The Chinese Remainder Theorem • Goldbach's Conjecture

(A) • Hardy-Littewood's Conjecture (A)

Tong Xin Ping
txp1313abc@ hotmail.com

Abstract

N=p_{i}+\left(N-p_{i}\right)=p+(N-p)\). (1) If p is congruent to N modulo p_{i}, Then ($N-p$) is a composite integer, When $\mathrm{i}=1,2, \ldots, r$, if p and N are incongruent modulo p_{i}, Then p and ($\mathrm{N}-\mathrm{p}$) are solutions of Goldbach's Conjecture (A); (2) By Chinese Remainder Theorem we can calculate the primes and solutions of Goldbach's Conjecture (A) with different system of congruence; (3)The (N-p) must have solution of Goldbach's Conjecture (A), The number of solutions of Goldbach's Conjecture (A) is increasing as $\mathrm{N} \rightarrow \infty$, and finding unknown particulars for Hardy-Littewood's Conjecture (A).

Key words: congruent, Chinese Remainder Theorem, Goldbach's Conjecture (A), Hardy-Littewood's Conjecture (A).
"Every even positive integer greater than 2 can be written as the sum of two primes." This conjecture was stated by Christion Goldbach in a letter to Leonhard Euler in 1742.

Let $\mathrm{p}_{\mathrm{i}}<\sqrt{N}, \quad \sqrt{N}<\mathrm{p}<\mathrm{N}-\sqrt{N}$. We have $\mathrm{N}=\mathrm{p}_{\mathrm{i}}+\left(\mathrm{N}-\mathrm{p}_{\mathrm{i}}\right)=\mathrm{p}+(\mathrm{N}-\mathrm{p})$. (1) p is congruent to N modulo p_{i}, then ($\mathrm{N}-\mathrm{p}$) is a composite integer, (See Theorem 1.) When $\mathrm{i}=1,2, \ldots, r$, if p and N are incongruent modulo p_{i}, Then p and ($\mathrm{N}-\mathrm{p}$) are solutions of Goldbach's Conjecture (A); (See Theorem 2.) 2By Chinese Remainder Theorem, we can calculate the primes and solutions of Goldbach's Conjecture (A) with different system of congruence (3), (5). (See Theorem 3, 4.) (3)The ($\mathrm{N}-\mathbf{p}$) must have solution of Goldbach's Conjecture (A), (See Theorem 5.) The number of solutions of Goldbach's Conjecture (A) is increasing as $N \rightarrow \infty$, (See Theorem 6.) and finding unknown particulars for Hardy-Littewood's Conjecture (A),(See Theorem 6.)

1, Term, Terminology, Symbol.

N — Even positive integers. Let $2 \leqslant \mathrm{p}_{\mathrm{i}} \leqslant \mathrm{p}_{\mathrm{r}}<\sqrt{N}<\mathrm{p}_{\mathrm{r}+1}<\mathrm{N}<\mathrm{p}^{2}{ }_{\mathrm{r}+1}<\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}}$.
$\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{r}}, \mathrm{p}_{\mathrm{r}+1}$ - Prime number. $\mathrm{i}=1,2,3, \ldots, \mathrm{r} . \quad \mathrm{r}=\pi(\sqrt{N})$.
(1)
$\mathrm{w}_{\mathrm{r}}=\mathrm{p}_{1} \mathrm{p}_{2} \cdots \mathrm{p}_{\mathrm{r}}=\prod_{2 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{N}}} \mathrm{p}$.
p - Prime number. $\mathrm{p}_{\mathrm{r}+1} \leqslant \mathrm{p} \leqslant\left(\mathrm{N}-\mathrm{p}_{\mathrm{r}}-1\right)$. We have $(\mathrm{N}-\mathrm{p})>\mathrm{p}_{\mathrm{r}}$. Every p can be written as $\mathrm{p}=$ $\mathrm{p}\left(\mathrm{a}_{\mathrm{i}}\right)+\mathrm{np}_{\mathrm{i}} .1 \leqslant \mathrm{p}\left(\mathrm{a}_{\mathrm{i}}\right) \leqslant \mathrm{p}_{\mathrm{i}}-1$.
$p\left(a_{i}\right)$ - Remainder that divided p by $p_{i} .1 \leqslant p\left(a_{i}\right) \leqslant p_{i}-1$.
Let $f_{1}\left(a_{i}\right)=1,2, \ldots,\left(p_{i}-1\right)$.
\mathbf{p} - All p. We have $\mathbf{p}=\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{i}}\right)+\mathrm{np} \mathrm{p}_{\mathrm{i}}, \mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{i}}\right)=1,2, \ldots,\left(\mathrm{p}_{\mathrm{i}}-1\right)$.
Let $\mathrm{N}=\mathrm{p}_{\mathrm{i}}+\left(\mathrm{N}-\mathrm{p}_{\mathrm{i}}\right)=\mathrm{p}+(\mathrm{N}-\mathrm{p})$, When $\mathrm{N}=98,126,128, \ldots$ The $\left(\mathrm{N}-\mathrm{p}_{\mathrm{i}}\right)=$ composite integers. We prove that ($\mathrm{N}-\mathrm{p}$) must have prime.
Lemma 1. If $r \geqslant 4$, Then $N<p^{2}{ }_{r+1}<p_{1} p_{2} \ldots p_{r}=w_{r}$.
When $r<4$, we can finding $p_{1} p_{2} \ldots p_{r}<N$, Therefore, This paper studies $r \geqslant 4, N \geqslant 50$.
$N\left(a_{i}\right)$ - Remainder that divided N by p_{i}. We have $N=N\left(a_{i}\right)+n p_{i} .0 \leqslant N\left(a_{i}\right) \leqslant p_{i}-1$.
$N\left(a_{i}\right)_{r}$ - A group of systematic remainders that divided N by $p_{1}, p_{2}, \ldots, p_{r} . N\left(a_{i}\right)_{r}=N\left(a_{1}\right)$, $N\left(a_{2}\right), \ldots, N\left(a_{r}\right)$. For example, $N=90, r=4,90\left(a_{i}\right)_{4}=90\left(a_{1}\right), 90\left(a_{2}\right), \ldots, 90\left(a_{4}\right)=0,0,0,6$.
$f_{2}\left(a_{i}\right)$ - Take $N\left(a_{i}\right)$ out of $f_{1}\left(a_{i}\right)$, we can obtain $f_{2}\left(a_{i}\right)$. (1) When $p_{i} \mid N, N\left(a_{i}\right)=0 \neq f_{2}\left(a_{i}\right)$, the number of element of $f_{2}\left(a_{i}\right)$ is $\left(p_{i}-1\right)$; (2) When $\left(p_{i}, N\right)=1,0<N\left(a_{i}\right) \leqslant p_{i}-1 . f_{1}\left(a_{i}\right)=1,2, \ldots,\left(p_{i}-1\right)$. The $N\left(a_{i}\right)$ is one element of $f_{1}\left(a_{i}\right)$, The number element of $f_{2}\left(a_{i}\right)$ is $\left(p_{i}-2\right)$.
$\mathrm{N}(1,1)_{\mathrm{i}}$ - The number of solutions of Goldbach's Conjecture (A) lying in the interval ($0, \mathrm{p}_{\mathrm{r}}$ $+1)$ and ($\mathrm{N}-\mathrm{p}_{\mathrm{r}}-1, \mathrm{~N}$).
$\mathrm{N}(1,1)_{\mathrm{r}}$ - The number of solutions of Goldbach's Conjecture (A) lying in the interval (p_{r} $\left.+1, \mathrm{~N}-\mathrm{p}_{\mathrm{r}}-1\right)^{[1]}$.
$\mathrm{N}(1,1)\left(=\mathrm{r}_{2}(\mathrm{~N})\right)$ - The number of solutions of Goldbach's Conjecture (A) lying in the interval $(0, \mathrm{~N}) . \mathrm{N}(1,1)=\mathrm{N}(1,1)_{\mathrm{r}}+2 \mathrm{~N}(1,1)_{\mathrm{i}}$.

2. Distinguish of Solutions of Goldbach's Conjecture (A).

Theorem 1. If N is congruent to p modulo p_{i}, Then the $(N-p)$ is a composite integer.
Proof. $\mathrm{N} \equiv \mathrm{p}\left(\bmod \mathrm{p}_{\mathrm{i}}\right), \mathrm{p}_{\mathrm{i}} \mid(\mathrm{N}-\mathrm{p})$, We have $(\mathrm{N}-\mathrm{p})=\mathrm{kp} .\left(\mathrm{k} \geqslant 1\right.$.) As before, $(\mathrm{N}-\mathrm{p})>\mathrm{p}_{\mathrm{r}}, \mathrm{k}>1$, The $(\mathrm{N}-\mathrm{p})$ is composite integer. Theorem 1 is proved.
Theorem 2. If $\mathrm{i}=1,2,3, \ldots, \mathrm{r}$. N and p are incongruent modulo $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{r}}$. Then p and ($\mathrm{N}-\mathrm{p}$) are solutions of Goldbach's Conjecture (A).
Proof. $\mathrm{i}=1,2,3, \ldots, \mathrm{r}$. N and p are incongruent modulo $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{r}}$. In other words, the ($\mathrm{N}-\mathrm{p}$) is not divisible by any prime not exceeding \sqrt{N}. The ($\mathrm{N}-\mathrm{p}$) is a prime. The p and ($\mathrm{N}-\mathrm{p}$) are solutions of Goldbach's Conjecture (A). Theorem 2 is proved.

3. Finding Primes and Solutions of Goldbach's Conjecture (A).

Lemma 2. The Chinese Remainder Theorem . Let $\mathbf{m}_{1}, \mathbf{m}_{2}, \ldots, \mathbf{m}_{\mathbf{r}}$ be pairwise relatively prime positive integers. Then the system of congruences

$$
\text { (2) } \begin{array}{rl}
x & x \equiv \mathbf{a}_{\mathbf{1}}\left(\bmod \mathbf{m}_{1}\right), \\
& x \equiv \mathbf{a}_{\mathbf{2}}\left(\bmod \mathbf{m}_{\mathbf{2}}\right), \\
& \cdot \\
& \cdot \\
& \cdot \\
& x \equiv \mathbf{a}_{\mathbf{r}}\left(\bmod \mathbf{m}_{\mathbf{r}}\right),
\end{array}
$$

has a unique solution modulo $\mathbf{M}=\mathbf{m}_{1} \mathbf{m}_{\mathbf{2}} \ldots \mathbf{m}_{\mathbf{r}}$.
Theorem 3. The u is number of solutions of system of congruences (3). When $y<N$, the y is a prime.

$$
\begin{aligned}
(3) & y
\end{aligned} \begin{aligned}
& \equiv f_{1}\left(a_{1}\right)\left(\bmod p_{1}\right) \\
y & \equiv f_{1}\left(a_{2}\right)\left(\bmod p_{2}\right)
\end{aligned}
$$

(4)

$$
\left.\mathrm{u}=\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}-1\right)=\underset{2 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{~N}}}{\mathrm{H} \equiv \mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{r}}\right)\left(\bmod \mathrm{p}_{\mathrm{r}}\right)} \mathrm{p}^{2}-1\right)
$$

Proof. The $f_{1}\left(a_{1}\right)=1$, The number of elements of $f_{1}\left(a_{1}\right)$ is $\left(p_{1}-1\right)$;
The $f_{1}\left(a_{2}\right)=1,2$. The number of elements of $f_{1}\left(a_{2}\right)$ is $\left(p_{2}-1\right) ; \ldots$
The $f_{1}\left(a_{r}\right)=1,2, \ldots,\left(p_{r}-1\right)$. The number of elements of $f_{1}\left(a_{r}\right)$ is $\left(p_{r}-1\right)$.

When $i=1,2, \ldots$, r. we taking one element of the $f_{1}\left(a_{i}\right)$, We can obtain different system of congruences (3), The number of the different system of congruences (3) is $\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{r}-\right.$ $1)=u$.

By (3), if $\mathrm{y}<\mathrm{N}$, the y is not divisible by any prime not exceeding \sqrt{N}. The y is a prime.
Theorem 3 is proved.
Theorem 4. The v is number of solutions of system of congruences (5). When ($p_{r}+1$) $<\mathrm{y}<$ (N $-\mathrm{p}_{\mathrm{r}}-1$), the y and ($\mathrm{N}-\mathrm{y}$) are solutions of Goldbach's Conjecture (A).

$$
\begin{aligned}
(5) \mathrm{y} & \equiv \mathrm{f}_{2}\left(\mathrm{a}_{1}\right)\left(\bmod \mathrm{p}_{1}\right) \\
\mathrm{y} & \equiv \mathrm{f}_{2}\left(\mathrm{a}_{2}\right)\left(\bmod \mathrm{p}_{2}\right)
\end{aligned}
$$

$$
\mathrm{y} \equiv \mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{r}}\right)\left(\bmod \mathrm{p}_{\mathrm{r}}\right)
$$

(6) $\mathrm{v}=\Pi(\mathrm{p}-2) \quad \Pi \quad(\mathrm{p}-1)=\Pi \quad(\mathrm{p}-2) \quad \Pi \quad \frac{\mathrm{p}-1}{\mathrm{p}-2} \quad$ (get rid of $\mathrm{p}_{1}-1=1$ 。)

$$
\begin{aligned}
& (\mathrm{p}, \mathrm{~N})=1 \\
& 3 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{~N}} \quad 2 \stackrel{(\mathrm{p}, \mathrm{~N})=\mathrm{p}}{\approx} \leqslant \sqrt{\mathrm{~N}} \quad 3 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{~N}} \quad 3 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{~N}} .
\end{aligned}
$$

Proof. When $\left(N, p_{i}\right)=1$, The number of elements of $f_{2}\left(a_{i}\right)$ is $\left(p_{i}-2\right)$; When $\left(N, p_{i}\right)=p_{i}$, The number of elements of $\mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{i}}\right)$ is $\left(\mathrm{p}_{\mathrm{i}}-1\right)$. (When $\mathrm{p}_{\mathrm{i}}>2$, We have $\left(\mathrm{p}_{\mathrm{i}}-1\right)=\left(p_{\mathrm{i}}-2\right) \frac{p_{i}-1}{p_{i}-2}$.)

When $i=1,2, \ldots, r$. we taking one element of the $f_{2}\left(a_{i}\right)$, We can obtain different system of congruences (5), The number of the different system of congruences (5) is multiply Π ($\mathrm{p}_{\mathrm{i}}-2$) $\Pi\left(\mathrm{p}_{\mathrm{j}}-1\right)$. (See 6.)

By (5), if $\left(p_{r}+1\right)<y<\left(N-p_{r}-1\right)$, (1) Because $f_{2}\left(a_{i}\right) \neq 0$, by Theorem 3, the y is a prime; (2) Because $\mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{i}}\right) \neq \mathrm{N}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{N}$ and y are incongruent modulo $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{r}}$. By Theorem 2, the ($\mathrm{N}-\mathrm{y}$) is a prime. The y and ($\mathrm{N}-\mathrm{y}$) are solutions of Goldbach's Conjecture (A). Theorem 4 is proved.

4. The Proof of Goldbach's Conjecture (A).

Theorem 5. ($\mathrm{N}-\mathrm{p}$) must have prime.
Proof. ($\mathrm{N}-\mathbf{p}$) $>\mathrm{p}_{\mathrm{r}}$, Suppose ($\mathrm{N}-\mathbf{p}$) $=$ composite integer $=\mathrm{h}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} .\left(\mathrm{h}_{\mathrm{i}}>1\right.$.) We have $\mathbf{p}=\mathrm{N}-\mathrm{h}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\mathrm{N}\left(\mathrm{p}_{\mathrm{i}}\right)+\mathrm{np}_{\mathrm{i}}{ }^{-}$ $h_{i} p_{i}=N\left(p_{i}\right)+\left(n^{-} h_{i}\right) p_{i}$. The $\mathbf{p}=N\left(p_{i}\right)+\left(n^{-} h_{i}\right) p_{i}$ are in contradiction with $\mathbf{p}=f_{1}\left(a_{i}\right)+n p_{i}$. (The $N\left(p_{i}\right)$ is one of the $f_{1}\left(a_{i}\right)$.) The contradiction shows, that there are some primes in ($\mathrm{N}-\mathbf{p}$). Theorem 5 is proved.

Lemma 3. $\pi(\mathrm{N})=\varepsilon \mathrm{N} \quad \Pi \quad \frac{p-1}{p}$

$$
2 \leqslant p \leqslant \sqrt{N}
$$

Proof. The $\pi(\mathrm{N})$ and u are number of positive integer that are not divisible by any prime not exceeding \sqrt{N}.

Noticing $\frac{\pi(N)}{N} \neq \frac{u}{w_{r}}$, we have $\frac{\pi(N)}{N}=\varepsilon \frac{u}{w_{r}}$, and $\pi(\mathrm{N})=\varepsilon N \frac{u}{w_{r}}$. Lemma 3 is proved.
Theorem 6. The number of solutions of Goldbach's Conjecture (A) is increasing as $N \rightarrow \infty$. Proof. By Lemma 3, we have

$$
\begin{aligned}
1= & \Pi \frac{p}{p-1} \frac{p}{p-1} \times \Pi \frac{p-1}{p} \frac{p-1}{p} \\
& 2 \leqslant \mathrm{p} \leqslant \sqrt{\mathrm{~N}} \\
& \quad \Pi \quad \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N} \\
& =4 \quad \Pi \quad \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\end{aligned}
$$

$$
3 \leqslant p \leqslant \sqrt{N}
$$

The $\mathrm{N}(1,1)$ and v are number of positive integer that are not divisible by any prime not exceeding \sqrt{N}. Added to this, these positive integer and N are incongruent modulo p_{i}.

Noticing $\frac{N(1,1)}{N} \neq \frac{v}{w_{r}}$. We have $\frac{N(1,1)}{N}=\psi \frac{v}{w_{r}}$, and have (7).
(7) $\mathrm{N}(1,1)=\psi \frac{v}{w_{r}} \mathrm{~N}$

$$
\begin{aligned}
& =\psi \frac{N}{2} \quad \Pi \quad \frac{p-2}{p} \quad \Pi \quad \frac{p-1}{p-2} \quad \times 1 \\
& 3 \leqslant p \leqslant \sqrt{\mathrm{~N}} \quad 3 \leqslant \mathrm{p} \mid \mathrm{N}, \sqrt{\mathrm{~N}} \\
& =\frac{\psi}{\mathscr{E}} \frac{2 \pi(N) \pi(N)}{N} \Pi \quad \frac{p-2}{p-1} \frac{p}{p-1} \quad \Pi \quad \frac{\mathrm{p}-1}{\mathrm{p}-2} \\
& 3 \leqslant \mathrm{p}<\sqrt{\mathrm{N}} \quad \underset{3}{\mathrm{p} \mid \mathrm{N}} \underset{\mathrm{p}}{\mathrm{p}}\langle\sqrt{\mathrm{~N}} \\
& =\frac{\psi}{\varepsilon \varepsilon} \frac{2 \pi(N) \pi(N)}{N} \prod_{\left.\left(1-\frac{1}{(\mathrm{p}-1)^{2}}\right) \quad \Pi \frac{\mathrm{p}-1}{\mathrm{p}-2}{ }^{2}\right)} \\
& 3 \leqslant p<\sqrt{N} \quad \underset{3}{p} \leqslant \mathrm{~N}<\sqrt{\mathrm{N}}
\end{aligned}
$$

The $\frac{2 \pi(N) \pi(N)}{N} \Pi\left(1-\frac{1}{(\mathrm{p}-1)^{2}}\right) \quad \Pi \frac{\mathrm{p}-1}{\mathrm{p}-2} \sim \frac{2 \mathrm{~N}}{\ln ^{2} \mathrm{~N}} \quad \Pi\left(1-\frac{1}{(\mathrm{p}-1)^{2}}\right) \quad \Pi \frac{\mathrm{p}-1}{\mathrm{p}-2}(=$ $r_{2}(N)$. It is Hardy-Littewood's Conjecture (A).) The (7) is increasing as $N \rightarrow \infty$. Theorem 6 is proved.

The ε and ψ are some unknown particulars for Hardy-Littewood's Conjecture (A).

5. Discussion.

This Goldbach's Conjecture (A) the proof.
If $N \rightarrow \infty$, proof $\frac{\psi}{\varepsilon \varepsilon} \rightarrow 1$, Then Hardy-Littewood's Conjecture (A) is proved.
The others particulars of Hardy-Littewood's Conjecture (A) is still under discussion.

Reference material:

[1] Tong Xin Ping, Even formulae when calculating Goldbach Problem, Journal of youjiang teachers' college for nationalities, 1997, 3, 10-12.

