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Abstract

The recently published application of a diffusion equation to pre-
diction of distances of planets in the solar system has been identified as
a two-dimensional Coulomb problem. A different assignment of quan-
tum numbers in the solar system has been proposed. This method
has been applied to the moons of Jupiter on rescaling.
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1 Introduction

The 20th century is held for the golden age of the astronomy and astrophysics,
when many persistent questions were solved and the human view of the
universe changed radically. In spite of this, at the beginning of the 21st
century, one cannot find satisfactory answers to some questions our ancestors
posed as early as in the 16th century. For instance, Kepler looked for a
universal law, in his Mysterium cosmographicum, to explain the planetary
distances in the solar system. Nowadays, when discoveries of other planetary
systems occur, such a law could explain the distances of their planets.
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In 1766 Titius formulated the law, which described distances of the bodies
in the solar system, and it even predicted new bodies at certain distances from
the Sun [1]. Actually its being criticized led to the discovery of the remaining
planets and new bodies – asteroids – in the solar system. It was the first,
controversial, description of the distances of the bodies in this planetary
system. But hardly any physical explanation has thus far been given. Is it a
mere extravagance, or does this law have some deep physical content? May
the planets around stars originate at definite distances?

Quest of the answer developed into invention of new empirical formulae,
which describe, with higher or lower accuracy, the distances of the bodies in
the solar system. For instance Armelini’s empirical formula has the form

rnA = 1.53n, (1)

where n assumes the values: Mercury −2, Venus −1, Earth 0, Mars 1, as-
teroid Vesta 2, asteroid Camilla 3, Jupiter 4, Saturn 5, asteroid Chiron 6,
Uranus 7, Neptune 8, and Pluto 9.

In 1938 Mohorovičić invented an empirical formula [2], which describes
the distances of planets and comets with high accuracy, and it also predicts
an asteroid belt between Mars and Jupiter. Mohorovičić’s law says that the
distances of the inner parts of the solar system increase in a sublinear manner
and those of the outer parts of this system increase in a superlinear manner.
In the paper [3] we have modified this law such that it satisfies also other
planetary systems and those of the moons of the giant planets.

Interesting is the empirical formula, which is similar to the laws of quan-
tum mechanics [4]

rmn =
1

2
(m2 + n2)r0, (2)

where m are natural numbers, n = 0, 1, . . . ,m and r0 = 0.387 AU. The Bohr–
Sommerfeld rule of (allowed) orbits for electrons in the electric fields of the
nuclei of various atoms resemble the distribution of planetary distances, but
do not let us forget that this rule describes bodies (electrons), which all
have the same inertial mass and the same electric charge, which replaces a
gravitational mass here. To obtain a distribution of the planetary distances,
one either replaces different planetary masses by their mean mass, or makes
the quantum of action depend on the actual mass.

Agnese and Festa described the solar system like a gravitational atom [5].
They utilized a quantum law for the hydrogen atom, which they applied to
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description of major semi-axes of allowed (discretized) elliptical orbits of the
bodies of the planetary system

rnAF = r1n
2, (3)

where n are natural numbers and r1 is the Bohr radius of the planetary
system, which is

r1 =
GM

α2
gc

2
, (4)

where G is the gravitational constant, M the mass of the central body, c the
vacuum speed of light and αg is a gravitational structure constant, which
has the property 1

αg
= 2113 ± 15. Agnese and Festa have shown that this

description of distances satisfies also the planetary system υ Andromedae [6]
and other stellar systems alike on substituting the mass of the appropriate
central star for the mass M . A study which elaborates on such ideas has
been presented in [7].

Recently, the significance of the Titius–Bode law has been evaluated both
by generating random planetary systems [8] and by the help of methods of
the modern statistical analysis [9]. In the papers [10, 11] the authors point
out quantum features also on large scales, namely discrete values of distances
of possible planets and galaxies.

In quantum mechanics one utilizes Schrödinger’s equation for the de-
scription of a physical system. In the paper [12], the stochastic mechanics is
constructed, i. e., the Schrödinger equation is obtained as a classical diffusion
equation by the help of the hypothesis that any particle in any interaction also
exhibits a universal Brownian motion [13]. The main problem of this kind of
derivation is a convincing physical origin for that universal Brownian motion,
although a possibility is the quantum nature of space-time [14]. The chaotic
behaviour of the solar system during its formation and evolution [15, 16]
suggests a diffusion process to be described in terms of a Schrödinger-type
equation. The description of the planetary system using a Schrödinger-type
diffusion equation has been realized in [17]. There the authors have adapted
the Schrödinger equation to the planetary system and shown that there exist
very many orbits, on which possible planets may originate. That paper has
stimulated us to the following considerations.
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2 Discrete distances in the gravitational field

of an astronomical body

Let us consider a body of the mass Mp, which orbits a central body of the
mass M and has the potential energy V (x, y, z) in its gravitational field.
Because planets and moons of the giant planets revolve approximately in the
same plane, we consider z = 0. Because they revolve in the same direction, we
choose directions of the axes x, y and z such that the planets or moons of giant
planets revolve counter-clockwise. Then we write the modified Schrödinger
equation for the wave function ψ = ψ(x, y) from the part of the Hilbert space
L2(R

2) ∩ C2(R2) and the eigenvalue 0 > E ∈ R in the form

− h̄2
M

2Mp

(
∂2

∂x2
+

∂2

∂y2

)
ψ + V (x, y)ψ = Eψ, (5)

where h̄M ≈ 1.48 × 1015Mp, V (x, y) = V (x, y, z) and E is the total energy.
Negative E classically correspond to the elliptic Kepler orbits and the local-
ization property (bound state) is conserved also in the quantum mechanics
for such total energies E. The factor 1.48× 1015 is not a dimensionless num-
ber, but the unit of its measurement is m2s−1. With respect to the unusual
unit we do not wonder that Agnese and Festa [5] consider this factor in the
form of a product, such that h̄M = λ̄McMp, where λ̄M ≈ 4.94× 106 m.

We transform equation (5) into the polar coordinates,

− h̄2
M

2Mp

(
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r
+

1

r2

∂2ψ̃

∂θ2

)
+ Ṽ (r)ψ̃ = Eψ̃, (6)

where ψ̃ ≡ ψ̃(r, θ)=ψ(r cos θ, r sin θ) and Ṽ (r) = V (r cos θ, r sin θ) does not
depend on θ. Particularly we choose

Ṽ (r) = −GMpM

r
. (7)

With respect to the Fourier method we assume a solution of the equation (7)
in the form

ψ̃(r, θ) = R(r)Θ(θ). (8)

The original eigenvalue problem is transformed, equivalently, to two eigen-
value problems

Θ′′(θ) = −ΛΘ, (9)
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Θ(0) = Θ(2π) (10)

and

R′′(r) +
1

r
R′(r) +

{
−Λ

r2
+

[
E − Ṽ (r)

2Mp

h̄2
M

]}
R(r) = 0, (11)

lim
r→0+

[
√
rR(r)] = 0,

√
rR(r) ∈ L2((0,∞)). (12)

The solution of the problem (9)–(10) has the form

Θl(θ) =
1√
2π

exp (ilθ) (13)

for l = ±
√

Λ ∈ Z.
Here l = 0 should mean a body, which does not revolve at all. In the

classical mechanics such a body moves close to a line segment ending at the
central body, and it spends a short time in the vicinity of this body. In this
paper we utilize some – not all – of the concepts of quantum mechanics and
we will not avoid the case l = 0 [17]. In (13) l = 1, 2, . . . ,∞ corresponds to
the counter-clockwise revolution.

Respecting (7), the equation (11) becomes

R′′(r) +
1

r
R′(r) +

{
− l

2

r2
−B − 2Mp

h̄2
M

(
−GMpM

r

)}
R(r) = 0, (14)

where

B = −2MpE

h̄2
M

= − 2

(λ̄Mc)2

E

Mp

. (15)

Let us note that
MpGMpM

h̄2
M

=
GM

(λ̄Mc)2
. (16)

On substituting r = ρ

2
√

B
and introducing

R̃(ρ) = R

(
ρ

2
√
B

)
, (17)

equation (14) becomes

R̃′′(ρ) +
1

ρ
R̃′(ρ) +

(
−1

4
+
k

ρ
− l2

ρ2

)
R̃(ρ) = 0, (18)
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where

k =
GM

(λ̄Mc)2
√
B
. (19)

For later reference let us note that, inversely,

√
B =

GM

(λ̄Mc)2k
, (20)

−E
Mp

=
(λ̄Mc)

2

2
B (21)

=
(GM)2

2(λ̄Mc)2k2
. (22)

Expressing R̃(ρ) in the form

R̃(ρ) =
1
√
ρ
u (ρ) , (23)

we obtain an equation for u(ρ)

u′′(ρ) +

[
−1

4
+
k

ρ
−
(
l′2 − 1

4

)
1

ρ2

]
u (ρ) = 0, (24)

where l′ = l. It is familiar that this equation has two linear independent
solutions Mk,l′(ρ), Mk,−l′(ρ), if l′ is not an integer number. When l′ is integer,
the solution Mk,−l′(ρ) must be replaced with a more complicated solution.
It can be proven that the other solution is not regular for ρ = 0 (it diverges
as ln ρ for ρ → 0). The remaining solution Mk,l(ρ) can be transformed to a
wave function from the space L2((0,∞)) if and only if k − l − 1

2
= nr is any

nonnegative integer number. We choose this function to be

ukl(ρ) = CklMk,l(ρ), (25)

where Ckl is an appropriate normalization constant and Mk,l(ρ) is a Whit-
taker function, namely

Mk,l(ρ) = ρl+ 1
2 exp

(
−ρ

2

)
Φ
(
l − k +

1

2
, 2l + 1; ρ

)
, (26)
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where Φ is the confluent (or degenerate) hypergeometric function. In (25)
the constant Ckl has the property∫ ∞

0
r[Rkl(r)]

2dr = 1, (27)

or it is

Ckl = 2
√
B

1

(2l)!

√√√√ (n+ l − 1)!

2k(n− l − 1)!
. (28)

Then

Rkl(r) = 2
√
B

√√√√(n− l − 1)!

2kΓ(n+ l)
exp(−r

√
B)(2r

√
B)lL2l

n−l−1(2r
√
B), (29)

where n = k + 1
2
, L2l

n−l−1(x) is a Laguerre polynomial, and the relation (20)
holds.

3 Interpretation of formulae derived

Having solved the modified Schrödinger equation, we address interpretation
of the formulae derived. The probability density Pkl(r) of the revolving body
occurring at the distance r from the central body is

Pkl(r) = r[Rkl(r)]
2, r ∈ [0,∞). (30)

Mean distances of the planets are given by the relation

rkl =
∫ ∞
0

rPkl(r)dr (31)

=
(λ̄Mc)

2

4GM
[(2k − nr)(2k − nr + 1) + 4nr(2k − nr) + nr(nr − 1)] , (32)

where nr = n− l − 1, k = 1
2
, 3

2
, 5

2
, . . . ,∞ and l = 0, 1, 2, . . . , n.

For the solar system M = MSun holds and the Bohr radius of the solar
system r 1

2
0 = 0.055 AU. For survey one finds some expectation values rkl for

selected values k, l with the specification of described bodies in table 1 (cf.
[17]).
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Even though also in this case an empirical formula is tested for distribu-
tion of planetary distances, the predicted orbits fit those of the bodies in this
solar system.

Using the graphs of the probability densities we have plotted for every
predicted orbit of this system, we obtain surprising results. The graphs of
the probability densities for each orbit with k ≤ 9

2
and with 11

2
≤ k ≤ 31

2

are contained, respectively, in figure 1 and in figure 2. The vertical axis
denotes the probability density Pkl(r) and the longitudinal axis designates
the planetary distance r from the Sun. In figure 1 graph no. p = 1 is
interpreted such that the highest probability density is assigned to the orbit
of the radius of 0.055 AU and from the calm shape of the graph we infer that
an ideal circular orbit is tested. In figure 1 graph no. p = 14 is interpreted
such that the highest probability density is assigned to the orbit of the radius
of 3.32 AU and, of many peaks, which wave the shape, we infer that no stable
circular orbit is tested. After performing the analysis for all the orbits, we
obtain only a small number of stable circular orbits. The orbits, on which
big bodies – planets – may originate, are listed in table 2.

It emerges that, for every number k, there exists only one stable orbit, on
which a big body – a planet – may originate. Then we can interpret the num-
ber k as the principal quantum number and l as the orbital quantum number
equal to the number of possible orbits, but only for the greatest l there ex-
ists a stable orbit of a future body. A planet which does not confirm this
theory is the Earth. Since the description based on the modified Schrödinger
equation for the planetary system is not fundamental, it could not fit all the
stable orbits. Other deviations are likely to be incurred by collisions of the
bodies in early stages of the origin of the planets, thus nowadays we already
observe elliptical orbits, which are very close to circular orbits.

This procedure has been applied to moons of giant planets by us. It
emerges that the moons of giant planets also are fitted by the modified
Schrödinger equation and appropriate expectation values. Especially, the
predicted stable circular orbits of Jupiter’s moons are presented in table 3.
For Jupiter it holds that M = MJup and the Bohr radius (4) of this system
r1 = 6287 km. It emerges that the predicted lunar orbits fit the measured
orbits of the moons orbiting Jupiter.
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4 Conclusions

In this paper we assume that there exists a law by which big objects – planets
and moons of giant planets – do not originate anywhere, but at allowed
distances from the central body. Unnegligible number of authors have issued
from similar assumptions and derived empirical formulae for parameters of
allowed orbits.

The results we have presented in this paper are based on a modified
Schrödinger equation, which has been applied to the planetary system by us
for the quantum theory contained in the Schrödinger equation to create an
interesting view of the birth of such a stellar system, namely the orbits of
planets and moons being approximately quantized.
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Table 1. Predicted distances of bodies from the Sun

Body k l rkl [AU]
— 1

2
0 0.055

Mercury 3
2

1 0.332
Mercury 3

2
0 0.387

Venus 5
2

2 0.829
Earth 5

2
1 0.995

Earth 5
2

0 1.050
Mars 7

2
3 1.548

Hungaria 7
2

2 1.824
Hungaria 7

2
1 1.990

Hungaria 7
2

0 2.046
Vesta 9

2
4 2.488

Ceres 9
2

3 2.875
Hygeia 9

2
2 3.151

Camilla 9
2

1 3.317
Camilla 9

2
0 3.372

Jupiter 11
2

0 5.031
— 13

2
0 7.021

Saturn 15
2

0 9.343
Chiron 17

2
0 11.997

Chiron 19
2

0 14.982
Uranus 21

2
0 18.300

— 23
2

0 21.948
HA2 (1992), DW2 (1995) 25

2
0 25.929

Neptune 27
2

0 30.241
— 29

2
0 34.885

Pluto 31
2

0 39.861
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Table 2. Bodies with stable circular orbits.

Body k l rkl [AU]
— 1

2
0 0.055

Mercury 3
2

1 0.332
Venus 5

2
2 0.83

Mars 7
2

3 1.54
Vesta 9

2
4 2.49

Fayet comet 11
2

5 3.64
Jupiter 13

2
6 5.03

Neujmin comet 15
2

7 6.636
— 17

2
8 8.46

Saturn 19
2

9 10.5
— 21

2
10 12.77

Westphal comet 23
2

11 15.26
Pons–Brooks comet 25

2
12 17.97

Uranus 27
2

13 20.9
— 29

2
14 24.055

— 31
2

15 27.43
Neptune 33

2
16 31.02

— 35
2

17 34.84
Pluto 37

2
18 38.88

— 39
2

19 43.134
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Table 3. Moons of Jupiter with stable circular orbits.

Body k l rkl [km]
— 1

2
0 6287

— 3
2

1 37722
Halo ring 5

2
2 94305

Outer ring 7
2

3 176036
— 9

2
4 282915

Io 11
2

5 414942
Europa 13

2
6 572117

— 15
2

7 754440
— 17

2
8 961911

Ganymede 19
2

9 1.19×106

— 21
2

10 1.452×106

Callisto 23
2

11 1.735×106
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Figure 1: Probability densities for a particle in states with quantum numbers
k, l, which correspond, respectively, (p is an ordinary number) to Mercury
(p = 1, l = 1), Mercury (p = 2, l = 0, the second possibility), Venus (p = 3,
l = 2), Earth (p = 4, l = 1), Earth (p = 5, l = 0, the second possibility), Mars
(p = 6, l = 3), asteroid Hungaria (p = 7, l = 2), asteroid Hungaria (p = 8,
l = 1, the second possibility), asteroid Hungaria (p = 9, l = 0, the third
possibility), asteroid Vesta (p = 10, l = 4), asteroid Ceres (p = 11, l = 3),
asteroid Hygeia (p=12, l = 2), asteroid Camilla (p = 13, l = 1), and asteroid
Camilla (p = 14, l = 0, the second possibility). Here k ∈ {3

2
, 5

2
, . . . , 9

2
}, the

quantum number k repeats n(= k + 1
2
) times and r is measured in AU.

14



Figure 2: Probability densities for a particle in states with quantum numbers
k, l, which correspond, respectively, (p is an ordinary number) to Jupiter
(p = 1), nothing (p = 2), Saturn (p = 3), Chiron (p = 4), Chiron (p = 5,
the second possibility), Uranus (p = 6), nothing (p = 7), HA2 (1992), DW2
(1995) (p = 8), Neptune (p = 9), nothing (p = 10) and Pluto (p = 11),
k ∈ {11

2
, 13

2
, . . . , 31

2
}, l = 0. Here k = p+ 9

2
, r is measured in AU.
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