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Abstract: N = pi+ (N-p) = p+ (N-p). DIf p is congruent to N modulo pi, Then (N-p) is a
composite integer, When i=1, 2, ..., r, if p and N are incongruent modulo pi, Then
p and (N-p) are solutions of Goldbach’s Conjecture (A); @ By Chinese Remainder
Theorem we can calculate the primes and solutions of Goldbach’s Conjecture (A)
with different system of congruence; @The (N-p) must have solution of Goldbach’s
Conjecture (A), The number of solutions of Goldbach’s Conjecture (A) is increasing
as N—<, and finding unknown particulars for Hardy-Littewood’s Conjecture (A).
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Hardy-Littewood’s Conjecture (A).

“Every even positive integer greater than 2 can be written as the sum of two primes.” This
conjecture was stated by Christion Goldbach in a letter to Leonhard Euler in 1742.

Let pi<< JN , JN <p<N -/N . We have N= pi+ (N-pi)= p+ (N-p). QIf p is congruent to N

modulo pj, then (N-p) is a composite integer, (See Theorem 1.) When i=1, 2, ..., r, if p and N are
incongruent modulo p;, Then p and (N-p) are solutions of Goldbach’s Conjecture (A); (See
Theorem 2.) 2By Chinese Remainder Theorem, we can calculate the primes and solutions of
Goldbach’s Conjecture (A) with different system of congruence (3), (5). (See Theorem 3, 4.)
@The (N-p) must have solution of Goldbach’s Conjecture (A), (See Theorem 5.) The number of
solutions of Goldbach’s Conjecture (A) is increasing as N—<, (See Theorem 6.) and finding
unknown particulars for Hardy-Littewood’s Conjecture (A),(See Theorem 6.)

1, Term, Terminology, Symbol.
N — Even positive integers. Let 2<p;<p:< JN <pr+1 <N<p21<pipz...pr-

Pi, Pr, pr+1 — Prime number. i=1,2,3,...,r. r=1x (\/W).
(1) Wr=pip2**Pr 2<?<\/N :
p — Prime number. pr+1<p<(N- pr -1). We have (N- p)>p:. Every p can be written as p=
p(a) + npi. 1<p(ai)<pi-1.
p(aij) — Remainder that divided p by pi. 1<sp(aij)<pi-1.
Let fi(ai)=1,2,...,(pi"1).
p — All p. We have p= fi(aj) + np;, fi(ai)=1,2,...,(pir1).
Let N=p;+ (N-pi) = p+ (N-p), When N=98, 126, 128, ... The (N-pj)=composite integers. We
prove that (N-p) must have prime.
Lemma 1. If r=4, Then N<p2..1<pip2 ...pr =Wr.
When r<<4, we can finding pipz...pr<N, Therefore, This paper studies r=4, N=50.
N(aj) — Remainder that divided N by pi. We have N= N(aj) + npi. O<<N(aj)<p;-1.
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N(aij)r — A group of systematic remainders that divided N by pi, p2,..., pr. N(ai)r = N(a1),
N(a2),..., N(as). For example, N=90, r=4, 90(aj)4 = 90(a1), 90(a2),..., 90(a4) =0,0,0,6.

fo(a)) — Take N(ai) out of fi(aj), we can obtain fa(aj). @ When p;i | N, N(a)=0#f2(a;), the
number of element of f3(ai) is (pi~1); @ When (pi,N)=1, 0<N(aj)<pi-1. fi(a) =1,2,...,(pi"1). The
N(ai) is one element of fi(a;), The number element of f2(a;) is (pi—2).

N(1,1); — The number of solutions of Goldbach’s Conjecture (A) lying in the interval (O, pr
+1) and (N- pr -1,N).

N(1,1)r — The number of solutions of Goldbach’s Conjecture (A) lying in the interval ( p:r
+1,N- pr -1)01L.

N(1,1) (=r2(N)) — The number of solutions of Goldbach’s Conjecture (A) lying in the interval
(O,N). N(1,1)= N(1,1); +2 N(1,1)s.

2. Distinguish of Solutions of Goldbach’s Conjecture (A).

Theorem 1. If N is congruent to p modulo p;, Then the (N-p) is a composite integer.

Proof. N=p(mod pi), pi | (N-p), We have (N-p)=kpi. (k=1.) As before, (N- p)>pr, k>1, The (N-p) is
composite integer. Theorem 1 is proved.

Theorem 2. Ifi=1, 2, 3, ..., r. N and p are incongruent modulo p1, p2,..., pr. Then p and (N-p) are
solutions of Goldbach’s Conjecture (A).

Proof. i=1,2, 3, ..., r. N and p are incongruent modulo p1, p2,..., pr. In other words, the (N-p) is

not divisible by any prime not exceeding \/W . The (N-p) is a prime. The p and (N-p) are

solutions of Goldbach’s Conjecture (A). Theorem 2 is proved.

3. Finding Primes and Solutions of Goldbach’s Conjecture (A).

Lemma 2. The Chinese Remainder Theorem . Let m;, my, ..., m; be pairwise relatively
prime positive integers. Then the system of congruences
(2) x=ai(mod m),
x=az(mod m,),

x=ay(mod my,),
has a unique solution modulo M=mim....m,.
Theorem 3. The u is number of solutions of system of congruences (3). When y<N, the y is a
prime.
(3) y=fi(ai) (mod p1)
y=fi(az) (mod po)

y=fi(ar) (mod px)
4) u=(PEi—E—D...(pr—1= I _ (p-1)

2<p<</N
Proof. The fi(a1)=1, The number of elements of fi(ai) is (pi-1);
The fi(a2)=1,2. The number of elements of fi(a2) is (p2-1); ...
The fi(ar)=1,2,..., (pr-1). The number of elements of fi(a;) is (p-1).
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When i=1,2,..., r. we taking one element of the fi(aj), We can obtain different system of
congruences (3), The number of the different system of congruences (3) is (p1—1)(p2—1)...(pr—
1)=u.

By (3), if y<N, the y is not divisible by any prime not exceeding VN . The y is a prime.

Theorem 3 is proved.
Theorem 4. The v is number of solutions of system of congruences (5). When (pr+1)<y<<(N
-pr-1), the y and (N-y) are solutions of Goldbach’s Conjecture (A).
(5) y=fz(a1) (mod p1)
y=fa(az) (mod po)

y=fa(as) (mod py)
6) v= I (p2) I (p-1)= I (p-2) II p-1 (get rid of pi-1=1. )

p-2
(p, N) (p,N)= N
p\p\\/ﬁ 22 p<AN 3<p<AN SSPL‘)S\/_N
Proof. When (N, pi)=1, The number of elements of f>(a;) is (pi-2); When (N, pi)= pi, The number of

elements of fa(a;) is (pi-1). ( When pi>2, We have (pi-1)=( pi—Q)EI—_; )
P —

When i=1,2,...,r. we taking one element of the fz(aj), We can obtain different system of
congruences (5), The number of the different system of congruences (5) is multiply IT (p;-2) IT (p;-1).
(See 6.)

By (5), if (pr+1)<y< (N-pr-1), @ Because fi(ai)#0, by Theorem 3, the y is a prime; @
Because fz(ai)#N(ai), N and y are incongruent modulo pi, p2,..., pr. By Theorem 2, the (N-y) is a
prime. The y and (N-y) are solutions of Goldbach’s Conjecture (A). Theorem 4 is proved.

4. The Proof of Goldbach’s Conjecture (A).

Theorem 5. (N-p) must have prime.

Proof. (N-p)>pr, Suppose (N-p)=composite integer=hip;. (hi>>1.) We have p=N-hip;= N(p)) + npi~
hipi= N(p) + (n— hi)pi. The p= N(p:) + (n— hj)p; are in contradiction with p= fi(ai) + npi. (The N(pi) is
one of the fi(aj). ) The contradiction shows, that there are some primes in (N-p). Theorem 5 is
proved.

g P
p

Lemma3. ©n (N)= ¢N

2<p<N
Proof. The n(N)and u are number of positive integer that are not divisible by any prime not

exceeding JIN .
7(N) , u 7(N)

u u
Noticing ——— # —, we have =¢ —, and 71 (N)=¢ N—. Lemma 3 is proved.
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Theorem 6. The number of solutions of Goldbach’s Conjecture (A) is increasing as N— .
Proof. By Lemma 3, we have
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The N(1,1) and v are number of positive integer that are not divisible by any prime not

exceeding +N . Added to this, these positive integer and N are incongruent modulo p;.

Noticing ﬁi— We have N =\|!l, and have (7).
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r,(N). It is Hardy-Littewood’s Conjecture (A). ) The (7) is increasing as N—c°. Theorem 6 is
proved.
The ¢ and y are some unknown particulars for Hardy-Littewood’s Conjecture (A).

5. Discussion.
This Goldbach’s Conjecture (A) the proof.

If N—eo, proof Y. 1, Then Hardy-Littewood’s Conjecture (A) is proved.
&

The others particulars of Hardy-Littewood’s Conjecture (A) is still under discussion.
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