravitational
inertial force does not depend on time in vortical gravitational fields
of “magnetic” kind (see above), we arrive to the necessary and
sufficient conditions to exist standing gravitational waves:

1. A media of the standing waves is vortical gravitational fields
of strictly “magnetic” kind — given spatial vortexes of gravi-
tational inertial force, the force does not depend on time;

2. The media of the standing waves is spatially isotropic — vor-
texes of gravitational inertial force are distributed equally at
all spatial directions. Hence the field of standing gravitational
waves is isotropic as well;

3. Standing gravitational waves are possible in only a strictly
non-holonomic space, a rotation of which is non-stationary.

As soon as one of the conditions has been broken, then the acting
gravitational inertial force begins to change its own value and the
direction, so standing waves of the force transform themselves to
the traveling waves.

§3.5 Equations of the vortical force field

As it was mentioned in §2.5, equations of a field is a system con-
sisting of 10 equations in 10 unknowns, which are:

• Lorentz’s condition ∇σAσ =0 sets up that the four-dimensional
potential Aα of the field remains unchanged;

• the charge conservation law ∇σ jσ =0 (the continuity equa-
tion), which sets up that the field-inducing sources like as
“charges” or “currents” can not be destroyed but merely re-
distributed in the space;
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• the 1st group ∇σFασ = 4πc j
α and the 2nd group ∇σF ∗ασ =0 of

Maxwell’s equations, where the 1st group defines the “charge”
and the “current” as components of the four-dimensional cur-
rent vector jα of the field.

This system defines a vector field Aα and its sources in a pseudo-
Riemannian space. We are going to deduce the equations for a
vortical gravitational field as the field of the four-dimensional po-
tential Fα=−2c2a∙ασ∙b

σ (3.5).
Taking divergence ∇σF σ (1.122) from the field potential Fα,

after substituting the chr.inv.-projections ϕ=0 and qi=F i=hikFk
(3.42) of the potential Fα, we obtain the Lorentz condition for the
vortical gravitational field

∇σF
σ =0 (3.65)

in chr.inv.-form, namely

∗∂F i

∂xi
+ F iΔ

j
ji −

1

c2
FiF

i = 0 . (3.66)

Looking forward to deduce Maxwell-like equations for the vor-
tical gravitational field, let us collect chr.inv.-projections of the field
tensor Fαβ and the field pseudotensor F ∗αβ together.

After expressing the necessary projections with the tensor of
the rate of the space deformation Dik (1.24) to delete free hik terms
from there, we have

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik, (3.67)

Hik = 2himhkn
∗∂Amn
∂t

= 2
∗∂Aik

∂t
+ 4

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
, (3.68)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD , (3.69)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

. (3.70)

Substituting the components into the Maxwell equations taken
in their generalized form (2.48, 2.49), which had been deduced for
a field of an arbitrary four-dimensional vector potential, after some
algebra we obtain Maxwell-like chr.inv.-equations for the vortical
gravitational field
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1

c

∗∂2F i

∂xi∂t
+
2

c

∗∂

∂xi
(
FkD

ik
)
+
1

c

( ∗∂F i

∂t
+ 2FkD

ik

)

Δ
j
ji−

−
2

c
Aik

( ∗∂Aik

∂t
+ Ai∙∙nD

kn

)

= 4πρ

2
∗∂2Aik

∂xk∂t
−
1

c2

∗∂2F i

∂t2
+ 4

∗∂

∂xk
(
Ai∙∙nD

kn − Ak∙∙mD
im
)
+

+2

(

Δ
j
jk −

1

c2
Fk

){∗∂Aik

∂t
+ 2

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
}

−

−
2

c2

∗∂

∂t

(
FkD

ik
)
−
1

c2

( ∗∂F i

∂t
+ 2FkD

ik

)

D =
4π

c
ji






I, (3.71)

∗∂2Ω∗i

∂xi∂t
+

∗∂

∂xi
(
Ω∗iD

)
+
1

c2
Ω∗m

∗∂Fm
∂t

+

+

( ∗∂Ω∗i

∂t
+ Ω∗iD

)

Δ
j
ji = 0

εikm
∗∂2Fm
∂xk∂t

+ εikm
(

Δ
j
jk −

1

c2
Fk

) ∗∂Fm
∂t

+ 2
∗∂2Ω∗i

∂t2
+

+4D
∗∂Ω∗i

∂t
+ 2

( ∗∂D

∂t
+D2

)

Ω∗i = 0






II. (3.72)

So forth the continuity equation ∇σjσ =0 for the field, deriving
from the 1st group of the Maxwell-like equations (3.71), is

∗∂2

∂xi∂xk

( ∗∂Aik

∂t

)

−
1

c2

( ∗∂Aik

∂t
+Ai∙∙nD

kn

)(

AikD+
∗∂Aik
∂t

)

−

−
1

c2

[ ∗∂2Aik

∂t2
+
∗∂

∂t

(
Ai∙∙nD

nk
)
]

Aik+
1

2c2

( ∗∂F i

∂t
+2FkD

ik

)

×

×

( ∗∂Δ
j
ji

∂t
+
D

c2
Fi−

∗∂D

∂xi

)

+2
∗∂2

∂xi∂xk
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

+

[ ∗∂Aik

∂t
+ 2

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
][ ∗∂

∂xi

(

Δ
j
jk −

1

c2
Fk

)

+

+

(

Δ
j
ji −

1

c2
Fi

)(

Δllk −
1

c2
Fk

)]

= 0 .

(3.73)

To see a sense of the obtained equations would be simpler in
a homogeneous space Δikm=0 which does not deformation Dik=0,
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because no waves of the metric there. Only waves of gravitational
inertial force are possible in such space, that simplifies our task to
consider the waves.

In a non-deforming homogeneous space the obtained Maxwell-
like equations (3.71, 3.72) take the simplified form

1

c

∗∂2F i

∂xi∂t
−
2

c
Aik

∗∂Aik

∂t
= 4πρ

2
∗∂2Aik

∂xk∂t
−
2

c2
Fk

∗∂Aik

∂t
−
1

c2

∗∂2F i

∂t2
=
4π

c
ji





I, (3.74)

∗∂2Ω∗i

∂xi∂t
+
1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

−
1

c2
εikmFk

∗∂Fm
∂t

+ 2
∗∂2Ω∗i

∂t2
= 0





II, (3.75)

while the field-inducing sources in this case are

ρ =
1

4πc

( ∗∂2F i

∂xi∂t
− 2Aik

∗∂Aik

∂t

)

, (3.76)

ji =
c

2π

( ∗∂2Aik

∂xk∂t
−
1

c2
Fk

∗∂Aik

∂t
−

1

2c2

∗∂2F i

∂t2

)

, (3.77)

so the continuity equation (3.73) takes the form

∗∂2

∂xi∂xk

( ∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik

∂t2
−
1

c2

∗∂Aik
∂t

∗∂Aik

∂t
−

−
1

c2

( ∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(3.78)

The field equations we have obtained show the main peculiarities
of vortical gravitational fields:

1. The Lorentz condition (3.66) shows that inhomogeneity of a
vortical gravitational field depends on the value of the acting
gravitational inertial force F i and on the space inhomogeneity
Δ
j
ji at the direction the force F i acts;

2. The 1st group of the Maxwell-like equations (3.71) displays
the origin of the field-inducing sources called “charges” ρ and
“currents” ji (a relative analogy to electromagnetic field):
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“Charge” ρ inducing the vortical gravitational field is derived
from inhomogeneity of oscillations of the acting gravitational
inertial force F i and from non-stationarity of the space rota-
tion, taken with corrections defined by the space inhomoge-
neity and the deformations;

“Currents” ji of the field are derived from non-stationarity
of the space rotation, inhomogeneity of this non-stationarity
in the space, and also non-stationarity of oscillations of the
acting force F i, corrected with the space inhomogeneity and
the deformations;

3. The 2nd group of the Maxwell-like equations (3.72) shows
properties of the field magnetic component H∗i (this compo-
nent is derived from non-stationarity of the space rotation):

Oscillations of the acting gravitational inertial force F i are the
main factor, which produce inhomogeneous distribution of the
“magnetic” component H∗i of the field;

If the acting force is F i=0 and the space does not deformation
Dik=0, then the “magnetic” component H∗i of the field is
stationary;

4. The continuity equation (3.78) shows that “charges” and “cur-
rents” inducing a vortical gravitational field, located in a non-
deforming homogeneous space, remain unchanged if the space
rotation is stationary. So, the sources inducing vortical grav-
itational fields of “electric” kind (Hik=0, Ei 6=0) conserve
themselves in only a non-deforming homogeneous space. The
sources inducing vortical gravitational fields of “magnetic”
kind (Ei=0,Hik 6=0) remain unchanged, because of the effects
of the space inhomogeneity and the deformations.

Aside these, we can deduce some additional peculiarities of
vortical gravitational fields, using that a free field (that is a field
without the sources) is wave. Having inhomogeneity and deforma-
tions of the space excluded, we exclude waves of the metric. Thus
we have a possibility to consider conditions in which solely waves of
gravitational inertial force exist — waves of a vortical gravitational
field. So, equalizing formulas for the field-inducing sources ϕ (3.76)
and ji (3.77) to zero in a non-deforming homogeneous space, we
obtain

∗∂2F i

∂xi∂t
= 2Aik

∗∂Aik

∂t
, (3.79)
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∗∂2Aik

∂xk∂t
=
1

c2
Fk

∗∂Aik

∂t
+

1

2c2

∗∂2F i

∂t2
, (3.80)

that lead us to the next conclusions:

1. Inhomogeneity of oscillations of the gravitational inertial force
F i, acting in a free vortical gravitational field, is mainly de-
rived from non-stationarity of the space rotation (3.79);

2. Inhomogeneity of non-stationary rotations of a space, filled
with a free vortical gravitational field, is mainly defined by the
acting gravitational inertial force F i and also non-stationarity
of oscillations of the force (3.80).

The results we have obtained here evident that numerous prop-
erties of vortical gravitational fields display themselves only if the
fields are of strictly “electric” or of strictly “magnetic” kind. This
fact lead us to consider these two kinds of vortical gravitational
fields separately. We will focus our power on the tasks in the next
§3.6 and §3.7.

§3.6 The vortical field of “electric” kind

Now we are going to consider a vortical gravitational field of strictly
“electric” kind, which characterizes itself as follows

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

= 0 , (3.81)

Hik = 2himhkn
∗∂Amn
∂t

= 0 , (3.82)

Ei =
1

c

∗∂Fi
∂t

6= 0 , (3.83)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik 6= 0 , (3.84)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD = 0 , (3.85)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

6= 0 . (3.86)

Actually, we are considering a stationary rotating space (if the
space rotates) filled with the field of a non-stationary gravitational
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inertial force without spatial vortexes of the force. This is the
main kind of vortical gravitational fields, because we observe non-
stationary rotations of space bodies very rarely (see the field of
“magnetic” kind in the next §3.7).

In this case the Lorentz condition (the four-dimensional vector
potential of the field remains unchanged) does not change itself
in comparison to the general formula (3.66), because the condition
does not contain components of the field tensor Fαβ.

The field invariants (3.62) in this case are

J1 = −
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, J2 = 0 . (3.87)

Maxwell-like chr.inv.-equations for the vortical gravitational
field of strictly “electric” kind, having the general form

∗∇iE
i = 4πρ

1

c

( ∗∂Ei

∂t
+ EiD

)

= −
4π

c
ji





I, (3.88)

E∗ikAik = 0

∗∇kE
∗ik −

1

c2
FkE

∗ik = 0





II, (3.89)

after substituting Ei and E∗ik take the final form

1

c

∗∂2F i

∂xi∂t
+
1

c

(∗∂F i

∂t
+2FkD

ik

)

Δ
j
ji+

2

c

∗∂

∂xi
(
FkD

ik
)
=4πρ

1

c2

∗∂2F i

∂t2
+
2

c2

∗∂

∂t

(
FkD

ik
)
+
1

c2

(∗∂F i

∂t
+2FkD

ik

)

D=−
4π

c
ji






I, (3.90)

2

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

+ εikm
(

Δ
j
jk −

1

c2
Fk

) ∗∂Fm
∂t

= 0





II. (3.91)

The continuity equation for the field, in general case of a de-
forming inhomogeneous space, takes the form

( ∗∂F i

∂t
+ 2FkD

ik

)( ∗∂Δ
j
ji

∂t
−

∗∂D

∂xi
+
D

c2
Fi

)

= 0 , (3.92)
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this equation becomes the identity “zero equalized to zero” in the
absence of the space inhomogeneity and the deformations. Actually,
the continuity equation we have obtained implies that one of the
next conditions or the both conditions together

∗∂F i

∂t
= −2FkD

ik,
∗∂Δ

j
ji

∂t
=

∗∂D

∂xi
−
D

c2
Fi (3.93)

are true in vortical gravitational fields of strictly “electric” kind.
The Maxwell-like equations (3.90, 3.91) in a non-deforming ho-

mogeneous space become very simple

1

c

∗∂2F i

∂xi∂t
= 4πρ

1

c2

∗∂2F i

∂t2
= −

4π

c
ji





I, (3.94)

1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

−
1

c2
εikmFk

∗∂Fm
∂t

= 0





II. (3.95)

The obtained equations display peculiarities, specific for vortical
gravitational fields of strictly “electric” kind:

1. Because one of the field invariants is zero everywhere (3.87),
vortical gravitational fields of “electric” kind are spatially iso-
tropic under any conditions, independent of inhomogeneity
Δijk or deformations Dik of the space;

2. Sources ρ and ji inducing such fields in a non-deforming
homogeneous space (3.94) are derived from inhomogeneous
distribution of oscillations of the acting gravitational inertial
force F i (the “charge” ρ) and from non-stationarity of the
oscillations (the “currents” ji);

3. Because vortical gravitational fields of “electric” kind charac-

terize themselves by Ei= 1c

∗∂Fi
∂t

6=0, such fields are possible

in a rotating space Ω∗i 6=0, if the space is inhomogeneous
Δ
j
ji 6=0 and deforming Dik 6=0 (see the 1st equation in the 2nd

Maxwell-like group — formula 3.91). Such fields are possible in
a non-deforming homogeneous space, if the space is holonomic
Ω∗i=0 (see the equation in simplified form — formula 3.95);
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4. Such fields permit waves of the acting gravitational inertial
force F i (no the field sources there ρ=0, ji=0), if oscillations
of the force are homogeneous and stable (see the 1st Maxwell-
like group — formula 3.94);

5. The continuity equation (3.92) brings us into the conclusion
that sources inducing such fields in a non-deforming homoge-
neous space (Δijk=0, Dik=0) remain unchanged under any
conditions.

§3.7 The vortical field of “magnetic” kind

A vortical gravitational field of strictly “magnetic” kind character-
izes itself by its own observable components

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

6= 0 , (3.96)

Hik = 2himhkn
∗∂Amn
∂t

6= 0 , (3.97)

Ei =
1

c

∗∂Fi
∂t

= 0 , (3.98)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik = 0 , (3.99)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD 6= 0 , (3.100)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

= 0 . (3.101)

Actually, in this case we have a non-stationary rotating (strictly
non-holonomic) space filled with spatial vortexes of a stationary
gravitational inertial force Fi= const. This is a more exotic case
of vortical gravitational fields than the “electric”, because non-
stationary rotations of bulk space bodies, being possible generators
of such fields, are very infrequent phenomena in the Universe.

The Lorentz condition for such field does not change its general
formula (3.66) as well as for the fields of “electric” kind, because
the condition does not contain components of the field tensor Fαβ.

The field invariants (3.63) in the case we are considering are
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J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

, J2 = 0 . (3.102)

Maxwell-like equations for the vortical gravitational field of
strictly “magnetic” kind are

1

c
HikAik = −4πρ

∗∇kH
ik −

1

c2
FkH

ik =
4π

c
ji





I, (3.103)

∗∇iH
∗i = 0

∗∂H∗i

∂t
+H∗iD = 0





II, (3.104)

and after substituting Hik and H∗i take the final form

2

c
Aik

∗∂Aik
∂t

= −4πρ

2
∗∂2Aik

∂xk∂t
+4

∗∂

∂xk
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+2

(

Δ
j
jk−

1

c2
Fk

)

×

×

{ ∗∂Aik

∂t
+ 2

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
}

=
4π

c
ji






I, (3.105)

∗∂2Ω∗i

∂xi∂t
+

∗∂

∂xi
(
Ω∗iD

)
+

( ∗∂Ω∗i

∂t
+Ω∗iD

)

Δ
j
ji = 0

∗∂2Ω∗i

∂t2
+

∗∂

∂t

(
Ω∗iD

)
+

( ∗∂Ω∗i

∂t
+Ω∗iD

)

D = 0






II. (3.106)

The continuity equation for the field of strictly “magnetic” kind
in a deforming inhomogeneous space takes the form

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik
∂t2

−
1

c2

(∗∂Aik

∂t
+AikD

)

×

×
∗∂Aik
∂t

+ 2
∗∂2

∂xi∂xk
(
Ai∙∙nD

kn − Ak∙∙mD
im
)
+

{ ∗∂Aik

∂t
+

+2
(
Ai∙∙nD

kn − Ak∙∙mD
im
)
}{( ∗∂Δ

j
jk

∂xi
−
1

c2

∗∂Fk
∂xi

+

+

(

Δ
j
jk −

1

c2
Fk

)(

Δlli −
1

c2
Fi

)}

= 0 .

(3.107)
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In the absence of inhomogeneity and deformations of the space,
this equation is

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik
∂t2

−

−
1

c2

( ∗∂Aik
∂t

+
∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(3.108)

The Maxwell-like equations (3.105, 3.106) in a non-deforming
homogeneous space take the form

2

c
Aik

∗∂Aik
∂t

= −4πρ

2
∗∂2Aik

∂xk∂t
−
2

c2
Fk

∗∂Aik

∂t
=
4π

c
ji





I, (3.109)

∗∂2Ω∗i

∂xi∂t
= 0

∗∂2Ω∗i

∂t2
= 0





II. (3.110)

So, the obtained equations characterizing vortical gravitational
fields of strictly “magnetic” kind display their specific peculiarities
as follows:

1. The field invariants (3.102) show that such fields are spatially
isotropic anyhow, that is independent of inhomogeneity Δijk
or deformations Dik of the space;

2. In a non-deforming homogeneous space the field-inducing
“charge” is derived from non-stationarity of the space rota-
tion, the field-inducing “currents” are derived from this non-
stationarity and spatial inhomogeneity of the non-stationarity
(see the 1st Maxwell-like group — formula 3.109);

3. Because
∗∂Ω∗i

∂t
6=0 in vortical gravitational fields of this kind

by their definition, such fields with the sources (ρ 6=0, ji 6=0)
are possible in a non-deforming homogeneous space, if the
space rotates homogeneously at a constant acceleration (see
the 2nd Maxwell-like group — formula 3.110);

4. Such fields without the sources (ρ=0, ji=0) would be the-
oretically possible in a non-deforming homogeneous space, if
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the space rotation would be stationary (see the 1st Maxwell-
like group — 3.109). However in this case the “magnetic” com-

ponent of such field becomes zero Hik=2
∗∂Aik
∂t

=0 as well as
its “electric” component Ei=0, so the field disappears. This
implies that waves of vortical gravitational fields of “magnetic”
kind, i. e. standing gravitational waves (see §3.4), are possible
in only an inhomogeneous deforming space;

5. Looking at the continuity equation (3.108), we see that sources
inducing such fields remain unchanged in a non-deforming
homogeneous space under only the presence of gravitational
inertial force F i 6=0.

§3.8 Conclusions

Finishing this Chapter, let us make a survey of the main results we
have obtained here.

So, a regular approach takes gravitational waves as traveling
waves of weak corrections ζαβ to a Galilean metric g(0)αβ. Actually
these are waves of the metric gαβ = g

(0)

αβ + ζαβ. This approach is not
the best, because of its own drawbacks:

1. The approach gives the Ricci tensor and the d’Alembert equa-
tions of the metric to within higher order terms withheld,
so the velocity of waves of the metric calculated from the
equations is not finally exact theoretical result;

2. A source of this approximation are the tiny corrections ζαβ to
a Galilean metric, an origin of which may be very different,
not only gravitation;

3. Two bodies attract one another, because of the transfer of
gravitational force. A wave traveling in the field of gravita-
tional force is not the same that a wave of the metric — these
are different tensor fields.

The reasons lead us to consider gravitational waves as waves
of the field of gravitational force, that provided two important
advantages:

1. The mathematical methods of chronometric invariants define
gravitational inertial force Fi without the Riemann-Christoffel
curvature tensor. Thus we can deduce the exact d’Alembert
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equations for the force field, which give an exact formula for
the velocity of waves of the force;

2. Experiments to register waves of the force field, having “de-
tectors” like as planets or their satellites a base, does not
link to the quadrupole mass-detector and its specific technical
problems.

So forth we have deduced the exact d’Alembert equations for
the field of gravitational inertial force. In accordance with the
equations, waves of the field travel with the velocity, a modulus

of which is u=
√
ukuk= c

(
1− w

c2

)
that is the speed of gravitation:

1. In a weak gravitational field, a potential w of which is ne-
glected but its gradient Fi is non-zero, the speed of gravitation
equals the light velocity;

2. In accordance with this formula, the speed of gravitation in an
Earth laboratory shall be 21 cm/sec less than the light velocity.
Gravitational waves near the Sun shall be about 6.3×104 cm/sec
slow than light;

3. Under gravitational collapse (w= c2) the speed of gravitation
becomes zero.

The new approach becomes an experiment to measure the speed
of gravitation as a speed to transfer the attracting force between
space bodies. An essence of the experiment is to measure a lag time
of the lunar (or the solar) flow wave in an orbit of a geostationary
satellite in respect of the upper transition of the Moon (or the Sun).
In accordance with the obtained formula, the maximum of the lunar
flow wave in a satellite orbit shall be about 1 second late from the
upper culmination of the Moon. The lateness of the solar flow wave
shall be about 500 second after the upper transit of the Sun.

After deducing chr.inv.-projections of the Riemann-Christoffel
curvature tensor, we have concluded that waves of gravitational
inertial force does not depend on the curvature in constant curva-
ture spaces.

Considering a field of a four-dimensional vector potential Fα,
which is gravitational inertial force, we introduced the field tensor
Fαβ =∇βFα−∇αFβ as well as Maxwell’s tensor of electromagnetic
fields. The field tensor Fαβ and its dual pseudotensor F ∗αβ charac-
terize vortical fields of the force Fα — vortical gravitational fields.
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Quantities Ei=
1
c

∗∂Fi
∂t

and Hik=
∗∂Fi
∂xk

−
∗∂Fk
∂xi

=2
∗∂Aik
∂t

are

chr.inv.-projections of the field tensor Fαβ. We called Ei the “elec-
tric” and Hik the “magnetic” observable components of vortical
gravitational field.

The field invariants J1=FαβFαβ and J2=FαβF
∗αβ show that

strictly “electric” or “magnetic” vortical gravitational fields are
spatially isotropic.

The d’Alembert’s equations for the field does not depend on time
under the condition Ei=0, so we conclude:

1. Vortical gravitational fields of strictly “magnetic” kind are the
media of standing gravitational waves;

2. This media is spatially isotropic, so the field of the standing
waves is isotropic as well;

3. Standing gravitational waves are possible in only a space,
which rotation is non-stationary.

A system of the field equations (Lorentz’s condition, Maxwell-
like equations, and the continuity equation) shows the main pecu-
liarities of vortical gravitational fields:

1. The Lorentz condition shows, inhomogeneity of the field de-
pends on the acting gravitational inertial force F i and on the
space inhomogeneity Δjji at the direction the force F i acts;

2. The 1st group of the Maxwell-like equations displays a nature
of the field-inducing sources:

“Charge” ρ is derived from inhomogeneity of oscillations of the
acting force F i and from non-stationarity of the space rotation
(to within the space inhomogeneity and the deformations
withheld);

“Currents” ji are derived from non-stationarity of the space
rotation, spatial inhomogeneity of the non-stationarity, and
non-stationarity of oscillations of the force F i (to within the
same approximation);

3. The 2nd Maxwell-like group shows properties of the field
magnetic component H∗i:

Oscillations of the acting force F i are the main factor, which
get the field “magnetic” component H∗i inhomogeneous;

If the acting force is F i=0 and the space does not deformation
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Dik=0, then the “magnetic” component H∗i of the field is
stationary;

4. The continuity equation shows that the field-inducing “char-
ges” and “currents”, being located in a non-deforming ho-
mogeneous space, remain unchanged if the space rotation is
stationary.

Properties of waves traveling in the field of gravitational inertial
force are derived from equalizing the sources ρ and ji to zero in the
field equations, because a free field (without the sources) is wave:

1. Inhomogeneity of oscillations of the gravitational inertial force
F i, acting in a free vortical gravitational field, is mainly de-
rived from non-stationarity of the space rotation;

2. Inhomogeneity of non-stationary rotations of a space, filled
with the free field, is mainly defined by the acting force F i

and also non-stationarity of its oscillations.

Vortical gravitational fields of strictly “electric” kind are fields
of a non-stationary gravitational inertial force F i without the spatial
vortexes, located in a stationary rotating space (if the space rotates).
Their specific peculiarities are as follows:

1. Such fields are spatially isotropic under any conditions;

2. Their-inducing sources ρ and ji are mainly derived from inho-
mogeneity of oscillations of the acting gravitational inertial
force F i (the “charges” ρ) and from non-stationarity of the
oscillations (the “currents” ji);

3. Such fields are possible in a self-rotating space Ω∗i 6=0, if the
space is inhomogeneous Δikn 6=0 and deforming Dik 6=0. The
fields can be possible in a non-deforming homogeneous space,
if the space is holonomic Ω∗i=0.

4. Waves of the acting force F i traveling in such fields are per-
mitted, if oscillations of the force F i are homogeneous and
stable;

5. Sources ρ and ji inducing such fields remain unchanged under
any condition in a non-deforming homogeneous space.

Vortical gravitational fields of strictly “magnetic” kind display
themselves as spatial vortexes of a stationary gravitational inertial
force Fi= const, filled in a non-stationary rotating space. Their
peculiarities are listed below:
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1. Such fields are spatially isotropic under any conditions;

2. The field-inducing “charges” are mainly derived from non-
stationarity of the space rotation, the field “currents” are
mainly derived from this non-stationarity and its spatial in-
homogeneity;

3. Such fields are possible in a non-deforming homogeneous
space, if the space rotates homogeneously at a constant ac-
celeration;

4. Waves in such fields are standing gravitational waves, they are
possible in only an inhomogeneous deforming space;

5. Sources inducing such fields remain unchanged in a non-
deforming homogeneous space under the condition F i 6=0.

Assuming the above we conclude that the main kind of vortical
gravitational fields is “electric”. Such fields are a media for traveling
gravitational waves. Standing gravitational waves and their media,
which are vortical gravitational fields of “magnetic” kind, are more
exotic — non-stationary rotations of bulk space bodies, which can
generate the fields, are very infrequent phenomena in the Universe.
As a matter of fact that gravitational attraction is an everyday
reality, so traveling waves of gravitational inertial force transferring
the attraction shall be incontrovertible. A problem to register the
waves is that their amplitudes in laboratory experiments should
be tiny. In the same time I think that the satellite experiment,
propounded in §3.2, will have solved this problem, because ampli-
tudes of the lunar or the solar flow waves must be perceptible.

♦



Notation

dAα=
∂Aα

∂xσ
dxσ Ordinary differential of a vector

DAα=∇β Aαdxβ = dAα+ΓαβμA
μdxβ

Absolute differential of a contra-
variant vector

DAα=∇β Aαdxβ = dAα−Γ
μ
αβAμdx

β Absolute differential of a covar-
iant vector

∇βA
α=

∂Aα

∂xβ
+ΓαβμA

μ Absolute derivative of a contra-
variant vector

∇βAα=
∂Aα
∂xβ

−ΓμαβAμ
Absolute derivative of a covariant
vector

∇β F
σα=

∂F σα

∂xβ
+ΓαβμF

σμ+ΓσβμF
αμ Absolute derivative of a contra-

variant 2nd rank tensor

∇β Fσα=
∂Fσα
∂xβ

−ΓμαβFσμ−Γ
μ
σβFαμ

Absolute derivative of a covariant
2nd rank tensor

∇αA
α=

∂Aα

∂xα
+ΓαασA

σ Absolute divergence of a vector

∗∇i q
i=

∗∂qi

∂xi
+ qiΔ

j
ji Chr.inv.-divergence of a vector

∗∇̃i q
i= ∗∇i q

i−
1

c2
Fi q

i Physical chr.inv.-divergence

= gαβ ∇α∇β
D’Alembert’s general covariant
operator

Δ= − gik∇i∇k Laplace’s ordinary operator

∗Δ= hik ∗∇i ∗∇k The Laplace chr.inv.-operator

∗∂

∂t
=

1
√
g00

∂

∂t
Chr.inv.-derivative with respect
to time

114 Notation

∗∂

∂xi
=

∂

∂xi
+
1

c2
vi
∗∂

∂t

Chr.inv.-derivative with respect
to spatial coordinates

v2=viv
i=hikv

ivk
The square of the physical ob-
servable velocity

vi=−cg0i
√
g00, vi=hikv

k The linear velocity of the space
rotations

v2=hikv
ivk

The square of vi. Here is the
proof. Because of gασg

σβ = gβα,
then under α=β=0 we have
g0σg

σ0= δ00 =1, hence we become
v2= c2(1− g00g00)

√
−g=

√
h
√
g00

The relation between the deter-
minants of the metric tensors gαβ
and hαβ

d

dτ
=

∗∂

∂t
+vk

∗∂

∂xk
Derivative with respect to physi-
cal observable time

d

ds
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√
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The 1st derivative with respect to
the space-time interval

d2

ds2
=

1

c2− v2
d2

dτ 2
+

1

(c2− v2)2
×

×

(

Dikv
ivk+vi

dvi

dτ
+
1

2

∗∂hik
∂xm

vivkvm
)
d

dτ






The 2nd derivative with
respect to the space-time
interval

hik=−gik+
1

c2
vivk ,

hik=−gik, hki = δ
k
i





The metric chr.inv.-tensor

giαgkβΓmαβ =h
iqhksΔmqs ,

Di
k+A

∙i
k∙=

c
√
g00

(

Γi0k−
g0kΓ

i
00

g00

)

,

F k=−
c2Γk00
g00






Zelmanov’s relations between
the Christoffel regular symbols
and chr.inv.-characteristics of
the reference space

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

=0 Zelmanov’s 1st identity
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∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+

+
1

2
(FiAkm+FkAmi+FmAik) = 0





Zelmanov’s 2nd identity

d

dτ
v2=

d

dτ

(
hikv

ivk
)
=2Dikv

ivk+

+
∗∂hik
∂xm

vivkvm+2vk
dvk

dτ






Derivative from v2 with respect
to physical observable time

εikm=
√
g00E

0ikm=
e0ikm
√
h
,

εikm=
E0ikm
√
g00

= e0ikm
√
h






The completely antisymmetric
chr.inv.-tensor

∗∂εimn
∂t

= εimnD ,

∗∂εimn

∂t
=−εimnD ,

∗∇k εimn=0 ,
∗∇k ε

imn=0






Its chr.inv.-derivatives

♦
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