The Chinese Remainder Theorem • Goldbach's Conjecture

(A) • Hardy-Littewood's Conjecture (A)

Tong Xin Ping txp1313abc@hotmail.com

- Abstract: N = p_i+ (N-p_i) = p+ (N-p). ① If p is congruent to N modulo p_i, Then (N-p) is a composite integer, When i=1, 2, ..., r, if p and N are incongruent modulo p_i, Then p and (N-p) are solutions of Goldbach's Conjecture (A); ② By Chinese Remainder Theorem we can calculate the primes and solutions of Goldbach's Conjecture (A) with different system of congruence; ③The (N-p) must have solution of Goldbach's Conjecture (A), The number of solutions of Goldbach's Conjecture (A) is increasing as N→∞, and finding unknown particulars for Hardy-Littewood's Conjecture (A).
- **Key words:** congruent, Chinese Remainder Theorem, Goldbach's Conjecture (A), Hardy-Littewood's Conjecture (A).

"Every even positive integer greater than 2 can be written as the sum of two primes." This conjecture was stated by Christion Goldbach in a letter to Leonhard Euler in 1742.

Let $p_i < \sqrt{N}$, $\sqrt{N} . We have N= <math>p_i$ + (N- p_i)= p+ (N-p). (If p is congruent to N

modulo p_i , then (N-p) is a composite integer, (See **Theorem 1**.) When i=1, 2, ..., r, if p and N are incongruent modulo p_i , Then p and (N-p) are solutions of Goldbach's Conjecture (A); (See **Theorem 2**.) ②By Chinese Remainder Theorem, we can calculate the primes and solutions of Goldbach's Conjecture (A) with different system of congruence (3), (5). (See **Theorem 3, 4**.) ③The (N-p) must have solution of Goldbach's Conjecture (A), (See **Theorem 5**.) The number of solutions of Goldbach's Conjecture (A) is increasing as $N \rightarrow \infty$, (See **Theorem 6**.) and finding unknown particulars for Hardy-Littewood's Conjecture (A),(See **Theorem 6**.)

1, Term, Terminology, Symbol.

 $N - \text{Even positive integers.} \quad \text{Let } 2 \leqslant p_i \leqslant p_r < \sqrt{N} < p_{r+1} < N < p_{r+1}^2 < p_1 p_2 ... p_r.$

p_i, p_r, p_{r+1} — Prime number. i=1, 2, 3, ..., r. $r = \pi (\sqrt{N})$.

(1) $w_r = p_1 p_2 \cdots p_r = \prod_{2 \leq p \leq \sqrt{N}} p$.

p — Prime number. $p_{r+1} \leq p \leq (N-p_r-1)$. We have $(N-p) > p_r$. Every p can be written as $p=p(a_i) + np_i$. $1 \leq p(a_i) \leq p_i-1$.

 $p(a_i)$ — Remainder that divided p by p_i . $1 \le p(a_i) \le p_i^{-1}$.

Let $f_1(a_i)=1,2,...,(p_i-1)$.

p — All p. We have $\mathbf{p} = f_1(a_i) + np_{i,} f_1(a_i) = 1, 2, ..., (p_i^{-1})$.

Let $N=p_i + (N-p_i) = p + (N-p)$, When N=98, 126, 128, ... The $(N-p_i)$ =composite integers. We prove that (N-p) must have prime.

Lemma 1. If $r \ge 4$, Then $N \le p_{2r+1} \le p_1 p_2 \dots p_r = w_r$.

When r<4, we can finding $p_1p_2...p_r < N$, Therefore, This paper studies $r \ge 4$, $N \ge 50$.

 $N(a_i)$ — Remainder that divided N by p_i . We have N= $N(a_i) + np_i$. $0 \le N(a_i) \le p_i^{-1}$.

 $N(a_i)_r$ — A group of systematic remainders that divided N by p_1 , p_2 ,..., p_r . $N(a_i)_r = N(a_1)$, $N(a_2)$,..., $N(a_r)$. For example, N=90, r=4, 90(a_i)₄ = 90(a_1), 90(a_2),..., 90(a_4) =0,0,0,6.

 $f_2(a_i)$ — Take N(a_i) out of $f_1(a_i)$, we can obtain $f_2(a_i)$. ① When $p_i \mid N$, N(a_i)=0 \neq f_2(a_i), the number of element of $f_2(a_i)$ is (p_i-1) ; ② When $(p_i, N)=1$, $0 < N(a_i) \le p_i-1$. $f_1(a_i) = 1, 2, ..., (p_i-1)$. The N(a_i) is one element of $f_1(a_i)$, The number element of $f_2(a_i)$ is (p_i-2) .

 $N(1,1)_i$ — The number of solutions of Goldbach's Conjecture (A) lying in the interval (0, p_r +1) and (N- p_r -1,N).

 $N(1,1)_r$ — The number of solutions of Goldbach's Conjecture (A) lying in the interval ($p_r + 1, N-p_r - 1)^{[1]}$.

 $N(1,1) (=r_2(N))$ — The number of solutions of Goldbach's Conjecture (A) lying in the interval (0,N). $N(1,1)=N(1,1)_r + 2 N(1,1)_i$.

2. Distinguish of Solutions of Goldbach's Conjecture (A).

Theorem 1. If N is congruent to p modulo p_i, Then the (N-p) is a composite integer.

Proof. $N \equiv p \pmod{p_i}$, $p_i \mid (N-p)$, We have $(N-p)=kp_i$. $(k \ge 1.)$ As before, $(N-p)>p_r$, k>1, The (N-p) is composite integer. Theorem 1 is proved.

Theorem 2. If i=1, 2, 3, ..., r. N and p are incongruent modulo p₁, p₂,..., p_r. Then p and (N-p) are solutions of Goldbach's Conjecture (A).

Proof. i=1, 2, 3, ..., r. N and p are incongruent modulo p_1 , p_2 ,..., p_r . In other words, the (N-p) is not divisible by any prime not exceeding \sqrt{N} . The (N-p) is a prime. The p and (N-p) are

solutions of Goldbach's Conjecture (A). Theorem 2 is proved.

3. Finding Primes and Solutions of Goldbach's Conjecture (A).

Lemma 2. The Chinese Remainder Theorem . Let $m_1, m_2, ..., m_r$ be pairwise relatively prime positive integers. Then the system of congruences

(2)
$$x \equiv \mathbf{a_1} \pmod{\mathbf{m_1}},$$

 $x \equiv \mathbf{a_2} \pmod{\mathbf{m_2}},$
 \vdots

 $x \equiv \mathbf{a_r} \pmod{\mathbf{m_r}},$

has a unique solution modulo $M=m_1m_2...m_r$.

Theorem 3. The u is number of solutions of system of congruences (3). When $y \le N$, the y is a prime.

(3)
$$y \equiv f_1(a_1) \pmod{p_1}$$

 $y \equiv f_1(a_2) \pmod{p_2}$

$y \equiv f_1(a_r) \pmod{p_r}$

(4) $u=(p_1-1)(p_2-1)...(p_r-1)=\prod_{2 \le p \le \sqrt{N}} (p-1)$

Proof. The $f_1(a_1)=1$, The number of elements of $f_1(a_1)$ is (p_1-1) ; The $f_1(a_2)=1,2$. The number of elements of $f_1(a_2)$ is (p_2-1) ; ... The $f_1(a_r)=1,2,..., (p_r-1)$. The number of elements of $f_1(a_r)$ is (p_r-1) .

When i=1,2,...,r, we taking one element of the $f_1(a_i)$, We can obtain different system of congruences (3), The number of the different system of congruences (3) is $(p_1-1)(p_2-1)...(p_r-1)(p_2-1)...(p_r-1)(p_2-1)...(p_r-1)(p_2-1)...(p_r-1)(p_2-1)...(p_r-1)(p_2-1)(p$ 1)=u.

By (3), if y<N, the y is not divisible by any prime not exceeding \sqrt{N} . The y is a prime. Theorem 3 is proved.

Theorem 4. The v is number of solutions of system of congruences (5). When $(p_r+1) \le y \le (N_r+1) \le (N_r+1) \le y \le (N_r+1) \le (N_r+1)$ $-p_r-1$), the y and (N-y) are solutions of Goldbach's Conjecture (A).

> (5) $y \equiv f_2(a_1) \pmod{p_1}$ $y \equiv f_2(a_2) \pmod{p_2}$

> > $y \equiv f_2(a_r) \pmod{p_r}$

elements of $f_2(a_i)$ is (p_i-1). (When $p_i > 2$, We have (p_i-1)=(p_i-2) $\frac{p_i-1}{p_i-2}$.)

When i=1,2,...,r, we taking one element of the $f_2(a_i)$, We can obtain different system of congruences (5), The number of the different system of congruences (5) is multiply Π (p_i-2) Π (p_i-1). (See 6.)

By (5), if $(p_r+1) \le y \le (N-p_r-1)$, (1) Because $f_2(a_i) \ne 0$, by Theorem 3, the y is a prime; (2) Because $f_2(a_i) \neq N(a_i)$, N and y are incongruent modulo p_1, p_2, \dots, p_r . By Theorem 2, the (N-y) is a prime. The y and (N-y) are solutions of Goldbach's Conjecture (A). Theorem 4 is proved.

4. The Proof of Goldbach's Conjecture (A).

Theorem 5. (N-p) must have prime.

Proof. $(N-\mathbf{p}) > p_r$, Suppose $(N-\mathbf{p})$ =composite integer=h_ip_i. $(h_i > 1.)$ We have $\mathbf{p}=N-h_ip_i=N(p_i)+np_i$ $h_i p_i = N(p_i) + (n - h_i)p_i$. The **p** = $N(p_i) + (n - h_i)p_i$ are in contradiction with **p** = $f_1(a_i) + np_i$. (The $N(p_i)$ is one of the $f_1(a_i)$.) The contradiction shows, that there are some primes in (N-**p**). Theorem 5 is proved.

Lemma 3. π (N) = ϵ N Π $\frac{p-1}{p}$ $2 \leq p \leq \sqrt{N}$

Proof. The π (N) and u are number of positive integer that are not divisible by any prime not exceeding \sqrt{N} .

Noticing
$$\frac{\pi(N)}{N} \neq \frac{u}{w_r}$$
, we have $\frac{\pi(N)}{N} = \varepsilon \frac{u}{w_r}$, and $\pi(N) = \varepsilon N \frac{u}{w_r}$. Lemma 3 is proved.

Theorem 6. The number of solutions of Goldbach's Conjecture (A) is increasing as $N \rightarrow \infty$. Proof. By Lemma 3, we have

$$1 = \Pi \frac{p}{p-1} \frac{p}{p-1} \times \Pi \frac{p-1}{p} \frac{p-1}{p}$$

$$2 \leq p \leq \sqrt{N}$$

$$= \Pi \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}$$

$$2 \leq p \leq \sqrt{N}$$

$$= 4 \Pi \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}$$

The N(1,1) and v are number of positive integer that are not divisible by any prime not exceeding \sqrt{N} . Added to this, these positive integer and N are incongruent modulo p_i .

Noticing
$$\frac{N(1,1)}{N} \neq \frac{v}{w_r}$$
. We have $\frac{N(1,1)}{N} = \psi \frac{v}{w_r}$, and have (7).
(7) $N(1,1) = \psi \frac{v}{w_r}N$
 $= \psi \frac{N}{2} \qquad \Pi \qquad \frac{p-2}{p} \qquad \Pi \qquad \frac{p-1}{p-2} \qquad \times 1$
 $3 \leq p \leq \sqrt{N} \qquad 3 \leq p \leq \sqrt{N}$
 $= \frac{\psi}{\varpi} \frac{2\pi(N)\pi(N)}{N} \qquad \Pi \qquad \frac{p-2}{p-1} \frac{p}{p-1} \qquad \Pi \qquad \frac{p-1}{p-2}$
 $3 \leq p < \sqrt{N} \qquad 3 \leq p < \sqrt{N}$
 $= \frac{\psi}{\varpi} \frac{2\pi(N)\pi(N)}{N} \qquad \Pi \qquad (1 - \frac{1}{(p-1)^2}) \qquad \Pi \qquad \frac{p-1}{p-2}$
The $\frac{2\pi(N)\pi(N)}{N} \qquad \Pi \qquad (1 - \frac{1}{(p-1)^2}) \qquad \Pi \qquad \frac{p-1}{p-2} \sim \frac{2N}{\ln^2 N} \qquad \Pi \qquad (1 - \frac{1}{(p-1)^2}) \qquad \Pi \qquad \frac{p-1}{p-2} (= \frac{p}{p-1})$

 $r_2(N).$ It is Hardy-Littewood's Conjecture (A).) The (7) is increasing as $N\!\rightarrow\!\infty.$ Theorem 6 is proved.

The ϵ and ψ are some unknown particulars for Hardy-Littewood's Conjecture (A).

5. Discussion.

This Goldbach's Conjecture (A) the proof.

If $N \rightarrow \infty$, proof $\frac{\psi}{\varepsilon} \rightarrow 1$, Then Hardy-Littewood's Conjecture (A) is proved.

The others particulars of Hardy-Littewood's Conjecture (A) is still under discussion.

Reference material:

[1] Tong Xin Ping, Even formulae when calculating Goldbach Problem, Journal of youjiang teachers' college for nationalities, 1997, 3, 10-12.