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Real and apparent invariants in the transformation
of the equations governing wave-motion in the

general flow of a general fluid

By C. K. Thornhill

39 Crofton Road, Orpington, Kent BR6 8AE, U.K.

The ten equations are derived that govern, to the first order, the propagation of small
general perturbations in the general unsteady flow of a general fluid, in three space-
variables and time. The condition that any hypersurface is a wave hypersurface of
these equations is obtained, and the envelope of all such wave hypersurfaces that
pass through a given point at a given time, i .e . the wave hyperconoid, is determined.
These results, which are all invariant under Galilean transformation, are progressively
specialized, through homentropic flow and irrotational homentropic flow, to steady
uniform flow, for which both the convected wave-equation and the standard wave-
equation, with their wave hypersurfaces, are finally recovered.

A special class of reference-frames is considered, namely those whose origins move
with the fluid. It is then shown that, for observers at the origins of all such refer-
ence frames, the wave hypersurfaces satisfy specially simple equations locally. These
equations are identical with those for waves in a uniform fluid at rest relative to the
reference frame, except that the wave speed is not constant but varies with position
and time in accordance with the variable mean flow. These specially simple equations
appear to be invariant for Galilean transformations between all such observers.

These results are briefly applied, in reverse order, to Maxwell’s equations, and to

equations more general than Maxwell’s, for the electric and magnetic field-strengths.

1. Introduction

Much has been written about the generalization of small-amplitude wave-motion,
or the propagation of small unsteady perturbations, in fluids, including viscous
effects, vortical or entropic perturbations, etc. These generalizations have, how-
ever, been almost entirely restricted to fluids that satisfy the ideal gas equations,
p= ρRT , γ= cp/cv = const., and assume, for instance, sometimes that the mean
flow is steady and uniform, sometimes that the reference frame is that relative
to which the uniform fluid is at rest, sometimes that the mean velocity u is
such that M2 =u2/c2 << 1, so that the mean flow may be regarded as ’incom-
pressible’, sometimes that the disturbance to the flow from the steady state is
irrotational, etc.

In contrast, very little has been written about general wave motion in the
general unsteady flow of a general fluid. Some attention is given to this problem
here, in the case, at least, when the effects of viscosity and heat-conduction can
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be neglected, and when the effects on the flow, of the gravitational field and any
acceleration of the reference-frame, are also negligible.

The ten simultaneous linear partial differential equations that govern, to
the first order, small-amplitude wave-motions in the general unsteady flow of a
general fluid in three space-variables and time are derived. The mathematical
condition for any hypersurface to be a characteristic hypersurface of these ten
equations is then obtained. This leads to the condition for any hypersurface to
be a wave hypersurface, and to the determination of the envelope of all such
wave hypersurfaces that pass through a given point at a given time, namely the
characteristic wave-hyperconoid through a point.

These results are progressively specialized, first to homentropic flow, then to
irrotational homentropic flow and finally to steady uniform flow (recovering the
convected or progressive wave-equation and its wave hypersurfaces) and to the
reference-frame relative to which this steady uniform flow is at rest (recovering
the standard wave-equation and its wave hypersurfaces). Because the general
solution of the convected or progressive wave-equation does not appear to have
been given previously in the literature, it is given here in an Appendix.

A special class of reference frames is then considered, namely those whose
origins move with the fluid. The equations governing the motion, the condition
for any hypersurface to be a wave hypersurface and the equation of the wave hy-
perconoid all take special simple forms at the origins of all such reference frames.
Moreover, if the effects of the local acceleration of the fluid, and therefore of the
reference frame, can be neglected, all these special simple forms of the equations
and conditions appear to be invariant for Galilean transformations between ob-
servers at the origins of all such reference frames. These special simple forms of
the wave hypersurfaces are shown to be identical to those for waves in a uniform
fluid at rest, except that, in them, the wave speed is not constant but varies
with position and time in accordance with the general unsteady mean flow.

The application of these results to electromagnetic waves is discussed briefly.
For Maxwell’s equations, the wave hypersurfaces and the wave hyperconoid are
identical to those for waves in uniform flow at rest relative to the reference
frame. When Maxwell’s equations are transformed, by Galilean transforma-
tion, to any other reference frame, they become the convected or progressive
form of Maxwell’s equations (cf. Thornhill 1985b), and these have wave hy-
persurfaces and a wave hyperconoid that are identical to those for waves in a
fluid in steady uniform motion relative to the reference frame. More general
equations for the electric and magnetic field-strengths are constructed, in which
the magnetic permeability, the permittivity, and therefore the wave speed, are
not constant but vary with position and time, by allowing that there is a fluid
ethereal medium in which electromagnetic waves propagate.These more general
equations may be shown to have wave hypersurfaces and a wave hyperconoid
that are identical to those for general waves in a general fluid in a general un-
steady motion. It follows that, for all observers at the origins of rest-frames
that move with this ethereal medium, the wave hypersurfaces will all have the
special simple form, apparently invariant under Galilean transformation, which
makes them, except for a variable rather than a constant wave speed, identical
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with those for Maxwell’s equations. In particular, for all such observers, their
local wave-hyperconoid will invariably be

(dx)2 + (dy)2 + (dz)2 = c2 (dt)2 .

2. Small-amplitude waves in general unsteady flow

When the effects of viscosity and heat-conduction can be neglected and when the
influence on the flow both of the local gravitational field and of any acceleration
of the reference frame is negligible also, then the Eulerian equations govern-
ing the general unsteady motion of any general fluid, in three space variables
xi(i=1, 2, 3) and the time t are, with the summation convention,

(mass)
Dv

Dt
− v

∂uj

∂xj

=0 (2.1)

(momentum)
Dui

Dt
+ v

∂p

∂xi

=0 (2.2a)

(energy)
DS

Dt
=0 (2.3)

where
D

Dt
≡ ∂

∂t
+ uj

∂

∂xj

is the Eulerian total time-derivative, moving with the fluid. Here p denotes
pressure, v specific volume, S specific entropy and (u1, u2, u3) or

{
ui

}
is the

velocity of the fluid.
The general thermodynamics of any fluid can be specified by a function

E(v, S) which expresses the specific energy per unit mass, E, as a function of
v and S. If suffixes v, S are used to denote partial derivatives, p may then be
written as (−Ev ) so that

∂p

∂xi

= − Evv

∂v

∂xi

− EvS

∂S

∂xi

(2.4)

(see, for example, Swan and Thornhill 1974). The equations (2.2a) may then
be re-written as

Dui

Dt
− vEvv

∂v

∂xi

− vEvS

∂S

∂xi

=0. (2.2b)

The five equations (2.1), (2.2b) and (2.3) are a system of linear first-order partial
differential equations which determine the five dependent variables ui, v, S as
functions of the four independent variables xi, t.

Let ui, v, S,Evv and EvS refer to local values, at any time, in any solution
of (2.1), (2.2b), and (2.3), and denote small perturbations in these quantities by

u∗i =ui + εi, v∗ = v + η, S∗ =S + σ,
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where εi, η and σ are small quantities of the first order. Then, to the first order,

E∗
vv =Evv + ηEvvv + σEvvS

and
E∗

vS =EvS + ηEvvS + σEvSS .

The conditions that u∗i , v
∗
i , S

∗
i also satisfy the equations (2.1), (2.2b), and (2.3)

reduce, to the first order, to

Dη

Dt
+ εj

∂v

∂xj

− v
∂εj

∂xj

− η
∂uj

∂xj

=0. (2.5)

Dεi
Dt

+ εj
∂ui

∂xj

− ∂

∂xi

(vηEvv )− ∂

∂xi

(
vσEvS

)
+ σEvS

∂v

∂xi

− ηEvS

∂S

∂xi

=0, (2.6)

Dσ

Dt
+ εj

∂S

∂xj

=0. (2.7)

Thus the five equations (2.5)−(2.7), together with the five equations (2.1), (2.2b),
and (2.3) which govern the mean fluid-motion, form a system of ten simultaneous
equations in the ten dependent variables ui, v, S, εi, η, σ, which govern, to the
first order, general small-amplitude wave-motions in the general unsteady flow
of any general fluid.

It is known that, in general, the perturbation equations (2.5) − (2.7) do
not lead to characteristics different from those of the equations for the mean
motion, (2.1), (2.2b) and (2.3). However, because (2.5) − (2.7) involve all ten
independent variables, it is not immediately obvious how this comes about, nor
does it appear to have been demonstrated previously in the literature, so the
derivation of the characteristics for the full set of ten equations is given here.

The hypersurface, ζ(xi; t) = const., is a characteristic hypersurface of these
ten equations if (see, for example, Thornhill 1985b), a tenth-order determinant
vanishes (see facing page). In (2.8) the rows correspond to the ten equations
and the columns to the ten dependent variables, and

A= ηEvv + vηEvvv + vσEvvS , B= ηEvS + ηvEvvS + ησEvSS .

The condition (2.8) reduces to

(
Dζ

Dt

)6
{(

Dζ

Dt

)2

− v2Evv

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]}2

=0. (2.9)
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(
u1

) (
u2

) (
u3

)
(v) (S)

(2.1)
∣∣∣ −v ∂ζ

∂x1
−v ∂ζ

∂x2
−v ∂ζ

∂x3

Dζ
Dt 0

(2.2b)
∣∣∣ Dζ

Dt 0 0 −vEvv
∂ζ
∂x1

−vEvS
∂ζ
∂x1

(2.2b)
∣∣∣ 0 Dζ

Dt 0 −vEvv
∂ζ
∂x2

−vEvS
∂ζ
∂x2

(2.2b)
∣∣∣ 0 0 Dζ

Dt −vEvv
∂ζ
∂x3

−vEvS
∂ζ
∂x3

(2.3)
∣∣∣ 0 0 0 0 Dζ

Dt

(2.5)
∣∣∣ −η ∂ζ

∂x1
−η ∂ζ

∂x2
−η ∂ζ

∂x3
εj

∂ζ

∂xj

0

(2.6)
∣∣∣ εj

∂ζ

∂xj

0 0 −A ∂ζ
∂x1

−B ∂ζ
∂x1

(2.6)
∣∣∣ 0 εj

∂ζ

∂xj

0 −A ∂ζ
∂x2

−B ∂ζ
∂x2

(2.6)
∣∣∣ 0 0 εj

∂ζ

∂xj

−A ∂ζ
∂x3

−B ∂ζ
∂x3

(2.7)
∣∣∣ 0 0 0 0 εj

∂ζ

∂xj

(
ε1
) (

ε2
) (

ε3
)

(η) (σ)
0 0 0 0 0

∣∣∣
0 0 0 0 0

∣∣∣
0 0 0 0 0

∣∣∣
0 0 0 0 0

∣∣∣
0 0 0 0 0

∣∣∣
−v ∂ζ

∂x1
−v ∂ζ

∂x2
−v ∂ζ

∂x3

Dζ
Dt 0

∣∣∣
Dζ
Dt 0 0 −vEvv

∂ζ
∂x1

−vEvS
∂ζ
∂x1

∣∣∣
0 Dζ

Dt 0 −vEvv
∂ζ
∂x2

−vEvS
∂ζ
∂x2

∣∣∣
0 0 Dζ

Dt −vEvv
∂ζ
∂x3

−vEvS
∂ζ
∂x3

∣∣∣
0 0 0 0 Dζ

Dt

∣∣∣

=0,

(2.8)
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It is found (loc. cit.) that the condition Dζ/Dt=0 corresponds to the
world-lines of the flow, whereas the vanishing of the second factor in equation
(2.9) gives the condition for ζ(xi; t) = const. to be a wave hypersurface. The
wave hypersurfaces through any point, at any time, have an envelope, the local
wave hyperconoid, and this is found to be (loc. cit.)(

dx1 − u1dt
)2

+
(
dx2 − u2dt

)2
+
(
dx3 − u3dt

)2
= c2 (dt)2 , (2.10)

where c is the local thermodynamic wave speed, defined by (cf. Swan and
Thornhill 1974)

c2 = v2Evv. (2.11)

The system of ten governing equations (2.1), (2.2b), (2.3) and (2.5) − (2.7),
the condition (2.9) for ζ = const. to be a wave hypersurface, and the wave
hyperconoid (2.10) are easily shown (Thornhill 1985b) to be invariant under
Galilean transformation.

3. Small-amplitude waves in general unsteady homentropic flow

If both the mean flow and the perturbed flow are homentropic, the equations
(2.3) and (2.7) are satisfied by S=const., and σ=0 everywhere at all times.
The equations (2.2b) and (2.6) then reduce, respectively, to

Dui

Dt
−
(
c2

v

)
∂v

∂xi

=0. (3.1)

Dεi
Dt

+ εj
∂ui

∂xj

− ∂

∂xi

(
c2η

v

)
=0. (3.2)

The system of equations governing small-amplitude homentropic wave-motion
in general unsteady homentropic flow now reduces to the eight equations (2.1),
(2.5), (3.1) and (3.2), which, again, are invariant under Galilean transformation.
The condition (2.9) for ζ =const. to be a wave hypersurface is unchanged, and
the wave hyperconoid is still given by (2.10). Both of these remain, therefore,
invariant under Galilean transformation.

If both the mean flow and the perturbed flow are not only homentropic, but
also irrotational or non-vortical, then

∂ui

∂xj

=
∂uj

∂xi

,
∂εi
∂xj

=
∂εj
∂xi

. (3.3)

The second of these conditions makes it possible to introduce a potential func-
tion φ

(
xi; t

)
such that

εi =
∂φ

∂xi

. (3.4)

Then, if ∂ui/∂xj is replaced by ∂uj/∂xi in the three equations (3.2), they may
be written as

∂

∂xi

[
Dφ

Dt
− c2η

v

]
=0

6



and thus integrated to give
Dφ

Dt
− c2η

v
=0 (3.5)

since the potential function φ can be chosen so that the arbitrary function of
time, introduced by these integrations, is zero.

It then follows, very simply, from equations (2.5), (3.5) and (2.1) that

D

Dt

(
1
c2
Dφ

Dt

)
=

1
v

Dη

Dt
− η

v2

Dv

Dt

=
∂2φ

∂xj∂xj

− 1
v

∂φ

∂xj

∂v

∂xj

and so
D

Dt

(
1
c2
Dφ

Dt

)
= v

∂

∂xj

(
1
v

∂φ

∂xj

)
. (3.6)

The system of equations that govern small-amplitude homentropic irrotational
wave motion in general unsteady homentropic irrotational flow in a general
fluid is now reduced to the five equations (2.1), (3.1) and (3.6) together with the
conditions (3.3), whereas the condition (2.9) for ζ = const. to be a wave hyper-
surface, and the wave hyperconoid (2.10), are unchanged. All these equations
and conditions remain invariant under Galilean transformation.

4. Small-amplitude waves in steady uniform flow

If the mean flow is steady and uniform, and therefore both homentropic
and irrotational, the constant fluid velocity may be denoted by

{
ui

}
and the

constant specific volume and constant wave speed by v and c respectively. The
system of equations governing small-amplitude homentropic irrotational wave
motion in such a flow now reduces, by virtue of (3.6), to the single equation (cf.
Temple 1953),

∇2φ=
1
c2
D2φ

Dt2
, (4.1)

which is sometimes called the convected or progressive wave-equation. The
condition for ζ = const. to be a wave hypersurface now becomes(

Dζ

Dt

)2

= c2

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]

(4.2)

and the local wave hyperconoid becomes(
dx1 − u1dt

)2
+
(
dx2 − u2dt

)2
+
(
dx3 − u3dt

)2
= c2 (dt)2 . (4.3)

The equations (4.1) − (4.3) are all invariant under Galilean transformation.
The general solution of the progressive wave-equation (4.1) has not, so far as
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is known, appeared previously in the literature, and so it is given here in an
Appendix.

There is one unique frame of reference relative to which a fluid in steady
uniform motion is at rest. In this frame of reference, and in this frame only, the
equations (4.1)− (4.3) reduce respectively to

∇2φ=
1
c2
∂2φ

∂t2
, (4.4)

(
∂ζ

∂t

)2

= c2

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]

(4.5)

and (
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
= c2 (dt)2 . (4.6)

It is clear that none of these equations can be invariant under Galilean transfor-
mation, since the fluid must be moving relative to any other frame of reference.
It is easily shown that, under Galilean transformation to any other frame of ref-
erence, the equations (4.4)− (4.6) revert to the forms (4.1)− (4.3) respectively,
exactly as they should and must.

5. Apparent invariants for a particular class of reference-frames

Consider a frame of reference O’(x′i) whose axes O’x′i are parallel to Oxi but
whose origin O’ is moving with the fluid. Let O’ be at the point Xi (t) at time
t, so that the velocity of the fluid at O’ is ui = Ẋi(t).

The Galilean transformation between the two reference-frames O(xi) and
O’(x′i) is thus governed by the relations

xi =Xi (t) + x′i, t= t′, (5.1)

whence
dxi = Ẋi(t′)dt′ + x′i, dx′i = dxi − Ẋi(t)dt,
dt= dt′, dt′ = dt,

ui = Ẋi(t′) + u′i, u′i =ui − Ẋi (t)

}
(5.2)

and so

∂

∂xi

≡ ∂

∂x′i
,

∂

∂x′i
≡ ∂

∂xi

,

∂

∂t
≡ ∂

∂t′
− Ẋi(t′)

∂

∂x′i
,

∂

∂t′
≡ ∂

∂t
+ Ẋi(t)

∂

∂xi

,

dxi − uidt= dx′i − u′idt
′,

D

Dt
≡ ∂

∂t
+ ui

∂

∂xi

≡ ∂

∂t′
− Ẋi(t′)

∂

∂x′i

+
[
u′i + Ẋi(t′)

] ∂

∂x′i
≡ ∂

∂t′
+ u′i

∂

∂x′i
≡ D

Dt′
.

}
(5.3)
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At O’,

u′i =0, ui = Ẋi(t), and
∂ui

∂xj

=
∂u′i
∂x′j

. (5.4)

In the new frame of reference, O’(x′i), the equations (2.1), (2.2a) and (2.3) be-
come, respectively

Dv

Dt′
− v

∂u′j
∂x′j

=0, (5.5)

Du′i
Dt

+ Ẍi(t′) + v
∂p

∂x′i
=0, (5.6)

DS

Dt′
=0. (5.7)

Thus, if the influence on the flow of the acceleration of O’, namely Ẍi(t′), can
again be neglected, the equations (2.1), (2.2a) and (2.3) are invariant under the
transformation (5.3). The condition (2.9) for the hypersurface ζ = const. to be
a wave hypersurface, and the equation (2.10) of the wave hyperconoid are also
clearly invariant under the transformation (5.3).

At the origin O’ of the new reference-frame, O’(x′i), however, where u′i =0,
the equations (5.5)− (5.7), neglecting Ẍi(t′), reduce respectively to

∂v

∂t′
− v

∂u′j
∂x′j

=0, (5.8)

∂u′i
∂t

+ v
∂p

∂x′i
=0, (5.9)

∂S

∂t′
=0. (5.10)

The condition for the hypersurface ζ = const. to be a wave hypersurface reduces,
at O’, to (

∂ζ

∂t′

)2

= c2

[(
∂ζ

∂x′1

)2

+
(
∂ζ

∂x′2

)2

+
(
∂ζ

∂x′3

)2
]

(5.11)

and the equation of the wave hyperconoid through the point O’, at any time t′

reduces to
(dx′1)

2 + (dx′2)
2 + (dx′3)

2 = c2 (dt′)2 . (5.12)

Equations (5.11) and (5.12) can now be contrasted with (4.5) and (4.6).
Equations (4.5) and (4.6), on the one hand, are restricted to a uniform fluid with
c constant, and cannot be invariant under transformation, since they are valid
only in the one unique reference-frame relative to which the fluid is stationary.
Equations (5.11) and (5.12), on the other hand, are valid, and appear to be
invariant, to all observers at the origins O’ of rest-frames which travel with the
fluid, however general and unsteady the flow, and whatever the fluid, and with
c, therefore, not constant, but having its local value at any time.
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6. Electromagnetic waves

The general results obtained here, and then successively specialized, may be
applied, in reverse order, to electromagnetic waves.

Thus, Maxwell’s equations not only have characteristic hypersurfaces and
a characteristic wave hyperconoid given by (4.5) and (4.6), but they reduce
precisely, when there is no current or charge distribution, to (4.4), the standard
wave equation. All these equations are special reduced equations which are valid
in only one unique frame of reference, and are not, therefore, general equations
that remain invariant under transformation to a new frame of reference.

When Maxwell’s equations are transformed by Galilean transformation to a
frame of reference moving with a constant relative velocity, {−uj}, they become
the progressive form of Maxwell’s equations (Thornhill 1985b) in which the
operator ∂/∂t is replaced by

D

Dt
≡ ∂

∂t
+ uj

∂

∂xj

. (6.1)

This progressive form of Maxwell’s equations has characteristics given by (4.2)
and (4.3), and these progressive equations reduce precisely to (4.1), the pro-
gressive wave equation, when there is no current or charge distribution. All
these equations are general equations which remain invariant under Galilean
transformation.

If there were an ethereal fluid medium in which electromagnetic waves prop-
agate (cf. Thornhill 1985a), then Maxwell’s equations could apply only to a
uniform ether, and only in the one unique frame of reference relative to which
this uniform ether is at rest. If, for instance, this uniform ether were moving
with a constant velocity {ui} relative to the frame of reference, then, in the
derivation of Maxwell’s equations, the operator ∂/∂t would have to be replaced
by Euler’s total time-derivative moving with the fluid, namely D/Dt as given
by the relation (6.1) above. Thus, again, Maxwell’s equations would be replaced
by their progressive form.

In such case it follows that the equations for the electromagnetic field could
be extended to give a general set of equations which would apply to any general
unsteady motion of such a fluid ether. In these equations the magnetic perme-
ability, µ, of the ether, the permittivity, ε, of the ether, and the electromagnetic
wave-speed, c, would all be functions of the local values of v, S in the ether at
any time, such that

c(v, S) = [ε(v, S)µ(v, S)]−
1
2 .

These general equations for the electromagnetic field would then take the form
(see, for example, Bleaney and Bleaney 1976)

∂ (εEi)
∂xi

=0, (6.2)

∂ (µHi)
∂xi

=0, (6.3)
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D (εEi)
Dt

= εijk

∂Hk

∂xj

, (6.4)

D (µHi)
Dt

= − εijk

∂Ek

∂xj

. (6.5)

Here {Ei} is the electric field-strength, {Hi} the magnetic field-strength, {ui}
the velocity of the ethereal fluid, εijk the alternating tensor, and now

D

Dt
≡ ∂

∂t
+ uj

∂

xj

. (6.6)

These general equations (6.2) − (6.5) contain derivatives of v and S and
so, to determine their characteristics, they must be combined with the general
equations of the ethereal motion, namely (2.1), (2.2b) and (2.3), to give thirteen
consistent equations in the eleven independent variables {ui}, v, S, {Ei}, {Hi}.
The characteristics of this system of thirteen equations can be shown to be given
by (cf. Thornhill 1985b),(

Dζ

Dt

)5
{(

Dζ

Dt

)2

− c21

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]}

×

{(
Dζ

Dt

)2

− c22

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]}2

=0,

(6.7)

where c1, c2 are, respectively, the local contemporary values of the thermody-
namic and electromagnetic wave speeds. The relations (6.7) lead, in general,
to two characteristic wave hyperconoids as given by (2.10), but with c1 and c2
instead of c. Of course, if the two wave speeds were equal, the waves would
become electromagnetic condensational waves (cf. Thornhill 1985b) with a sin-
gle wave speed c, a single system of characteristic hypersurfaces and a unique
characteristic wave hyperconoid at every point and time, given by (2.10).

If the results of Section 5 are now applied to such waves, it becomes clear
that, at the origins of all frames of reference which move with this fluid ether,
the local characteristic hypersurfaces would be given by the relation (5.11), and
the unique characteristic wave hyperconoid would be given by (5.12), namely(

dx1

)2
+
(
dx2

)2
+
(
dx3

)2
= c2 (dt)2 . (6.8)

This simple local wave hyperconoid, in which the wave-speed c is a function of
position and time, would thus appear to be invariant for Galilean transforma-
tions between all observers at the origins of reference which move with the local
ether.
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Appendix. The general solution of the equation of small-amplitude
wave motion in a uniform medium in steady motion

The convected or progressive equation of wave motion, in any uniform medium
in steady motion, is derived, equation (4.1), as

∇2φ=
(

1
c2

)
D2φ

Dt2
, (A1)

in which
D

Dt
≡ ∂

∂t
+ uj

∂

∂xj

(A2)

and the fluid velocity {ui} and the wave speed c are constant.
Any solution of the equation (A1) may be expressed in the form

φ=
∫ π

−π

∫ π

−π

F
[
(x1 − u1t) cos θ sinψ + (x2 − u2t) sin θ sinψ

+(x3 − u3t) cosψ + ct, θ, ψ
]
dθdψ,

(A3)

where F is any function (of three variables) which permits differentiation under
the integral signs.

In the one unique frame of reference in which u1 =u2 =u3 =0, the equation
(A1) reduces to the standard form

∇2φ=
(

1
c2

)
∂2φ

∂t2
(A4)

and the general solution (A3) reduces to

φ=
∫ π

−π

∫ π

−π

F
[
x1 cos θ sinψ + x2 sin θ sinψ + x3 cosψ + ct, θ, ψ

]
dθdψ, (A5)

(cf. Whittaker and Watson 1927).
In the case of a single space-variable x3, ψ may take only the values 0, π.

The solution (A3) then reduces to

φ= f
(
x3 − u3t− ct

)
+ g

(
x3 − u3t+ ct

)
, (A6)

where f and g are arbitrary functions.
In the one unique frame of reference in which u3 =0, the solution (A6) further

reduces to the familiar form

φ= f
(
x3 − ct

)
+ g

(
x3 + ct

)
. (A7)
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Appendix 2
(of original manuscript)

Electro-magnetic waves

(This appendix had to be replaced by Section 6 of Proc. Roy. Soc. Lond. A (1993) 442,

492-504.)

In the derivation of Maxwell’s equations, for the electro-magnetic field with
a constant wave-speed c, no account whatsoever is taken of the motion, relative
to the frame of reference, of any possible ethereal medium in which electro-
magnetic waves may propagate. It follows, therefore, that Maxwell’s equations
can only be valid either (a) if there is no ethereal medium, or (b) if the validity
of the equations is confined to a unform ether, with constant wave-speed c, and
to the one unique frame of reference relative to which this uniform ether is at
rest.

In the latter case, (b), there are two alternative methods of deriving the new
form of Maxwell’s equations appropriate to any other reference-frame, relative
to which the ether is in steady uniform flow. One method is to realise that the
time-derivative ∂/∂t in Maxwell’s equations must be replaced, when the uniform
ether is moving with constant velocity {ui} relative to the reference-frame, by
Euler’s total time-derivative, moving with the fluid, namely

D

Dt
≡ ∂

∂t
+ uj

∂

∂xj

(A.2.1)
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(cf. Thornhill 1985b). The other method is simply to transform Maxwell’s
equations, by Galilean transformation, to any other reference-frame relative to
which the ether must be in steady uniform motion. Both of these methods yield
exactly the same result.

It is easy to verify that the condition for the hypersurface ζ(xi; t) = const.
to be a wave-hypersurface of Maxwell’s equations is that given by the condition
(4.5), and that the wave-hyperconoid of Maxwell’s equations is that given by
equation (4.6), exactly as one would expect if the alternative (b) above applied.
Thus, if the constant wave-speeds are equal, these same equations apply to
the propagation of perturbations in the electric and magnetic field-strengths,
as given by Maxwell’s equations, as well as to the propagation of longitudinal
condensational perturbations in any uniform ethereal medium at rest relative
to the reference-frame. It follows, then, that, in any possible fluid ether, all
three types of perturbation could propagate together, along the same wave-
hypersurfaces, as electro-magnetic-condensational waves with a common wave-
speed c (cf. Thornhill 1985b). Further, when there is no current or charge
distribution, Maxwell’s equations reduce precisely to the single equation (4.4),
the standard wave-equation for irrotational homentropic waves in a uniform
fluid at rest.

The accepted method, at present, of transforming Maxwell’s equations, is
to keep them invariant by means of the Lorentz transform, on the assumption
that there is no ethereal medium and that the electro-magnetic wave-speed is a
universal constant. The standard wave equation (4.4), however, with a constant
value of the wave-speed c, applies not only to electro-magnetic waves when there
is no charge or current distribution, but can also be considered purely as a math-
ematical equation with a known general solution, as well as being the equation
for small-amplitude homentropic irrotational wave-motion in any uniform fluid
at rest. Now, considered purely as a mathematical equation, equation (4.4)
and its general solution, equation (A5), transform quite normally, by Galilean
transformation, into a progressive mathematical equation (A1) and its general
solution, equation (A3), which are themselves invariant in all other frames of
reference; and the Galilean transformation of equation (4.4) into the progres-
sive wave-equation (4.1), considered as equations for sound-wave propagation
in any fluid at rest or in uniform steady motion respectively, has been verified
by countless observations over a very long period of time. A problem arises,
therefore, as to how to justify a complete change in the way this unique math-
ematical equation should be transformed, namely a change from Galilean to
Lorentz transformation, simply because the constant c has a particular numeri-
cal value appropriate to the local contemporary speed of light-waves, or merely
because, at a particular moment, it happens to be regarded as an equation ap-
plying to the propagation of electro-magnetic waves, rather than to waves in
any material fluid.

These difficulties, associated with the alternative (a) above, may be avoided
by pursuing further the alternative (b), and seeking to derive more general
equations for the electric and magnetic field-strengths in a fluid ether in gen-
eral unsteady flow. Relaxing the restriction to a uniform ether, these general
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equations are, if attention is restricted to the ether alone, i .e . when there is no
charge or current distribution, (see e .g . Bleaney and Bleaney, 1976)

∂ (εEi)
∂xi

=0, (A.2.2)

∂ (µHi)
∂xi

=0, (A.2.3)

D (εEi)
Dt

= εijk

∂Hk

∂xj

, (A.2.4)

D (µHi)
Dt

= − εijk

∂Ek

∂xj

. (A.2.5)

where
D

Dt
≡ ∂

∂t
+ uj

∂

xj

.

Here {Ei} is the electric field-strength; {Hi} is the magnetic field-strength; µ,
the magnetic permeability of the ether; ε, the permittivity of the ether; and
εijk is the alternating tensor. ε and µ are no longer constants, when the ether
is in general unsteady flow, but may vary with the local state (v, S) of the
ether at any time. Thus, ε, µ may be regarded as functions of v, S such that
[ε(v, S) · µ(v, S)]−1 is the square of the electro-magnetic wave-speed at any point
at any time.

When the equations (A.2 : 2, 3, 4, 5) are written out in full, it is seen then
that they involve terms in the derivatives of v and S, as well as derivatives of
Ei,Hi. Thus, for instance, the first of equations (A.2.4) is, in full

ε
DE1

Dt
+ E1εv

Dv

Dt
+ E1εS

DS

Dt
=
∂H3

∂x2

− ∂H2

∂x3

(A.2.6)

It is not possible, therefore, as with Maxwell’s equations, or with the progres-
sive form of Maxwell’s equations, to regard the eight equations (A.2 : 2, 3, 4, 5)
as eight self-consistent equations in the six new independent variables Ei,Hi.
Rather, in determining the condition for the hypersurface ζ(xi; t) = const. to be
a wave-hypersurface of the equations, and in determining the envelope for the
wave-hyperconoid, it is now necessary to consider simultaneously the complete
set of thirteen equations, namely (A.2; 1, 2b, 3), (A.2; 2, 3, 4, 5) in the eleven de-
pendent variables ui, v, S,Ei,Hi. Thus, for the hypersurface ζ = const. to be
a characteristic hypersurface of these thirteen equations, all the eleventh-order
determinants of an 11 × 13 matrix must vanish (cf. Thornhill 1985b). This
matrix is set out below in such a way that the 11 columns correspond with
the eleven independent variables, and the thirteen rows correspond with the
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thirteen equations.(
u1

) (
u2

) (
u3

)
(v) (S) (E1)

(2.1)
∣∣∣∣∣∣ −v ∂ζ

∂x1
−v ∂ζ

∂x2
−v ∂ζ

∂x3

Dζ
Dt 0 0

(2.2b)
∣∣∣∣∣∣ Dζ

Dt 0 0 −vEvv
∂ζ
∂x1

−vEvS
∂ζ
∂x1

0

(2.2b)
∣∣∣∣∣∣ 0 Dζ

Dt 0 −vEvv
∂ζ
∂x2

−vEvS
∂ζ
∂x2

0

(2.2b)
∣∣∣∣∣∣ 0 0 Dζ

Dt −vEvv
∂ζ
∂x3

−vEvS
∂ζ
∂x3

0

(2.3)
∣∣∣∣∣∣ 0 0 0 0 Dζ

Dt 0

(A.2.4)
∣∣∣∣∣∣ 0 0 0 E1εv

Dζ
Dt E1εS

Dζ
Dt εDζ

Dt

(A.2.4)
∣∣∣∣∣∣ 0 0 0 E2εv

Dv
Dt E2εS

Dζ
Dt 0

(A.2.4)
∣∣∣∣∣∣ 0 0 0 E3εv

Dv
Dt E3εS

Dζ
Dt 0

(A.2.5)
∣∣∣∣∣∣ 0 0 0 H1µv

Dv
Dt H1µS

Dv
Dt 0

(A.2.5)
∣∣∣∣∣∣ 0 0 0 H2µv

Dv
Dt H2µS

Dv
Dt

∂ζ
∂x3

(A.2.5)
∣∣∣∣∣∣ 0 0 0 H3µv

Dζ
Dt H3µS

Dζ
Dt − ∂ζ

∂x2

(A.2.2)
∣∣∣∣∣∣ 0 0 0 Eiεv

∂ζ
∂xi

EiεS
∂ζ
∂xi

ε ∂ζ
∂x1

(A.2.3)
∣∣∣∣∣∣ 0 0 0 Hiµv

∂ζ
∂xi

HiµS
∂ζ
∂xi

0

(E2) (E3) (H1) (H2) (H3)
∣∣∣∣∣∣

0 0 0 0 0
∣∣∣∣∣∣

0 0 0 0 0
∣∣∣∣∣∣

0 0 0 0 0
∣∣∣∣∣∣

0 0 0 0 0
∣∣∣∣∣∣

0 0 0 0 0
∣∣∣∣∣∣

0 0 0 ∂ζ
∂x3

− ∂ζ
∂x2

∣∣∣∣∣∣
εDζ

Dt 0 − ∂ζ
∂x3

0 ∂ζ
∂x1

∣∣∣∣∣∣
0 εDζ

Dt
∂ζ
∂x2

− ∂ζ
∂x1

0
∣∣∣∣∣∣

− ∂ζ
∂x3

∂ζ
∂x2

µDζ
Dt 0 0

∣∣∣∣∣∣
0 − ∂ζ

∂x1
0 µDζ

Dt 0
∣∣∣∣∣∣

∂ζ
∂x1

0 0 0 µDζ
Dt

∣∣∣∣∣∣
ε ∂ζ

∂x2
ε ∂ζ

∂x3
0 0 0

∣∣∣∣∣∣
0 0 µ ∂ζ

∂x1
µ ∂ζ

∂x2
µ ∂ζ

∂x3

∣∣∣∣∣∣
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All the eleventh-order determinants of this matrix, except for one, vanish iden-
tically, and the vanishing of the remaining determinant again reduces to the
condition (loc. cit)(

Dζ

Dt

)5
{(

Dζ

Dt

)2

− c2

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]}3

=0 (A.2.7)

if (εµ)−1, which is the square of the local electro-magnetic wave-speed, is re-
placed by c2, the square of the local thermodynamic wave-speed in the ether,
so that electric, magnetic and condensational oscillations in the ether can all
propagate contemporaneously along the same wave-hypersurfaces.

Thus, the condition for ζ = const. to be a wave-hypersurface, both for the
general equations of motion and for the general electro-magnetic field equations
(A.2 : 2, 3, 4, 5) of any fluid ether, is(

Dζ

Dt

)2

= c2

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]

(A.2.8)

and the wave-hyperconoid through any point at any time is (loc. cit),(
dx1 − u1dt

)2
+
(
dx2 − u2dt

)2
+
(
dx3 − u3dt

)2
= c2 (dt)2 (A.2.9)

where
{
ui

}
and c are, respectively, the local values, at any time, of the velocity

and the common thermodynamic and electro-magnetic wave-speed of the fluid
ether.

The results of Section 5 of the main paper can now be applied to electro-
magnetic-condensational waves in any fluid ether in general unsteady flow. For
any observer at the origin of the rest-frame moving with the fluid ether, the equa-
tions (A.2 : 8, 9) reduce respectively, to the equations (A.2 : 5, 11, 12) namely(

∂ζ

∂t

)2

= c2

[(
∂ζ

∂x1

)2

+
(
∂ζ

∂x2

)2

+
(
∂ζ

∂x3

)2
]

(A.2.10)

and (
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
= c2 (dt)2 (A.2.11)

whilst the general electro-magnetic field equations reduce to another variation
on Maxwell’s equations, namely

∂
(
εEi

)
∂xi

=0;
∂
(
µHi

)
∂xi

=0 (A.2.12)

∂
(
εEi

)
∂t

= εijk

∂Hk

∂xj

(A.2.13)

∂
(
µHi

)
∂t

= − εijk

∂Ek

∂xj

. (A.2.14)
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All these equations are invariant for Galilean transformations between all such
observers moving with the fluid ether. This apparent invariance, achieved by
the Galilean transformation, contrasts remarkably with the invariance, under
the Lorentz transform, of Maxwell’s equations and their wave-hyperconoid(

dx1

)2
+
(
dx2

)2
+
(
dx3

)2
= c2 (dt)2

which depends entirely on the assumption that there is no ethereal medium and
that the speed of electro-magnetic waves is universally constant.

There are two possible interpretations of the Michelson-Morley experiment,
which correspond to the two alternatives (a) and (b) above. Again, the inter-
pretation accepted, at present, is based on the alternative (a), that there is no
ethereal medium, and this leads to the Lorentz transform. The alternative in-
terpretation, namely that a null result from the Michelson-Morley experiment
implies that the apparatus is moving with the local ether, has always been re-
jected, on the grounds that it is impossible for experimental apparati, moving
with different velocities, all to be moving with the uniform ether demanded by
Maxwell’s equations. With the general equations (A.2 : 2, 3, 4, 5) now derived,
however, for the electro-magnetic field in the general unsteady flow of a fluid
ether, this objection no longer holds. Rather, the amended form of Maxwell’s
equations (A.2 : 12, 13, 14), with their wave-hyperconoid(

dx1

)2
+
(
dx2

)2
+
(
dx3

)2
= c2 (dt)2 ,

in which the wave-speed c is variable, are invariant for Galilean transformations
between all observers moving with any general flow of a fluid ether. This is
entirely consistent with the alternative interpretation of the Michelson-Morley
experiment.

In the rapid development of electro-magnetism in the nineteenth century,
much effort was devoted to the quest for a viable ethereal medium but, in the
event, none such was found. At the turn of the century, Planck obtained his well-
known form for the energy distribution in black-body radiation, a form which
agreed with all observations over the entire experimental range of frequencies.
This form of the energy distribution placed such a highly restrictive demand on
the properties of the ethereal medium that it offered an unprecedented oppor-
tunity for the quest for a viable ether to be substantially re-inforced until it was
successful. The opportunity was missed, however, and all possibility of a fluid
ether was totally discounted, first, since no gas with any number of different
kinds of atom or molecule could both have Maxwellian statistics and satisfy
Planck’s energy distribution, and second, because invariance of Maxwell’s equa-
tions under the Lorentz transform permitted no ethereal medium at all. In
consequence, Planck’s energy distribution had then to be interpreted in terms
of his ‘quantum’ hypothesis, that the smallest amount of energy that can be
absorbed, at any frequency ν is E=hν. This was a device which allowed great
progress to be made which led to Einstein’s ‘light-quantum’ hypothesis, requir-
ing ‘light-particles’ or ‘photons’, of energy E=hν, all of which are identical.
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Thus, the foundations of modern theoretical physics now rest on two overt
contradictions, (i) that the basic assumption of no ethereal medium is contra-
dicted by the existence of a ‘monatomic’ gas of identical ‘photons’, and (ii) that
no such ‘monatomic’ gas can conform to the equipartition of energy and have
Maxwellian statistics, and Planck’s energy distribution. The mistake can now
be seen to be the failure to examine the kinetic-theoretical possibilities of a
gas mixture in the mathematical limit when the number of different kinds of
atoms or molecules tends to infinity. Several writers (see e .g . Whittaker 1953;
Thornhill 1985a), in the early part of the century by, for instance, expanding
Planck’s energy distribution in an infinite series, came to realise that it could
be interpreted in terms of an infinite variety of ’photo-molecules’ of energies
hν, 2hν, 3hν etc. None of these writers, however, applied this idea to the con-
temporary kinetic theory of a gas mixture, in order to determine whether it
was possible to specify a particular infinite variety of particles, and derive an
appropriate mixture of them, which would have Planck’s energy distribution.
Rather, in contrast to this approach, new gas statistics were sought (e .g . those
suggested by Bose, and taken up by Einstein) which would enable a ‘monatomic’
gas of ‘photons’ to satisfy Planck’s energy distribution.

It was not until 1975 that it was first discovered (Thornhill 1985a) that an
ideal gas, with an infinite variety of particles of masses nm (n=1 to ∞), could
both conform to Maxwellian statistics and have Planck’s energy distribution.
The required abundance function of the particles is Nn∝n−4 and the correlation
derived between energy and frequency is not that given by Planck’s or Einstein’s
hypothesis, but requires that the specific energy per unit mass, ε, of all the
particles, whatever their masses, shall correlate with frequency according to the
relation

ε=
hν

m
. (A.2.15)

Thus, radiation of frequency ν is not associated, as Planck or Einstein hypoth-
esised, with ‘quanta’ or ‘photons’ having a particular energy E=hν, but with
all ether particles of masses nm (n=1 to ∞) which have energies nmε=nhν
for a particular energy per unit mass, ε.
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