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Abstract

Novel static, time-dependent and spatial-temporal solutions of Einstein field
equations, displaying singularities, with and without horizons, and in several di-
mensions are found based on a dimensional reduction procedure widely used in
Kaluza-Klein type theories. The Kerr-Newman black-hole entropy as well as the
Reissner-Nordstrom, Kerr and Schwarzschild black-hole entropy are derived from
the corresponding Euclideanized actions. A very special cosmological model based
on the dynamical interior geometry of a Black Hole is found that has no singular-
ities at t = 0 due to the smoothing of the mass distribution. We conclude with
another cosmological model equipped also with a dynamical horizon and which is
related to Vaidya’s metric (associated with the Hawking-radiation of black holes)
by interchanging t↔ r which might render our universe as a dynamical black hole.

1 Introduction

The static spherically symmetric solutions to Einstein’s field (vacuum) equations have
been known for a long time and were found by Schwarzschild, Hilbert and which furnished
the modern concept of a black-hole. The formation of trapped surfaces in spherically
symmetric gravitational collapse leading to black holes can be viewed in terms of how
much mass is there within a given area-radius of the matter cloud. In order to avoid
trapped surface formation (a horizon) there must be a mechanism available to throw
away and radiate the mass so that the total mass in a shell of comoving radius r, at an
epoch t, does not exceed the size of the physical area radius determining the size of the
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apparent horizon, at any given time t. It was found by [5] that the physical mechanism
for the formation of a naked singularity was due to the presence of shear which delays
the formation of the apparent horizon. It was also found by [6] that loss of matter due to
heat flux prevents the trapped surface formation and a naked singularity is formed at the
end state of the gravitational collapse. The latter authors considered a scenario where the
interior spacetime, described by a heat conducting fluid sphere, is matched to a Vaidya
metric in higher dimensions. The non-occurrence of a horizon is due to the fact that the
rate of mass loss is exactly counterbalanced by the decrease of the boundary area-radius.
These results posed a counter example to the so-called cosmic censorship hypothesis [44]
that still remains a mathematically unproven conjecture to our knowledge.

In this work we shall construct static, time-dependent and spatial-temporal solutions,
with/without horizons and displaying singularities, based on the dimensional reduction
procedure widely used in Kaluza-Klein type theories. Motivated by the above observa-
tions, we firstly review the work of of [1], [2], [3],[4] where it was shown why Gravity in
D = d+n dimensions can be interpreted as a d-dim Yang-Mills-like gauge theory of diffeo-
morphisms of an internal n-dim space interacting with a gauged non-linear sigma model
field. We explain how the ”vacuum” solutions Aµ = 0 yield the same functional form of
the Schwarzschild metric in the advanced and retarded temporal Eddington-Finkelstein
coordinates form, and which in turn, lead to the Fronsdal-Kruskal-Szekeres expression of
the metric in the region r < 2GM .

In the next sections 3, 4, 5, 6 we find static, time-dependent and spatial-temporal
vacuum solutions, simplifying enormously the earlier calculations by [1], [2], [3], [4] when
the metric can be written in block diagonal form resulting from setting the gauge field of
diffeomorphisms Aµ = 0. In section 3 we study the decomposition of the Einstein-Hilbert
action in D = d + (D − d) dimensions, with d = p + q and n = D − d followed by
section 4 where we employ the methods of section 3 in the particular case when d = 1+1
and show that our results agree with the 1 + 1 dilaton-gravity action reported in the
literature. Vacuum solutions to Einstein’s field equations in spacetimes with signature
(+, +,−,−) which are the hyperbolic version of Schwarzschild’s solution containing a
conical singularity at r = 0 were found by [8]. In section 5 we solve the vacuum field
equations in a very straightforward fashion compared to the standard methods in the
literature leading directly to the most general version of the Schwarzschild solution in
any dimension. In particular, we review the derivation [20], [21] of the Black-Hole area-
entropy relation starting from the Euclidean gravitational action associated with a point-
mass delta function source and provide the action-entropy relations in the case of the
Reissner-Nordstrom and Kerr-Newman solutions.

In section 6 novel spatial-temporal vacuum solutions to Einstein’s field equations are
found and their physical interpretation is discussed. It is shown that horizonless solutions
occur when ϕo > 0, t ± r ≥ 0 or when ϕo < 0, t ± r ≤ 0, where ϕo is an integration
constant of length dimensions. The singularity at t ± r = 0 is timelike and is visible
to an observer. The existence of horizons occurs when ϕo > 0, t ± r ≤ 0 or when
ϕo < 0, t± r ≥ 0. The singularity at t± r = 0 is spacelike and would be hidden behind
the horizons at t ± r = −ϕo for observers in the regions |t ± r| > |ϕo|. In particular,
we also recover the Kantowski-Sachs metric which is the t-relative of the Schwarzschild
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solution and find a 4D metric inspired from the Janus geometry in 3D.
In the final section 7 a very peculiar cosmological model based on the dynamical

interior geometry of a Black Hole is found and that has no singularities at t = 0 due to
the smoothing of the mass distribution. We conclude with another cosmological model
equipped also with a dynamical horizon and which is related to the Vaidya’s metric
(associated with the Hawking-radiation of black holes) by interchanging t ↔ r which
might render our universe as a dynamical black hole [43]. The physical implications of
our novel cosmological solutions in section 7 that are well behaved at t = 0 deserve
further investigation.

2 Gravity as Gauge Theory of the Diffeomorphism

Group

Some time ago, it was shown by [1], [2], [3], [4] that a Kaluza-Klein formalism of Einstein’s
theory, based on the (2, 2)-fibration of a generic 4-dimensional spacetime, describes Gen-
eral Relativity as a Yang-Mills gauge theory on the 2-dimensional base manifold, where
the local gauge symmetry is the group of the diffeomorphisms of the 2-dimensional fibre
manifold. They found the Schwarzschild solution by solving the field equations after a
very laborious procedure. Their formalism was valid for any (d, n) fibration of the the
D-dim spacetime D = d + n and allowed [11], [12] to provide a new realization of the
Maldacena-Susskind-’t Hooft holographic principle.

The line element of [1], [2], [3], [4]

ds2 = gab dya dyb + (gµν + gab Aa
µ Ab

ν) dxµ dxν + 2gab Ab
µ dxµ dya. (2.1)

in light cone coordinates

u =
1√
2

(t + r), v =
1√
2

(t− r). (2.2)

Aa
u =

1√
2

(Aa
t + Aa

r), Aa
v =

1√
2

(Aa
t − Aa

r). (2.3)

after using the Polyakov ansatz :

gµν =

(
−2 h(t, r) −1
−1 0

)
, (2.4)

becomes

ds2 = gab dya dyb − 2du dv − 2h(u) du2 +

gab (Aa
udu + Ab

vdv) (Ab
udu + Ab

vdv) + 2gab (Aa
udu + Ab

vdv) dya. (2.5)

Upon setting gab = eσ ρab such that det ρab = 1 and after a very laborious calculation
Yoon [2] arrived finally at the expression for the scalar curvature in light-cone coordinates
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R = − 1

2
e2σ ρab F a

+− F b
+− + eσ R2 + eσ D+σ D−σ −

1

2
eσ ρab ρcd (D+ρab) (D−ρcd) +

1

2
eσ ρab ρcd (D+ρac) (D−ρbd) +

2h++ eσ [ D2
−σ +

1

2
(D−σ)2 +

1

4
ρab ρcd (D−ρac) (D−ρbd) ] (2.6)

plus surface terms. The Lie-bracket is

[ Aµ , gab ] = (∂a Ac
µ(xµ, ya)) gbc(x

µ, ya) + (∂b Ac
µ(xµ, ya)) gac(x

µ, ya) +

Ac
µ(xµ, ya) ∂c gab(x

µ, ya). (2.7)

the Yang-Mills-like field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ − [Aµ, Aν ]

a =

∂µA
a
ν − ∂νA

a
µ − Ac

µ∂cA
a
ν + Ac

ν∂cA
a
µ. (2.8)

The covariant derivative of a tensor density ρab with weight 1 is

Dµ ρab = ∂µ ρab − [ Aµ , ρ ]ab + (∂cA
c
µ) ρab =

∂µ ρab − Ac
µ∂c ρab − (∂aA

c
µ) ρcb − (∂bA

c
µ) ρac + (∂cA

c
µ) ρab. (2.9)

the covariant derivative on the scalar density Ω = eσ of weight −1 is

DµΩ = ∂µΩ − Aa
µ∂aΩ − (∂aA

a
µ)Ω ⇒ . (2.10)

Dµσ = ∂µσ − Aa
µ∂aσ − (∂aA

a
µ). (2.11)

after factoring the eσ terms.
The authors [1] were able to solve the equations of motion associated with the Einstein-

Hilbert action

S =
∫

du dv d2y R. (2.12)

by varying the Einstein-Hilbert action before imposing the gauge fixing conditions (2.4)
and det ρab = 1 giving a total of 10 equations for the 10 fields σ, h++, h−−, Aa

+, Aa
−, ρab

with a, b = 1, 2. These 10 fields match the same number of idependent components of the
metric gµν in 4D. After a very laborious procedure the authors found solutions for the
”vacuum” field configurations Aa

+ = 0, Aa
− = 0 given by

ds2 = 2 du dv − (1− 2GM

u
) dv2 + u2 dΩ2. (2.13)

ds2 = − 2 du dv − (1− 2GM

v
) du2 + v2 dΩ2. (2.14)

which have the same functional form as the Schwarzschild solution in the retarded and
advanced temporal Eddington-Finkelstein coordinates, u = t− r∗, v = t + r∗
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ds2 = 2 dr dv − (1− 2GM

r
) dv2 + r2 dΩ2. (2.15)

ds2 = − 2 du dr − (1− 2GM

r
) du2 + r2 dΩ2. (2.16)

with the subtle technicality that r∗ appearing in the definitions u = t − r∗, v = t + r∗ in
eqs-(2.15, 2.16) is the tortoise radial coordinate r∗(r) given by∫

dr∗ =
∫ dr

1− 2GM/r
⇒ r∗ = r + 2GM ln | r

2GM
− 1|. (2.17)

It is well known [7] that one can introduce afterwards the Fronsdal-Kruskal-Szekeres
coordinates [16], [17], [18] in terms of the Eddington-Finkelstein coordinates after the
series of steps

u = t− r∗, v = t + r∗, W = − e−u/4GM , Z = ev/4GM

dW dZ = − WZ

(4GM)2
du dv ⇒ du dv = − (4GM)2

WZ
dW dZ (2.18a)

such that the metric in the form eq-(2.15, 2.16) can be rewritten in double null coordinates
u, v as

ds2 = − (1− 2GM

r
) du dv + r2 dΩ2 = − 2GM

r
e(v−u)/4GM e−r/2GM du dv + r2 dΩ2 =

− 4(2GM)3

r
e−r/2GM dW dZ + r2 dΩ2. (2.18b)

By defining W = V +U and Z = V −U the Fronsdal-Kruskal-Szekeres expression for the
metric is then given by

ds2 = − 4(2GM)3

r(U, V )
e−r(U,V )/2GM ( dV 2 − dU2 ) + r2(U, V ) (dΩ)2. (2.18c)

with dΩ2 = dφ2 + sin2φ dθ2 and where r = r(U, V ) is a function of the two coordinates
U, V which is implicitly given by the relations

U = (
r

2GM
− 1)1/2 er/4GM cosh (t/4GM); V = (

r

2GM
− 1)1/2 er/4GM sinh (t/4GM).

(2.19)

U2 − V 2 = (
r

2GM
− 1) er/2GM . (2.20)

Therefore, the solution in the interior region r < 2GM is no longer static. At the horizon
r = 2GM one has the null lines U = ±V corresponding to t = ±∞ respectively. Notice
that one does not know the explicit analytical expression for r = r(U, V ). One only knows
the converse relations U = U(r, t) and V = V (r, t).
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The metric (2.18c) in the r, t coordinates is

ds2 = − 4(2GM)3

r
e−r/2GM [ (Vr dr + Vt dt)2 − (Ur dr + Ut dt)2 ] + r2 (dΩ)2 =

− 4(2GM)3

r
e−r/2GM [ (Vr dr)2 +(Vt dt)2 −(Ur dr)2 −(Ut dt)2 +(2VrVt−2VrVt) dr dt ]

+ r2 (dΩ)2. (2.21)

where the partial derivatives

Ur =
∂U

∂r
, Ut =

∂U

∂t
, Vr =

∂V

∂r
, Vt =

∂V

∂t
. (2.22)

are known from the defining relations of eq-(2.19). The metric acquires the form

ds2 = − 4(2GM)3

r
e−r/2GM [ A(r, t) dt2 + B(r, t) dr2 + C(r, t) drdt ] + r2 (dΩ)2. (2.23)

with

A(r, t) = (Vt)
2 − (Ut)

2, B(r, t) = (Vr)
2 − (Ur)

2

C(r, t) = 2VrVt − 2UrUt. (2.24)

After straightforward algebra, due to the identity cosh2(x)−sinh2(x) = 1, one recovers
from the above eqs-(2.23, 2.24) the original Schwarzschild metric as expected

ds2 = − (1− 2GM

r
) dt2 +

dr2

(1− 2GM
r

)
+ r2(dΩ)2. (2.25)

The reason why there is no physical singularity at r = 2GM is because all the world
lines trajectories upon reaching the horizon r = 2GM at t = ∞ have the property that
dr2 = 0. Therefore, (1 − 2GM/r)−1 (dr)2 = 0

0
= undetermined at r = 2GM . There is

no singularity at r = 2GM in the Fronsdal-Kruskal-Szekeres expression for the metric
(2.18c); the singularity is diverted into the Jacobian (it is singular at r = 2GM) resulting
from the coordinate transformations from the (U, V ) to the (r, t) variables, and for this
reason the singularity at r = 2GM is just a coordinate singularity. The true physical
singularity lies at r = 0.

To sum up, we have revised the work of [1], [2], [3], [4] and discussed how their
”vacuum” solutions Aa

+ = 0, Aa
− = 0 yield the same functional form of the Schwarzschild

solution in the advanced and retarded temporal Eddington-Finkelstein coordinates form,
and which in turn, leads to the Fronsdal-Kruskal-Szekeres expression of the metric in the
region r < 2GM . In the next sections we shall find static and time-dependent vacuum
solutions directly by setting the terms Aa

µ = 0 in eq-(2.1) simplifying enormously the
earlier calculations by [1], [2], [3], [4] .
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3 d=p+q dimensions from D=d+n dimensions

Let us now consider a D-dimensional manifold MD, with associated metric γ(x, y)
given by (2.1). We shall assume that γAB can be reduced to

γAB =

(
gµν 0
0 gab

)
, (3.1)

where µ, ν = {0, 1, 2, d− 1}, a, b = {d, d + 1, ..., D − 1}, gµν only depends on xµ and
gab = ϕ2(xµ)g̃ab, with g̃ab = g̃ab(y

c).
The non vanishing Christoffel symbols,

ΓA
BC =

1

2
γAD(γDB,C + γDC,B − γBC,D), (3.2)

are

Γµ
να = Γ̂µ

να,

Γµ
ab = −ϕϕ′µg̃ab,

Γa
µb = ϕ−1ϕ,µδ

a
b ,

Γa
bc = Γ̃a

bc,

(3.3)

where Γ̂µ
να and Γ̃a

bc are the Christoffel symbols associated with gµν and g̃ab, respectively.
The nonvanishing components of the Riemann tensor are

Rµ
ναβ = R̂µ

ναβ,

Rµ
aνb = −ϕDνϕ

′µg̃ab,

Ra
bcd = R̂a

bcd − ϕ′µϕ,µ(δa
c g̃bd − δa

d g̃bc).

(3.4)

where Dν is the covariant derivative w.r.t the connection Γ̂µ
να associated with gµν . From

here, we get the nonvanishing components of the Ricci tensor

Rµν = R̂µν − (D − d)ϕ−1Dνϕ,µ,

Rab = R̃ab − ϕDµϕ
′µg̃ab − (D − d− 1)ϕ′µϕ,µg̃ab.

(3.5)

So, we get that the Ricci scalar is

R = R̂− 2(D − d)ϕ−1Dµϕ
′µ + ϕ−2R̃− (D − d)(D − d− 1)ϕ−2ϕ′µϕ,µ, (3.6)

where R̂ = gµνR̂µν and R̃ = g̃abR̃ab.
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Therefore, up to a total derivative we have

S =
∫

dDx
√
−γR = VD−d

∫
ddx
√
−ĝ{ϕD−dR̂ + κ(D − d)(D − d− 1)ϕD−d−2

+(D − d)(D − d− 1)ϕD−d−2ϕ′µϕ,µ}.
(3.7)

Here,

VD−d =
∫

dD−dx
√

g̃. (3.8)

We also assume a homogeneous space for the metric g̃ab, with R̃ = κ(D − d)(D − d− 1)
and κ = {−1, 1}. It is remarkable that the final result (3.7) does not depend either of the
signature p + q nor the signature d + n.

The field equations derived from (3.7) are

ϕD−d(R̂µν − 1
2
gµνR̂)− (D − d)ϕD−d−1Dµϕ,ν

+1
2
gµν [(D − d)(D − d− 1)ϕD−d−2ϕ′αϕ,α + 2(D − d)ϕD−d−1Dαϕ′α

−k(D − d)(D − d− 1)ϕD−d−2] = 0

(3.9)

and

ϕD−d−1R̂ + κ(D − d)(D − d− 1)(D − d− 2)ϕD−d−3

−(D − d)(D − d− 1)(D − d− 2)ϕD−d−3ϕ′µϕ,µ

−2(D − d)(D − d− 1)ϕD−d−2Dµϕ
′µ) = 0.

(3.10)

It is interesting that a considerable simplification of these field equations can be obtained
when D = d+1. In fact from (3.10) we see that when D = d+1 one obtains the intriguing
result R̂ = 0.

Eliminating the factor ϕD−d we can simplify (3.9) in the form

R̂µν − 1
2
gµνR̂− (D − d)ϕ−1Dµϕ,ν

+1
2
gµν [(D − d)(D − d− 1)ϕ−2ϕ′αϕ,α + 2(D − d)ϕ−1Dαϕ′α

−k(D − d)(D − d− 1)ϕ−2] = 0,

(3.11)

while eliminating the factor ϕD−d−1 (3.10) becomes

R̂ + κ(D − d)(D − d− 1)(D − d− 2)ϕ−2

−(D − d)(D − d− 1)(D − d− 2)ϕ−2ϕ′µϕ,µ

−2(D − d)(D − d− 1)ϕ−1Dµϕ
′µ = 0.

(3.12)
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4 1+1 dimensions from D-dimensional theory

Let us now consider the case d = 2, with p = 1 and q = 1. We still assume a D-
dimensional manifold MD, with associated metric γ(x, y) given by (2.1). In fact we shall
consider that γAB can be reduced to

γAB =

(
gµν 0
0 gab

)
, (4.1)

where µ, ν = {0, 1}, a, b = {2, 3, ..., D − 1}, gµν only depends on xµ and gab = ϕ2(xµ)g̃ab,
with g̃ab = g̃ab(y

c).
From (3.5) we get the nonvanishing components of the Ricci tensor

Rµν = R̂µν − (D − 2)ϕ−1Dνϕ,µ,

Rab = R̃ab − ϕDµϕ
′µg̃ab − (D − 3)ϕ′µϕ,µg̃ab.

(4.2)

So, we obtain the Ricci scalar

R = R̂− 2(D − 2)ϕ−1Dµϕ
′µ + ϕ−2R̃− (D − 2)(D − 3)ϕ−2ϕ′µϕ,µ, (4.3)

where R̂ = gµνR̂µν and R̃ = g̃abR̃ab.
Therefore, up to a total derivative we have

S =
∫

d2x
√
−gR = VD−2

∫
d2x
√
−ĝ{ϕD−2R̂ + κ(D − 2)(D − 3)ϕD−4

+(D − 2)(D − 3)ϕD−4ϕ′µϕ,µ}.
(4.4)

Here,

VD−2 =
∫

dD−2x
√

g̃. (4.5)

We also assume a homogeneous space for the metric g̃ab, with R̃ = κ(D − 2)(D − 3) and
κ = {−1, 1}.

We observe that (4.4) can also be written as

S =
∫

dtL, (4.6)

where the Lagrangian L is given by

L = VD−2

∫
dx1

√
−ĝ{ϕD−2R̂+κ(D−2)(D−3)ϕD−4 +(D−2)(D−3)ϕD−4ϕ′µϕ,µ}. (4.7)

In the particular case of four dimensions, D = 4, eqs (4.4) and (4.7) are reduced to

S =
∫

d2x
√
−gR = V2

∫
d2x

√
−ĝ(ϕ2R̂ + +2ϕ′µϕ,µ + 2κ) (4.8)
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and

L =
∫

dx1
√
−ĝ{ϕ2R̂ + 2ϕ′µϕ,µ + 2κ}, (4.9)

respectively.

5 Static Black Holes and the Euclidean Action-

Entropy Relation

5.1 The Hilbert-Schwarzschild solution and Black Hole Entropy

To find static black hole solutions, for this purpose we assume

gµν =

(
−eµ 0
0 eν

)
, (5.1)

with µ = µ(r) and ν = ν(r), with r = x1. We shall also assume that ϕ = ϕ(r).
It is not difficult to see that

R̂00 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′), (5.2)

D0ϕ,0 = −1

2
eµ−νµ′ϕ′, (5.3)

R̂11 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′, (5.4)

and

D1ϕ,1 = ϕ′′ − 1

2
ν ′ϕ′. (5.5)

Thus, the field equations obtained from (4.2) yield

R00 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′

ϕ′

ϕ
) = 0, (5.6)

R11 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′

ϕ′

ϕ
− ϕ′′

ϕ
) = 0 (5.7)

and

Rab = {κ(D − 3) + e−ν [
1

2
(ν ′ − µ′)ϕϕ′ − ϕϕ′′ − (D − 3)ϕ′2]}g̃ab = 0. (5.8)

We recognize in (5.6), (5.7) and (5.8) the field equations for a static black hole . In fact,
by using the combination

e−µR00 + e−νR11 = 0 (5.9)
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we get

µ′ + ν ′ =
2ϕ′′

ϕ′
. (5.10)

The solution of this equation is

µ + ν = ln ϕ′2 + a, (5.11)

where a is a constant.
Substituting (5.10) into the equation (5.8) we find

e−ν(ν ′ϕϕ′ − 2ϕϕ′′ − (D − 3)ϕ′2) = −k(D − 3) (5.12)

or

γ′ϕϕ′ + 2γϕϕ′′ + (D − 3)γϕ′2 = k(D − 3), (5.13)

where

γ = e−ν . (5.14)

The solution of (5.13) for an ordinary D-dim spacetime (one temporal dimension) corre-
sponding to a (D − 2)-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2ϕD−3
) (

dϕ

dr
)−2 ⇒

g11 = eν = (1− 16πGDM

(D − 2)ΩD−2ϕD−3
)−1 (

dϕ

dr
)2, (5.15)

where ΩD−2 is the appropriate solid angle in (D−2)-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(5.15)
the 4-dim Schwarzchild solution. The solution in eq-(5.15) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the (D − 2)-dim homogeneous space we should write

−ν = ln(k − βDGDM

ϕD−3
)− 2 ln ϕ′. (5.16)

where βD is a constant and GD is the gravitational constant in D-dim. Thus, according
to (5.11) we get

µ = ln(k − βDGDM

ϕD−3
) + constant. (5.17)

We can set the constant to zero, and this means the line element can be written as

ds2 = −(k − βDGDM

ϕD−3
)(dt)2 +

(dϕ/dr)2

(k − βDGDM
ϕD−3 )

(dr)2 + ϕ2(r) g̃ab dξa dξb. (5.18)
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An important aspect is that, by taking for instance (5.7), the equations (5.6) and (5.8) do
not determine the form of ϕ(r). [13], [14], [15], [19]. It is also interesting to observe that the
only effect of the homogeneous metric g̃ab is reflected in the k = ±1 parameter, associated
with a positive (negative) constant scalar curvature of the homogeneous (D−2)-dim space.
There are two interesting cases to study based on the boundary conditions obeyed by ϕ(r)
: ( i ) the Hilbert textbook (black hole) solution when ϕ(r) = r obeying ϕ(r = 0) = 0,
ϕ(r → ∞) → r. And : ( ii ) the Abrams-Brillouin-Schwarzschild radial gauge [14], [15],
[19] based on choosing the cutoff ϕ(r = 0) = 2GM such that gtt(r = 0) = 0 which
apparently seems to ”eliminate” the horizon and ϕ(r → ∞) → r. The original solution
of 1916 found by Schwarzschild was based on the choice ϕ(r) = [r3 + (2GM)3]1/3.

However, the choice ϕ(r = 0) = 2GM has a serious flaw and is : How is it
possible for a point-mass at r = 0 to have a non-zero area 4π(2GM)2 and a zero vol-
ume simultaneously ? so it seems that one is forced to choose the Hilbert gauge [16]
ϕ(r) = r such ϕ(r = 0) = 0. Nevertheless it was shown [20], [21] that by choosing a
judicious choice of ϕ(r) one can cure this flaw and have the correct boundary condition
ϕ(r = 0) = 0 while displacing the horizon from r = 2GM to a location arbitrarily close
to r = 0 as one desires, rh → 0, and where stringy geometry and Quantum Gravitational
effects begin to take place.

A very straightforward solution to this cut-off problem was found in [20], [21] by
choosing a radial gauge function like ϕ(r) = r + 2GMΘ(r), where the Heaviside Step
function 1 is defined Θ(r) = 1 when r > 0, Θ(r) = −1 when r < 0 and Θ(r = 0) = 0
(the arithmetic mean of the values at r > 0 and r < 0). When ϕ ∼ r for r >> 2GM
and one recovers the correct Newtonian limit in the asymptotic regime. It is now, via the
Heaviside step function, that we may maintain the correct behaviour ϕ(r = 0) = 0, when
r = 0, consistent with our intuitive notion that the spatial area and spatial volume of a
point r = 0 has to be zero.

Since the notion of distance and separation of spacetime points only has meaning
when it is referred to a gravitational field (metric) [30], [31], [32] when one has a metric
of the form gµν [(ϕ(r)], it means that after performing the mapping from r to ϕ(r) in the
spacetime manifold M, a void (hole) surrounding ϕ = r = 0 forms; i.e. a void in the
region 0 < ϕ < 2GM with the singularity remaining at the center r = 0 = ϕ(r = 0) = 0
and a ring extending from ϕ = 2GM to ϕ = r = ∞ ( when M = finite ). In the r-
coordinates picture there is a discontinuity of the metric (and scalar curvature) at r = 0,
the location of the point mass source. Because this is an infinitely compact source there
is nothing wrong with having a discontinuity of the metric at r = 0. In the ϕ-coordinate
picture, due to the correct condition ϕ(r = 0) = 0 consistent with the fact that a point
must have zero area (since Θ(r = 0) = 0), one can interpret the discontinuity of the
metric as if the region of 0 < ϕ < 2GM were eliminated from the spacetime manifold to
make the surface at ϕ = 2GM a boundary of the spacetime while leaving the singularity
at r = 0 behind.

The solutions [20], [21] had these salient features
• One is not gluing solutions with M < 0 into the region r > 2G|M |. The mass

1We thank Michael Ibison for pointing out the importance of the Heaviside step function and the use
of the modulus |r| to account for point mass sources at r = 0 .
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parameter M > 0. If one wishes to be strictly rigorous one may write the radial function
as ϕ(r) = r + 2G|M |Θ(r) to ensure that ϕ(r < 0) = −ϕ(r > 0) < 0 and that solutions
with r < 0, M > 0 have a one-to-one correspondence to the solutions with r > 0, M < 0
because | −M | = |M |. The latter M < 0 repulsive gravity regime is what it is called a
”white” hole.

• It is shown explicitly that when one plugs eq-(5.15) directly into eqs-(5.13, 5.14) and
despite that the derivatives dϕ

dr
= 1+2G|M |δ(r) and (d2ϕ/dr2) = 2G|M |δ′(r) are singular

at r = 0, there is an exact and precise cancellation of these singular derivatives (and the
ordinary derivatives of any radial function ϕ(r)) in eq-(5.13) ; i.e. the latter eq-(5.13)
is satisfied for any radial function, irrespective if it has singular derivatives at r = 0 or
not, for the solutions given by eq-(5.14, 5.15). Speaking of singular derivatives, it is well
known that the Jacobian from the Fronsdal-Kruskal-Szekeres coordinates U, V to the r, t
coordinates is singular at the horizon r = 2GM .

• There is a discontinuity of the metric at r = 0 where the magnitude of the gtt

component jumps from 0 to ∞ at r = 0 in the same fashion that the scalar curvature
jumps from 0 to ∞ at r = 0 due to the presence of the point mass at r = 0. Such
discontinuity of the metric at r = 0 is due to the discontinuity of the radial function given
by ϕ(r = 0) = 0, ϕ(r = 0+) = 2GM .

• Having ϕ(r = 0) = 0 and ϕ(r = 0+) = 2GM , our solutions near the singularity can
be represented by the right and left regions (quadrants) of the Rindler-wedge formed by
the straight (null) lines r = 0+, t = +∞ and r = 0+, t = −∞ at +45,−45 degrees re-
spectively. These (null) lines should be compared with the (null) lines r = 2GM, t = ±∞
corresponding to the text-book solution after performing the Fronsdal-Kruskal-Szekeres
change of coordinates [16], [17], [18]

U = (
r

2GM
− 1)

1
2 er/4GM cosh (

t

4GM
), V = (

r

2GM
− 1)

1
2 er/4GM sinh (

t

4GM
) ⇒

U2 − V 2 = (
r

2GM
− 1) er/2GM . (5.19)

leading to a metric

ds2 = − 4(2GM)3

r
e−r/2GM (dV 2 − dU2 ) + r2(dΩ)2. (5.20)

In our case we must replace r → ϕ in eqs-(5.19, 5.20)

U = (
ϕ

2GM
− 1)

1
2 eϕ/4GM cosh (

t

4GM
), V = (

ϕ

2GM
− 1)

1
2 eϕ/4GM sinh (

t

4GM
) ⇒

U2 − V 2 = (
ϕ

2GM
− 1) eϕ/2GM . (5.21)

leading to a metric

ds2 = − 4(2GM)3

ϕ(U, V )
e−ϕ(U,V )/2GM (dV 2 − dU2 ) + ϕ2(U, V ) (dΩ)2. (5.22)
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such that an incoming photon, starting at point P in the right region (quadrant) of
the Rindler wedge, moves upwards parallel to the −45 degrees null-line and reaches the
null-line branch given by r = 0+, ϕ(r = 0+) = 2GM at t = ∞, as measured by an
asymptotic observer, at point P ′. Then it tunnels through the spacetime void and reaches
the spacelike singularity ϕ(r = 0) = 0 at point P ′′. This tunneling behaviour from P ′ to
P ′′ is a direct consequence of the discontinuity of the metric at r = 0. Similar behaviour
occurs for an infalling timelike path starting at Q : it reaches the null-line branch given
by r = 0+, ϕ(r = 0+) = 2GM , t = ∞ at point Q′. Then it tunnels through the spacetime
void reaching the spacelike singularity ϕ(r = 0) = 0 at point Q′′.

In essence, the singularity r = 0 has been spliced-off from the rest of spacetime by
carving out the future and past regions (quadrants) of the Rindler wedge (creating a
spacetime void) leaving only the right and left regions (quadrants) bounded by the null
lines r = 0+, ϕ(r = 0+) = 2GM at t = ±∞. The fact that we end up only with the left
and right regions of the Rindler wedge might have some relationship to the factor of two
discrepancy of the Hawking radiation temperature which appears when working with the
left-right versus the future-right regions of the Rindler wedge [33].

• Due to the discontinuity of the metric eq-(5.18) at r = 0, the location r = 0, ϕ(r =
0) = 0 corresponds to a spacelike singularity since gtt(r = 0) = ∞ > 0 : it changes
sign. Whereas grr(r = 0) = 0 because the quantity r(1 + 2GMδ(r))2 = 0 when r = 0,
due to the fact that it is an odd function of r so the latter expression vanishes at r = 0.
Therefore, since gtt(r = 0) = ∞ > 0 has changed sign in eq-(5.18), it is now spacelike,
we must emphasize that no violation of the cosmic censorship conjecture occurs ! (that
rules out timelike singularities).

A rigorous correct treatment of point mass distributions has been provided based on
Colombeau’s [22], [23], [24], [25], [26], [27], [28] theory of nonlinear distributions, general-
ized functions and nonlinear calculus. This permits the proper multiplication of distribu-
tions since the old Schwarz theory of linear distributions is invalid in nonlinear theories
like General Relativity. Colombeau’s nonlinear distributional geometry supersedes the
no-go results of Geroch and Traschen [29] stating that there is no proper framework to
study distributions of matter of co-dimensions higher than two (neither points nor strings
in D = 4 ) in General Relativity. Colombeau’s theory of Nonlinear Distributions (and
Nonstandard Analysis) is the proper way to deal with point-mass sources in nonlinear
theories like Gravity and where one may rigorously solve the problem without having to
introduce a boundary of spacetime at r = 0.

Due to the essential technical subtlety in order to generate δ(r) terms in the right hand
side of Einstein’s equations, one must replace everywhere r → |r| as required when point-
mass sources are inserted. The Newtonian gravitational potential due to a point-mass
source at r = 0 is given by −GM/|r| and is consistent with Poisson’s law which states
that the Laplacian of the Newtonian potential −GM/|r| = 4πGρ corresponding to a mass
distribution ρ = (M/4πr2)δ(r). However, the Laplacian in spherical coordinates of (1/r)
is zero. For this reason, there is a fundamental difference in dealing with expressions
involving absolute values |r| like 1/|r| from those which depend on r like 1/r. Had one
not use the modulus |r| in the expression for the metric components gtt = 1 − 2GM/|r|
one will not generate the desired δ(r) terms in the right hand side of Einstein’s equations
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Rµν − 1
2
gµνR = 8πG Tµν 6= 0. Instead, one would get an expression identically equal to

zero (consistent with the vacuum solutions in the absence of matter) instead of the δ(r)
terms [20], [21].

Writing the metric components for the signature (+,−,−,−)

g00 = 1− 2GM

|r|
= 1− 2GM

r

r

|r|
= 1− 2GM

r
f(r); f(r) ≡ r

|r|
. (5.23a)

grr = − 1

g00

. (5.23b)

such that the derivatives

f ′(r) =
df(r)

dr
= δ(r); f ′′(r) =

d2f(r)

dr2
= δ′(r). (5.24)

reveals that the nonvanishing R is given by :

R = − 2GM [
f ′′(r)

r
+ 2

f ′(r)

r2
] =

− 2GM [
δ′(r)

r
+ 2

δ(r)

r2
]. (5.25)

where the signature chosen is (+,−,−,−).
Therefore, the overall Einstein-Hilbert action involving both density and anisotropic

pressure terms (the terms corresponding to derivatives of the delta function in eq-(5.25))
is exactly equal to an overall integral involving 2GMδ(r)/r2 :

S = − 1

16πG

∫
R 4πr2 dr dt =

1

16πG

∫
2GM [

δ′(r)

r
+ 2

δ(r)

r2
] 4πr2 dr dt. (5.26)

Integrating by parts yields

1

16πG

∫
8πGM [ 2δ(r) − δ(r) ] dr dt =

1

16πG

∫
8πG (

M δ(r)

4πr2
) 4πr2 dr dt =

1

16πG

∫
8πG ρ(r) 4πr2 dr dt =

1

2

∫
M dt ⇒ ρ(r) ≡ M δ(r)

4πr2
. (5.27)

The Euclideanized Einstein-Hilbert action associated with the scalar curvature involv-
ing the delta functions terms (5.25), stemming from density and anisotropic pressure terms
[20], [21], is obtained after a compactification of the temporal direction along a circle S1

giving an Euclidean time coordinate interval of 2πtE and which is defined in terms of the
Hawking temperature TH and Boltzman constant kB as 2πtE = (1/kBTH) = 8πGM . The
Euclidean action becomes

SE =
1

2

∫ 2πtE

0
M dt = (

M

2
) (2πtE) = (

M

2
) (8πGM) =
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4π G M2 =
1

4

4π(2GM)2

G
=

Area

4 L2
P

. (5.28)

which is the Bekenstein-Hawking Black Hole Entropy given in terms of the horizon area
4π(2GM)2 by S = Area/4 in Planck area units G = L2

P ( h̄ = c = 1 ). This Euclidean
action = Entropy result was one of the most salient features in [20], [21].

5.2 The Euclidean Action-Entropy Relation in the Reissner-
Nordstrom and Kerr-Newman Black holes case

In this subsection we shall provide the Euclidean action-Black Hole entropy relations [21]
in the case of the Reissner-Nordstrom and Kerr-Newman solutions. Let us begin with the
Einstein-Maxwell action

S = − 1

16πG

∫
d4x

√
g R +

1

4e2

∫
d4x

√
g Fµν F µν =

− 1

16πG

∫
d4x

√
g [ R − 4πG

e2
Fµν F µν ]. (5.29)

We will calculate the entropy in the special case when the charge e satisfies the condition
4πG = e2, the charge e has length units. In this particular case the Euclidean action
matches the entropy. In the case that 4πG 6= e2 the Euclidean action is proportional to
the black hole entropy. The constant of proportionality is 4πG/e2.

The charged massive Reissner-Nordstrom solution has for metric components

gtt = 1− 2GNM

r
+

e2

r2
, grr = − 1

gtt

. (5.30)

the angular part is the same r2(dΩ)2. In the point mass and point charge case, we should
replace r → |r| in order to recover delta function point mass and point charge singularities
at r = 0. In the region r > 0 the only contribution to the field equations is from the EM
field stress-energy tensor. Einstein’s equations in the case that 4πG = e2 are

δS

δgµν
= 0 ⇒ Rµν −

1

2
gµν R = 8πG Tµν =

− [ gαβ (Fµα Fνβ + Fνα Fµβ) − 1

2
gµν FαβFαβ ], r > 0. (5.31)

In D = 4 the trace of the stress EM energy tensor is zero consistent with the conformal
invariance of the Maxwell action in D = 4. This results simply follows from a variation
under conformal scalings

if 2 δS = −√g Tµν δgµν = −λ
√

g w(gµν) Tµν gµν = 0 ⇒ T = Tµν gµν = 0. (5.32a)

since the Weyl weight w(gµν) 6= 0. The minus sign of the second term in the r.h.s of (5.31)
is due to the variation of the determinant of the metric gµν resulting from the identities
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√
det gµν = e

1
2
trace ln (gµν) = e−

1
2
trace ln (gµν), gµν = (gµν)

−1. (5.32b)

δ
√

g = − 1

2

√
g gµνδg

µν =
1

2

√
g gµν δgµν , . (5.33)

Therefore, when r > 0 the point mass terms don’t contribute to the stress energy tensor
and the relevant term is then the EM part of the action density :

1

4e2
FαβFαβ =

E2(r)

4e2
=

1

4e2
(

e

r2
)2 =

1

16πG

e2

r4
, when 4πG = e2. (5.34)

the outer and inner horizons of the Reissner-Nordstrom massive charged black hole in the
natural units is given by the solutions of the algebraic equation

1− 2GM

r
+

e2

r2
= 0 ⇒ r± = GM ±

√
(GM)2 − e2. (5.35)

From eq-(5.34) we can evaluate the EM part of the action bounded by the outer and inner
horizons of the Reissner-Nordstrom massive charged black hole

1

16πG

∫ ∫ r+

r−
Fµν F µν (4πr2 dr dt) (5.36)

The spatial integral yields

1

16πG

∫ r+

r−

e2

r4
4πr2 dr =

e2

4G
[

1

r−
− 1

r+

] =
e2

4G

r+ − r−
r+ r−

=
e2

4G

2
√

(GM)2 − e2

e2
. (5.37)

Upon a compactification the Euclidean thermal-time interval is 2πt = 1/kBT ( we will
set kB = 1). The temperature of the Reissner-Nordstrom Black Hole [7] is

TH =
1

2π

√
(GM)2 − e2

2(GM)2 + 2GM
√

(GM)2 − e2 − e2
=

1

4π

r+ − r−
r2
+

. (5.38)

The full spatial-temporal integration corresponding to the EM part of the action bounded
by the outer and inner horizons of the Reissner-Nordstrom Black Hole is then :

1

16πG

∫ r+

r−

e2

r4
(4πr2 dr)

∫ 1/kBT

0
dtE =

[
2π e2

4G
] [

2
√

(GM)2 − e2

e2
] [

2(GM)2 + 2GM
√

(GM)2 − e2 − e2√
(GM)2 − e2

] =
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[
π

G
] [ GM +

√
(GM)2 − e2 ]2 =

π r2
+

G
=

4πr2
+

4G
=

Area

4L2
Planck

. (5.39)

Therefore, we have shown that when 4πG = e2, the (Euclideanized) EM part of the
action associated with the bulk region bounded by the outer and inner horizons of the
Reissner-Nordstrom massive charged black hole is precisely equal to the Black Hole En-
tropy 4πr2

+/4G. The relationship between G and e is reminiscent of what occurs in
Kaluza-Klein compactifications from 5D to 4D. In Loop Quantum Gravity there is an
undetermined Immirizi parameter in the Entropy-Area relation based on the SU(2) spin-
networks calculation.

The Reissner-Nordstrom black hole entropy can be recast as

SRN
E =

e2

4G
[

1

r−
− 1

r+

]
1

TH

=
e2

4G

r+ − r−
r+ r−

4πr2
+

r+ − r−
=

4πr2
+

4G
. (5.40)

since e2 = r+r− resulting from eq-(5.35) and after using eq-(5.38). In the extremal
Reissner-Nordstrom black hole case, GM = e, the outer and inner horizons coincide
r+ = r− = GM so the spatial integral of the scalar curvature bounded by a domain of
size zero is zero. However since the temperature in this extremal case is also zero, when
one computes the Entropy in this case one will get 0

0
which is undetermined, however due

to the exact cancellation of the terms r+ − r− in the numerator and denominator of eq-
(5.40) the Entropy value becomes precisely equal to (Area/4G) where Area = 4πr2

+ =
4πr2

− = 4π (GM)2 for the extremal Reissner-Nordstrom Black hole.
The charged rotating ring solution given by the Kerr-Newman Black Hole has an

angular momentum per unit mass a = J
M

and the Hawking temperature corresponding to
the outer horizon is [7]

TH(M, e, a =
J

M
) =

1

2π

√
(GM)2 − a2 − e2

2(GM)2 + 2GM
√

(GM)2 − a2 − e2) − e2
=

1

4π

r+ − r−
r2
+ + a2

. (5.41)

The outer and inner horizons are solutions of the equation :

∆ = r2 − 2GM r + a2 + e2 = 0 ⇒ r± = GM ±
√

(GM)2 − a2 − e2. (5.42)

The Entropy is

SE =
1

4G
4π [r2

+ + a2] = [
π

G
] [ GM +

√
(GM)2 − a2 − e2 ]2 =

Area

4L2
Planck

. (5.43)

As a direct consequence of the temperature relation (5.41) and the rotational-energy
density (1/16πG) (J/Mr2)2 = (1/16πG) (a/r2)2 contribution to the energy, the Kerr-
Newman back-hole entropy can still be re-written as

SKN
E =

e2 + a2

4G
[

1

r−
− 1

r+

]
1

TH

=
e2 + a2

4G

r+ − r−
r+ r−

4π(r2
+ + a2)

r+ − r−
=

4π(r2
+ + a2)

4G
.

(5.44)
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since e2 + a2 = r+r− resulting from (5.42). Based on the entropy functional forms given
by eqs-(5.40, 5.44) (in the form energy × time) of the Reissner-Nordstrom and Kerr-
Newman back-hole entropies, If one evaluates the bulk integral of the EM part of the
action 1

4e2 FµνF
µν in the Kerr-Newman stationary solution expressed in Boyer-Lindquist

coordinates one gets

SE =
1

4e2

∫
dt

∫
dφ

∫ r+

r−
dr

∫ +1

−1
d(cosφ) (r2 + a2cos2φ)

e2

(r2 + a2cos2φ)2
=

π [
iLi2 [− ia

r
] − iLi2 [ ia

r
]

2a
]r+
r−

1

TH

. (5.45)

where Li2 is the di-logarithm. The poly-logarithm is defined by Lin(z) =
∑

k=1
zk

kn . Hence,
it is only to leading order in powers of a

r
that one recovers from the integral of eq-(5.45)

the Kerr-Newman black hole entropy

SE ∼ π [
1

r−
− 1

r+

]
1

TH

=
π(r+ − r−)

r+ r−

4π(r2
+ + a2)

r+ − r−
=

π

e2 + a2
4π(r2

+ + a2) =
4π(r2

+ + a2)

4G
, when e2 + a2 = 4πG. (5.46)

with the provision that the condition e2 + a2 = 4πG is obeyed. The Reissner-Nordstrom
entropy was recovered in eqs-(5.39, 5.40) when the condition e2 = 4πG was satisfied. To
sum up, the expression

SE =
e2 + a2

4G
[

1

r−
− 1

r+

]
1

TH

. (5.47)

recaptures the Kerr-Newman entropy as well as the Reissner-Nordstrom, Kerr and
Schwarzschild entropy when a2 = 0, e2 = 0, e2 = a2 = 0, respectively. The first law
of thermodynamics relating the change of the internal energy dU with the change of
entropy TdS and work dW is :

TdSE − dW = dU ⇒ TdSE − JdΩ − ΦdQ = dU = d (M −QΦ− JΩ). (5.48)

where Φ = e/r+ is the electrostatic potential at the outer-horizon, Ω is the angular velocity
of the outer horizon; J is the angular momentum and M is the ADM mass. The first law
can be interpreted as the relationship among the global charges, parameters (M, e, J) and
T, S which is obtained by performing a variation of the Euclidean action resulting from
perturbing the location of the inner and outer horizons. Viewing the Hawking radiation
and emission of particles as a quantum tunneling that shrinks the size of the horizons [35]
is another way of perturbing the value of the Euclidean action. For a thorough discussion
of interpreting Einstein’s field equations as just a thermo-dynamical equation of state see
[36] and Wald’s entropy expression related to the global Noether charge of diffs under
the Killing vector field which generates the event horizon in the stationary black hole
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background and which is given by a local geometric density integrated over a space-like
section of the horizon [34].

6 Spatial-Temporal Vacuum Solutions

In this section we shall find novel spatial-temporal vacuum solutions based on our
results in sections 3 and 4. By taking now g00 = −eµ, g11 = eν and g10 = g01 = 0, with
µ = µ(t, r), ν = ν(t, r) and ϕ = ϕ(t, r), in this section we shall look for a more general
solution of the field equations obtained from (4.2). For this purpose let us first observe
the identity

R̂00 = R̂1
010 = g00g

11R̂0
101 = g00g

11R̂11 (6.1)

or

g00R̂00 = g11R̂11, (6.2)

since g00g00 = g11g11 = 1. Observe that (6.2) is in fact what we used in (5.9) for the case
of static black-holes.

Using eq- (4.2) one discovers that the identity (6.2) leads to

g00D0ϕ,0 = g11D1ϕ,1. (6.3a)

which explicitly becomes

−e−µ ∂2ϕ

∂t2
+

1

2
e−µ ∂ϕ

∂t

∂µ

∂t
+

1

2
e−ν ∂ϕ

∂r

∂µ

∂r
=

e−ν ∂2ϕ

∂r2
− 1

2
e−ν ∂ϕ

∂r

∂ν

∂r
− 1

2
e−µ ∂ϕ

∂t

∂ν

∂t
. (6.3b)

Therefore the second expresion in (4.2) yields

k(D − 3)− 2ϕg11D1ϕ,1 − (D − 3)g00ϕ̇2 − (D − 3)g11ϕ′2 = 0. (6.4)

Here, ϕ̇ = ϕ,0. This is equivalent to substitute (5.10) into (5.8). After writing the explicit
expression of the covariant derivative D1ϕ,1 eq-(6.4) becomes in terms of µ and ν :

k(D − 3) + e−ν{ν ′ϕϕ′ − 2ϕϕ′′ − (D − 3)ϕ′2}+ e−µ{ν̇ϕϕ̇ + (D − 3)ϕ̇2} = 0 (6.5)

or
γ′ϕϕ′ + 2γϕϕ′′ + (D − 3)γϕ′2 = k(D − 3) + e−µϕ̇{ν̇ϕ + (D − 3)ϕ̇}, (6.6)

where γ = e−ν .
On the other hand we also need to consider the field equation
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D1ϕ,0 = 0, (6.7)

which leads to

ϕ̇′ − 1

2
µ′ϕ̇− 1

2
ν̇ϕ′ = 0. (6.8)

We are going to find solutions to eqs–(6.3, 6.6, 6.8) by choosing the ansatz

eµ(ϕ(t)) = e−ν(ϕ(t)) = γ(t). (6.9)

from eq-(6.8) one gets

ϕ̇′ − 1

2

ϕ′ ϕ̇ (dγ/dϕ)

γ
+

1

2

ϕ′ ϕ̇ (dγ/dϕ)

γ
= 0 ⇒ ϕ̇′ = 0. (6.10)

a solution to (6.10) is clearly given by ϕ(t) = t. Plugging the solutions (6.9) into (6.6)
when ϕ(t) = t and D = 4, k = 1 gives

1 + e−µ [ 1− t
dµ

dt
] = 0 (6.11)

since (ϕ̇)2 = 1 and ϕ′ = ϕ′′ = 0. One deduces from (6.11) that

1 + eµ = t
dµ

dt
⇒

∫ dt

t
=

∫ dµ

1 + eµ
. (6.12)

Integrating (6.12) yields

ln (
t

to
) = ln (

eµ

eµ + 1
) ⇒ to

t
− 1 = e−µ ⇒ eµ =

1
to
t
− 1

. (6.13)

By inspection one can infer that µ + ν = 0 ⇒ µ = −ν is a solution of eq-(6.3a, 6.3b),
when ϕ = t and µ = µ(t), ν = ν(t). Therefore, the time dependent vacuum solution is
given by

ds2 = − dt2

( to
t
− 1)

+ (
to
t
− 1) dr2 + t2 (dΩ)2. (6.14a)

which is nothing but the Kantowski-Sachs cosmological vacuum solution obtained from
the Schwarzschild solution after the exchange r ↔ t if one sets the constant to = 2GM . At
t→∞ it is asymptotically flat. It has a horizon at t = 2GM and a curvature singularity
at t = 0. By exchanging t↔ r in eq-(5.18) one gets the higher dimensional generalization
of the Kantowski-Sachs metric eq-(6.14) for different values of D, k

ds2 = − (dt)2

(−k + βDGDM
tD−3 )

+ (−k +
βDGDM

tD−3
) (dr)2 + t2 g̃ab dξa dξb. (6.14b)
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Inspired from the Fronsdal-Kruskal-Szekeres form of the metric in natural units c = 1,
with a signature (−, +, +, +, +), and working with coordinates r, t of length dimension,
one can choose the metric of the form

ds2 =
4(2GM)

ϕ(r, t)
e−ϕ(r,t)/2GM ( − dt2 + dr2 ) + ϕ2(r, t) (dΩ)2, dΩ2 = dφ2 + sin2φ dθ2.

(6.15)
as solutions to the vacuum field equations which are dependent on both r, t coordinates.
The metric (6.15) correspond now to the case

eµ(ϕ(r,t)) = eν(ϕ(r,t)) =
4(2GM)

ϕ(r, t)
e−ϕ(r,t)/2GM . (6.16)

where now µ(r, t) = ν(r, t), instead of µ(r, t) = −ν(r, t), and the radial function ϕ(r, t)
must obey the system of differential eqs-(6.3, 6.6, 6.8). As stated earlier, the Fronsdal-
Kruskal-Szekeres coordinates U, V are explicitly given in terms of r, t by eq-(2.19).

The difficult problem is to invert these relations in order to obtain the functional
relations r = r(U, V ), t = t(U, V ). Whereas, by choosing the ansatz in eqs-(6.15, 6.16)
one is able to derive a set of differential equations (6.3b, 6.6, 6.8) obeyed by µ(r, t) = ν(r, t)
and the radial function ϕ(r, t), and whose solutions for the radial function ϕ(r, t) must
comprise a solution with the same functional form as the radial function r = r(U, V )
(whose functional form is unknown because we cannot invert the functional relations in
eq-(2.16)). For instance, given y(x) = xex the inverse function x = W (y) is the celebrated
Lambert W-function whose exact analytical expression is unknown.

We will now find explicit new solutions If one chooses

eµ(ϕ(r,t)) = e−ν(ϕ(r,t)) = γ(ϕ(r, t)). (6.17)

One can see that eq-(6.3b) and eq-(6.8) are automatically satisfied for a radial function
function of the form ϕ(r, t) = t ± r which is just the advanced and retarded time,
respectively. Inserting these solutions into eq-(6.6) when D = 4 and k = 1 gives after
some straightforward algebra :

(γ2 + 1) ϕ (
dγ

dϕ
) = − γ3 + γ2 + γ ⇒

∫
dγ (

γ2 + 1

−γ3 + γ2 + γ
) =

∫ dϕ

ϕ
. (6.18)

upon integration it gives

ln [
γ

γ(γ − 1) − 1
] = ln

ϕ

ϕo

⇒ 1 +
ϕo

ϕ
= γ − 1

γ
. (6.19)

where the integration constant is ϕo and has dimensions of length. Solving for γ in terms
of ϕ leads to

γ(ϕ) =
(1 + ϕo

ϕ
) ±

√
(1 + ϕo

ϕ
)2 + 4

2
. (6.20)
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In particular, when ϕ(r, t) = t + r = u, ϕ(r, t) = (t − r) = v, the solutions to the
function γ(r, t) are :

γ(r, t) = γ(t± r) =
(1 + ϕo

t±r
) ±

√
(1 + ϕo

t±r
)2 + 4

2
. (6.21)

Therefore, the dynamical metric in terms of the advanced and retarded temporal coordi-
nates t± r is then given by

ds2 = − γ(t± r) (dt)2 +
(dr)2

γ(t± r)
+ (t± r)2 (dΩ)2. (6.22)

where the explicit functional form γ(r, t) = γ(t± r) is given by eq-(6.20). Choosing a +
sign in eq-(6.21), one can perform a Taylor expansion of the expression inside the square
root leading to

γ(r, t) = γ(t± r) ∼ 1 +
ϕo

t± r
+

t± r

ϕo

+ ..... (6.23a)

Taylor expansion which is valid in the regime when

0 < |t± r| < |ϕo| (6.23b)

Since γ = e−ν(r,t) ≥ 0 one must choose a + sign in eq-(6.21), such that when one sets the
integration constant ϕo > 0, one can see that the metric (6.22) is singular at ϕ = t±r = 0
because at those locations one has γ(t ± r = 0+) = ∞ and γ(t ± r = 0−) = 0. There
is a discontinuity of γ at t ± r = 0. If ϕo < 0 one would have the converse behaviour,
γ = ∞ at t ± r = 0− and γ = 0 at t ± r = 0+. We have not equated ϕo to 2GM in
this dynamical case. At the end of this subsection we will explore further the physical
interpretation to the metric solution (6.21, 6.22). A similar singularity along a null plane
(wave-front) occurs also in the Aichelburg-Sexl metric

ds2 = 8 p log ρ δ(u) du2 + du dw − dy2 − dz2. (6.24)

where p is the momentum and ρ is the mass density. The metric describes a plane-polarized
pp-wave and is flat everywhere except on the location of the null plane u = t − x = 0
where it is singular. The variable w is defined by w = t + x. Such metric (6.24) is the
ultra-relativistic limit of the Schwarzschild metric and represents the shock-wave geometry
when the energy-momentum has a delta-like support on a null plane u = t − x = 0 and
is generated by a particle moving at the speed of light along the x-direction.

When |t±r| → ∞ the value of (6.21) for the + sign tends to γ → (1+
√

5)/2 = Golden
Mean = 1.618..., which is a curious numerical result. Since γ(±∞) 6= 1, one may notice
that the metric components gtt, grr of eq-(6.22) do not become unity when t ± r → ∞,
nevertheless the curvature tensor vanishes at |t± r| = ∞.

Time dependent black hole solutions with a nontrivial dilaton field background in
3D and higher dimensions were found by [37] based on the application of the 3D Janus
geometry. The metric was of the form
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ds2 = f(r) [−dt2 + dr2 + r2
o cos2(

t

to
) (dΩ)2 ]. (6.25)

The spacetime is locally isomorphic to the 4D Anti de Sitter space and the curvature
singularity at t = 0 is of the orbifold type [37].

Inspired from the above Janus geometry we shall seek vacuum solutions ( there is no
dilaton background in this case ) of the form

ds2 = f(r) [ − dt2 + dr2 + r2
o cosh2(

t

to
) (dΩ)2 ]. (6.26)

by replacing the oscillatory radial function rocos(
t
to

) for the non-oscillating one rocosh( t
to

).
The solutions for the conformal factor f(r) are obtained by inserting the metric ansatz
(6.26) into the eqs-(6.3b, 6.6, 6.8). Eq-(6.8) is automatically satisfied and after some
algebra eqs-(6.3b, 6.6) lead respectively to :

− 1

t2o
+

3

4
(
f ′

f
)2 − 1

2

f ′′

f
= 0. (6.27a)

1 + [
3

4
(
f ′

f
)2 − f ′′

f
] r2

o cosh2(
t

to
) +

r2
o

t2o
sinh2(

t

to
) = 0. (6.27b)

Using the identity cosh2x − sinh2x = 1 one can verify by simple inspection that the
solution to eqs-(6.27a, 6,27b) ( when c = 1 ) is

ro = to, f(r) = e±
2r
ro . (6.28)

Consequently the metric (6.26) is

ds2 = e±
2r
ro [ − dt2 + dr2 + r2

o cosh2(
t

ro

) (dΩ)2 ]. (6.29)

At t = ∞ the angular part of the metric diverges for finite r. Whether it is just a
coordinate singularity or a physical one needs to be investigated. Solutions to eqs-(6.3,
6.6, 6.8) when k = −1, 0; D ≥ 4 and axially symmetric and stationary solutions of the
form [7]

ds2 = −eA(ρ,z) [ dt−B(ρ, z)dφ ]2 + e−A(ρ,z) ρ2 dφ2 + C(ρ, z) dρ2 + D(ρ, z) dz2. (6.30)

can also be found by similar means.
The most general expression for γ in eq-(6.21) for different values of D, k is

γ(r, t) = γ(t± r) =
k + ( ϕo

t±r
)D−3 ±

√
[ k + ( ϕo

t±r
)D−3 ]2 + 4

2
. (6.31)

and the dynamical metric in terms of the advanced and retarded temporal coordinates
t± r in d ≥ 4 is
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ds2 = − γ(t± r) (dt)2 +
(dr)2

γ(t± r)
+ (t± r)2 g̃ab dξa dξb. (6.32)

where the explicit functional form γ(r, t) = γ(t± r) is given by eq-(6.31).
A careful analysis of the two eqs-(6.5,6.8) reveals that the relation in the r.h.s of

eq-(6.19) is a very special case of the most general relation in D ≥ 4 and for k = 1, 0,−1

k + (
ϕo

ϕ(r, t)
)D−3 = e−ν(ϕ)(

∂ϕ

∂r
)2 − e−µ(ϕ)(

∂ϕ

∂t
)2. (6.33)

which can be derived directly from the two eqs-(6.3, 6.5,6.8) after defining

F (r, t) ≡ e−ν(ϕ)(
∂ϕ

∂r
)2 − e−µ(ϕ)(

∂ϕ

∂t
)2. (6.34)

and performing some laborious but straightforward algebra in eqs-(6.3, 6.5, 6.8) leads to
the two equations

(∂F (r, t)/∂t)

(∂F (r, t)/∂r)
=

(∂ϕ(r, t)/∂t)

(∂ϕ(r, t)/∂r)
. (6.35)

and

[
ϕ

(∂ϕ/∂r)
] [

∂F (r, t)

∂r
] = (D − 3) [ k − F (r, t) ] ⇒

∫ dF

(D − 3) (k − F )
=

∫ dϕ

ϕ
⇒

F (r, t) = k − f(t)

(ϕ(r, t))D−3
(6.36a)

where f(t) is an arbitrary integration function depending solely on t. In order to satisfy
eq-(6.35) one must have that f(t) = constant, therefore one arrives at

F (r, t) = k + (
ϕo

ϕ(r, t)
)D−3. (6.36b)

after setting −f(t) = constant = (ϕo)
D−3. The parameter ϕo has length dimensions.

Namely, by defining F (r, t) in eq-(6.34) one is able to rewrite the two eqs-(6.5, 6.8)
in the form given by eqs-(6.35, 6.36). The geometrical meaning behind the definition of
F (r, t) in eq-(6.34) is that it represents the norm squared of the velocity associated with
the gradient of the area-radius function ϕ(r, t)

gµν ∂µϕ ∂νϕ = gtt (∂tϕ)2 + grr (∂rϕ)2 ≡ F (r, t). (6.37)

corresponding to the D-dim metric

ds2 = − eµ(r,t) (dt)2 + eν(r,t) (dr)2 + ϕ(r, t)2 (dΩD−2)
2 (6.38)
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when µ(r, t) = µ(ϕ(r, t)) and ν(r, t) = ν(ϕ(r, t)). In the static case one recovers from
eq-(6.33) the solution in eq-(5.18)

k + (
ϕo

ϕ(r)
)D−3 = e−ν(ϕ) (

∂ϕ

∂r
)2 ⇒

grr = eν(ϕ) =
(∂ϕ

∂r
)2

k + ( ϕo

ϕ(r)
)D−3

. (6.39)

One may notice that when F (r, t) = 0 the zero norm in eq-(6.37) corresponds geomet-
rically to a horizon. For example, in the case D = 4, k = 1 and ϕ(r, t) = t±r the location
of a horizon occurs when

F (r, t) = 0 ⇒ 1 +
ϕo

t± r
= 0 ⇒ t± r = − ϕo ⇒ dt± dr = 0 (6.40)

such that the value of γ in eq-(6.21) becomes γ(t± r = −ϕo) = 1 . Hence, when the value
γ = 1 and dt± dr = 0 one arrives at the expression for a particular null radial geodesic
(there are others) associated with the metric in eq-(6.22) and given by ds2 = −dt2+dr2 = 0
which is compatible with the null surface F (r, t) = 0 condition of a horizon.

From the arguments described after eq-(6.23), related to the discontinuity of γ at
t ± r = 0, with values of 0,∞, one finds that horizonless solutions occur when ϕo >
0, t ± r ≥ 0 or when ϕo < 0, t ± r ≤ 0. The singularity at t ± r = 0 is timelike and
is visible to an observer. The existence of horizons occurs when ϕo > 0, t ± r ≤ 0 or
when ϕo < 0, t ± r ≥ 0. The singularity at t ± r = 0 is spacelike and would be hidden
behind the horizons at t± r = −ϕo (such that γ(t± r = −ϕo) = 1) from those observers
in the regions |t ± r| > |ϕo|. Notice that a null like singularity would require both that
ds2 = 0 and the curvature tensor Rµνρσ (and/or other curvature scalars) to diverge along
the corresponding null like curve, which is not the case here.

Long ago Penrose [44] proposed the Cosmic Censorship Conjecture (CCC) stating that
singularities which form in a gravitational collapse and consistent with Einstein’s [13] field
equations should never be visible to an outside observer or they should be hidden inside a
horizon. Deshingkar [45] studied singularities which can form in a spherically symmetric
gravitational collapse of a general matter field obeying the weak energy condition. He
showed that no energy can reach an outside observer from a null naked singularity. That
means they will not be a serious threat to the Cosmic Censorship Conjecture (CCC).
For timelike naked singularities, where only the central shell gets singular, the redshift
is always finite and they can in principle, carry energy to a faraway observer. Hence for
proving or disproving CCC the study of timelike naked singularities is more important.
The results of [45] were very general and independent of the initial data and the form of
the matter.

Recently [46] we have shown the existence of timelike naked singularities which are
not hidden by a horizon and which are associated to spherically symmetric (noncompact)
matter sources extending from r = 0 to r = ∞ and obeying the weak energy conditions .
These asymptotically flat solutions do represent observable timelike naked singularities
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where the scalar curvature R and volume mass density ρ(r) are both singular at r = 0.
Therefore, the horizonless solutions we just found above when ϕo > 0, t ± r ≥ 0 or
ϕo < 0, t ± r ≤ 0, associated with a timelike singularity at t ± r = 0 should not be
discarded.

One could interpret the singularity from the perspective of radial ingoing/outgoing
spherical waves whose shock wave front is singular at t ± r = 0 due to infinite pressures
along the wave front and which can be realized in terms of a delta-function field configu-
ration depending on r, t; i.e when the energy-momentum has a delta-like support on the
regions t± r = 0. In the Schwarzschild solution, the integration constant 2GM of length
dimensions is defined in terms of the Kepler mass M as measured by an observer in the
asymptotically flat spacetime region. The length parameter ϕo in our above solutions has
a similar interpretation in terms of the global mass-energy content carried by the shock
wave front as measured by an observer in the asymptotically-flat future (past) null infinity
region. As stated above, a similar singularity along a null plane (shock wave-front) occurs
also in the Aichelburg-Sexl metric (6.24) (the ultra-relativistic limit of the Schwarzschild
metric) describing a plane-polarized pp-wave that is flat everywhere except on the location
of the null plane u = t− x = 0 where it is singular.

To conclude, we have found (to our knowledge) new spatial-temporal vacuum solutions
to Einstein’s field equations, given by eqs-(6.21, 6.22, 6.31, 6.32) in D ≥ 4, and for
k = 1, 0,−1 in a straightforward fashion from the results of sections 3, 4. In the particular
case for D = 4; k = 1 one found solutions (with and without horizons) which display a
singularity at t± r = 0. Furthermore, we have provided a physical interpretation to these
solutions. The 4D metric solution (6.29) was inspired from the 3D Janus geometry one.

7 Cosmology based on the Interior Geometry of a

Black Hole and a Modified Kantowski-Sachs metric

It has been known for some time that the external spatial and temporal coordinates
exchange their character when the event horizon is crossed and the interior solution
representing a non−static spacetime with a time-dependent metric is given by a modified
Kantowski-Sachs metric ( no longer a vacuum solution ) for the interior spacetime region
:

ds2 = − dt2

[2Gm(t)
t

− 1]
+ [

2Gm(t)

t
− 1] dz2 + t2 dΩ2, (7.1)

where now z is the spatial coordinate inside the black hole and no longer represents a
radial coordinate inside. The range of values of z is −∞ ≤ z ≤ +∞, whereas the
ordinary radial variable r ≥ 0. The components of the Einstein tensor in an ortho-normal
reference frame are [38] (and references therein)

Gtt = Rtt −
1

2
gtt R =

2G

t2
dm(t)

dt
, (7.2)
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Gzz = Rzz −
1

2
gzz R = − 2G

t2
dm(t)

dt
, (7.3)

Gθθ = Rθθ −
1

2
gθθ R = − G

t

d2m(t)

dt2
, (7.4)

Gφφ = Rφφ −
1

2
gφφ R = − G

t

d2m(t)

dt2
. (7.5)

This solution implies that ρ = −pz , meaning that the pressure pz < 0 when ρ > 0.
The isotropic pressure condition requires equating the components of the Einstein tensor

Gzz = Gθθ = Gφφ ⇒ d2m(t)

dt2
− 2

t

dm(t)

dt
= 0, (7.6)

whose solution is

m(t) = C1 + C2 t3 (7.7)

and yields

ds2 = − dt2

[2C1

t
+ 2C2 t2 − 1]

+ [
2C1

t
+ 2C2 t2 − 1] dz2 + t2 dΩ2 (7.8)

which is the t-relative of the static form of the Anti-de Sitter-Schwarzshild solution

ds2 = − [ 1 − 2GM

r
− Λ

3
r2 ] dt2 +

dr2

[ 1 − 2GM
r
− Λ

3
r2 ]

r2 + dΩ2, (7.9)

where Λ < 0 is the Cosmological constant in the Anti de Sitter-Schwarzshild case and
Λ > 0 in the de Sitter-Schwarzshild case.

The anisotropic pressure of a self-gravitating anisotropic fluid is obtained when the
the radial pressure is not equal to the tangential pressure. The pressure free case leads
to the Lemaitre-Tolman metric [38]. For example, inspired from the static case problem
studied by [39], [40], [41] we shall go ahead and smooth out the singularities at t = 0 by
choosing a density given by the Gaussian

ρ(t) =
Mo

(4πσ2)3/2
e−t2/4σ2

. (7.10)

from eqs-(7.2,7.3) one can infer that ρ = −pz and the tangential pressures are

pθ = pφ = − ρ(t) − t

2

∂ρ

∂t
= − ρo e−t2/4σ2

( 1− t2

4σ2
). (7.11)

The mass content at any instant t is

M(t, σ) =
∫ t

0

Mo

(4πσ2)3/2
e−t2/4σ2

(4π t2) dt =
2Mo√

π
γ [

3

2
,

t2

4σ2
]. (7.12a)

and is given in terms of the lower incomplete gamma function with parameter a = 3
2
.
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Therefore, the metric is given explicitly in terms of the above mass function M(t, σ)
(7.12) as

ds2 = − dt2

[2GM(t,σ)
t

− 1]
+ [

2GM(t, σ)

t
− 1] dz2 + t2 dΩ2. (7.12b)

is a solution of Einstein’s equations in the presence of matter whose density ρ = −pz and
pressure configurations pz, pθ, pφ are given by eqs-(7.10, 7.11).

The temporal horizon th is obtained by solving the transcendental equation obtained
by setting in eq-(7.12b)

gzz(t = th) =
2GM(t = th, σ)

th
− 1 = 0 ⇒ th = (2GMo) (

2√
π

) γ [
3

2
,

t2h
4σ2

]. (7.13)

the extremal case corresponds when there is one horizon and it occurs when th ∼ 3.0 σ
and GMo ∼ 1.9 σ . These results were found earlier for the static case solutions depending
solely on r ( instead of t ) by [39], [40], [41] . For masses less than the critical value Mo

there is no horizon. For masses larger than Mo there are two horizons as shown by [39].
The no horizon case is also a very interesting case.

Furthermore, the metric component gzz(t) is not singular at t = 0, due to the prop-
erties of the incomplete gamma function. For very small t, the behaviour of 2GM(t)/t
is proportional to t2 and hence |gzz| → 1 as t → 0. And when t → ∞, |gzz| → 1 also
compatible with (temporal) asymptotic flatness. The scalar curvature is given by the
expression

R(t, σ) = − (8πG)
2Mo e−t2/4σ2

(4πσ2)3/2
(2− t2

4σ2
). (7.14)

it is zero at t = ∞ due to the rapidly decaying behaviour of the exponential and the
most important feature is that R(t = 0, σ) = −4GMo/

√
πσ3 is not singular at t = 0

since the Gaussian distribution smears out the singularity at t = 0. When σ = 0 the
scalar curvature blows up consistent with the fact that the zero width limit σ → 0 of the
Gaussian distribution ρ(t, σ = 0) → δ(t)/4πt2 yields the delta function.

Let us focus in the extremal case when there is one horizon only. The relative amount
of mass enclosed by the universe from t = 0 and t = th ∼ 3.0 σ is

M(t = th, σ)

Mo

=
2√
π

γ [
3

2
,

t2h
4σ2

] =
2√
π

γ [
3

2
,

9

4
] =

2√
π
× 0.69809 = 0.7877. (7.15)

The mass content between th and t = ∞ is given in terms of the upper incomplete gamma
function

M(th, σ) =
∫ ∞

th

Mo

(4πσ2)3/2
e−t2/4σ2

(4π t2) dt =
2Mo√

π
Γ [

3

2
,

t2h
4σ2

]. (7.16)

The value of the upper incomplete gamma function when th ∼ 3.0 σ is Γ[3
2
, 9

4
] = 0.188137.

Thus, the relative mass content in the interval between th and t = ∞ is then given by
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M(th, σ)

Mo

=
2√
π

Γ [
3

2
,

9

4
] =

2√
π
× 0.188137 = 0.2129. (7.17)

such that 0.2129 + 0.7877 ∼ 1.0006 which is very close to unity as expected since we
rounded off the numbers. The sum of the upper and lower incomplete gammas yields the
ordinary Euler gamma function

Γ [
3

2
,

9

4
] + γ [

3

2
,

9

4
] = Γ [

3

2
] =

√
π

2
. (7.18)

as expected. One can conclude that for measurements made between th and t = ∞ the
fraction of the mass observed is 0.2129, and for measurements made between t = 0 and th
the fraction of the mass observed is 0.7877. It is interesting that these numbers are close
to the reciprocal values of what is observed in our universe; i.e 0.75 is dark energy and
dark matter while 0.25 is what is observed.

If one sets

GMo ∼ 2 σ = RHubble ⇒
Mo

mPlanck

=
RHubble

LPlanck

∼ 1061 since G = L2
Planck. (7.19)

one arrives at a number consistent with the Dirac-Eddington-Weyl large number coinci-
dences Mo ∼ 1061 mPlanck = 1080 mproton since 1080 is of the same order of magnitude as
the square of the ratio (1040) of the Hubble scale and classical electron radius and the
square of the ratio ( 1040 ) of the electrostatic force between an electron and a proton
versus their corresponding gravitational force. In this case, one finds ( in natural units
h̄ = c = 1 ) that the temporal horizon is given by th = 3 σ = 1.5 tHubble such that the
observed universe lies inside the temporal horizon because tHubble < th.

One may view the cosmological solution described in terms of the Gaussian density
(7.10), the mass function (7.12) and the modified (non-vacuum) Kantowski-Sachs metric
(7.9) as if the mass Mo of the entire universe were smeared over all of its temporal evolution
(during its expansion) by means of a Gaussian distribution of width σ. In the extreme
case, σ → 0 scenario the density would have been just proportional to a delta function
δ(t)
4πt2

as if the entire mass Mo of the universe were concentrated at a point in time : t = 0,
the moment of the ”Big Bang” singularity. When σ 6= 0 one no longer has a temporal
delta function centered at t = 0, but instead a delta function which has been smeared
into a temporal Gaussian distribution of width σ. Such width σ 6= 0 is related to the
temporal horizon and the Hubble scale (today) by the relation th ∼ 3.0 σ = 1.5 tHubble.

A more general interior spacetime metric is [38]

ds2 = −B(z, t) dt2 + A(z, t) dz2 + F (z, t)2 dΩ2. (7.20)

In the very particular case that M(t) = Mo = constant and F (z, t) = t2, by following
the results of [38] and after some algebra one recovers once again the Kantowski-Sachs
metric that we found earlier in eq-(6.14) by simpler means.

To finalize let us discuss the t-relative version of Vaidya’s metric. The Vaidya metric is
a solution of Einstein’s equations with spherical symmetry in the eikonal approximation
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to a radial flow of unpolarized radiation [42] that describes the temporal evolution of the
evaporation process of black holes via the Hawking”s radiation mechanism. It is given by

ds2 = − (1− 2m(v)

r
) dv2 + 2 dr dv + r2 dΩ2 (7.21)

and expressed in terms of the advanced time parameter v = t+r∗ associated with ingoing
radial flow of radiation, and

ds2 = − (1− 2m(u)

r
) du2 − 2 dr du + r2 dΩ2, (7.22)

expressed in terms of the retarded time parameter u = t − r∗ associated with outgoing
radial flow of radiation. The Vaidya metrics are time-dependent solutions of Einstein’s
equations when m(v) is an arbitrary increasing mass function of the advanced time v =
t + r∗ and m(u) is an arbitrary decreasing mass function of the retarded time u = t− r∗
and r∗ is the tortoise radial coordinate r∗ = r + 2GM ln| r

2GM
− 1|. The location of the

horizons associated to the metrics in eqs-(7.21, 7.22) are now dynamical and given by
rh = 2m(v) and rh = 2m(u) respectively.

In the same fashion that the Kantowski-Sachs metric can be obtained from the
Schwarzschild metric after the exchange of variables t ↔ r, it is warranted to explore
the cosmological implications of seeing the universe as a dynamical black hole by starting
with the metric obtained from the Vaidya metric after the exchange of variables t↔ r

ds2 = − (1− 2m(ṽ)

t
) dṽ2 + 2 dt dṽ + t2 dΩ2 (7.23)

and

ds2 = − (1− 2m(ũ)

t
) dũ2 − 2 dt dũ + t2 dΩ2, (7.24)

where the t-relatives of the advanced/retarded temporal coordinates and the temporal
tortoise coordinate are now given by :

ṽ = r + t∗, ũ = r − t∗, t∗ = t + 2GM ln | t

2GM
− 1|. (7.25)

For recent work on the role of Entropy and the Universe as a black hole see [43]. The
physical implications of the novel cosmological solution eqs-(7.12a, 7.12b) that is well
behaved at t = 0 and the metric configurations (7.23. 7.24) deserve further investigation.
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