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Abstract

The basic ideas and results behind polyvector-valued gauge field the-
ories and Quantum Mechanics in Noncommutative Clifford spaces are
presented. The construction of Noncommutative Clifford-space gravity as
polyvector-valued gauge theories of twisted diffeomorphisms in Clifford-
spaces would require quantum Hopf algebraic deformations of Clifford
algebras.

Clifford algebras are deeply related and essential tools in many aspects in
Physics. The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a nat-
ural extension of the ordinary Relativity theory [3] whose generalized polyvector-
valued coordinates are Clifford-valued quantities which incorporate lines, areas,
volumes, hyper-volumes.... degrees of freedom associated with the collective
particle, string, membrane, p-brane,... dynamics of p-loops (closed p-branes) in
D-dimensional target spacetime backgrounds.

It was recently shown [1] how an unification of Conformal Gravity and a
U(4) × U(4) Yang-Mills theory in four dimensions could be attained from a
Clifford Gauge Field Theory in C-spaces (Clifford spaces) based on the (com-
plex) Clifford Cl(4, C) algebra underlying a complexified four dimensional space-
time (8 real dimensions). Clifford-space tensorial-gauge fields generalizations of
Yang-Mills theories allows to predict the existence of new particles (bosons,
fermions) and tensor-gauge fields of higher-spins in the 10 TeV regime [2]. Ten-
sorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on poly-vector
valued (anti-symmetric tensor fields) gauge fields AM (X) and field strengths
FMN (X) have been studied in [2], [3] where X = XMΓM is a C-space poly-
vector valued coordinate

X = σ 1 + xµ γµ + xµ1µ2 γµ1 ∧ γµ2 + xµ1µ2µ3 γµ1 ∧ γµ2 ∧ γµ3 + ...... +
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xµ1µ2µ3......µd
γµ1 ∧ γµ2 ∧ γµ3 ....... ∧ γµd (1)

In order to match dimensions in each term of (1) a length scale parameter must
be suitably introduced. In [3] we introduced the Planck scale as the expansion
parameter in (1). The scalar component σ of the C-space poly-vector valued
coordinate X was interpreted by [4] as a Stuckelberg time-like parameter that
solves the problem of time in Cosmology in a very elegant fashion.

A Clifford gauge field theory in the C-space associated with the ordinary
4D spacetime requires AM (X) = AA

M (X) ΓA that is a poly-vector valued gauge
field where M represents the poly-vector index associated with the C-space,
and whose gauge group G is itself based on the Clifford algebra Cl(3, 1) of the
tangent space spanned by 16 generators ΓA. The expansion of the poly-vector
Clifford-algebra-valued gauge field AA

M , for fixed values of A, is of the form

AA
M ΓM = ΦA +AA

µ γµ +AA
µ1µ2

γµ1∧γµ2 +AA
µ1µ2µ3

γµ1∧γµ2∧γµ3 + ....... (2)

The index A spans the 16-dim Clifford algebra Cl(3, 1) of the tangent space
such as

ΦA ΓA = Φ + Φa Γa + Φab Γab + Φabc Γabc + Φabcd Γabcd. (3a)

AA
µ ΓA = Aµ + Aa

µ Γa + Aab
µ Γab + Aabc

µ Γabc + Aabcd
µ Γabcd. (3b)

AA
µν ΓA = Aµν + Aa

µν Γa + Aab
µν Γab + Aabc

µν Γabc + Aabcd
µν Γabcd. (3c)

etc......
In order to match dimensions in each term of (2) another length scale pa-

rameter must be suitably introduced. For example, since AA
µνρ has dimensions

of (length)−3 and AA
µ has dimensions of (length)−1 one needs to introduce an-

other length parameter in order to match dimensions. This length parameter
does not need to coincide with the Planck scale. The Clifford-algebra-valued
gauge field AA

µ (xµ)ΓA in ordinary spacetime is naturally embedded into a far
richer object AA

M (X)ΓA in C-spaces. The advantage of recurring to C-spaces
associated with the 4D spacetime manifold is that one can have a (complex)
Conformal Gravity, Maxwell and U(4) × U(4) Yang-Mills unification in a very
geometric fashion as provided by [1]

Field theories in Noncommutative spacetimes have been the subject of in-
tense investigation in recent years, see [8] and references therein. Star Product
deformations of Clifford Gauge Field Theories based on ordinary Noncommu-
tative spacetimes are straightforward generalizations of the work by [5]. The
wedge star product of two Clifford-valued one-forms is defined as

A ∧∗ A =
(

(AA
µ ∗ AB

ν ) ΓA ΓB

)
dxµ ∧ dxν =
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(
(AA

µ ∗s AB
ν ) [ΓA, ΓB ] + (AA

µ ∗a AB
ν ) {ΓA, ΓB}

)
dxµ ∧ dxν . (4)

In the case when the coordinates don’t commute [xµ, xν ] = θµν (constants), the
cosine (symmetric) star product is defined by [5]

f ∗sg ≡ 1
2

(f ∗ g + g ∗ f) = f g +
(

i

2

)2

θµν θκλ (∂µ ∂κf) (∂ν ∂λg) + O(θ4).

(5)
and the sine (anti-symmetric Moyal bracket) star product is

f ∗a g ≡ 1
2

(f ∗ g − g ∗ f) =
(

i

2

)
θµν (∂µf) (∂νg) +

(
i

2

)3

θµν θκλ θαβ (∂µ ∂κ ∂αf) (∂ν ∂λ ∂βg) + O(θ5). (6)

Notice that both commutators and anticommutators of the gammas appear in
the star deformed products in (4). The star product deformations of the gauge
field strengths in the case of the U(2, 2) gauge group were given by [5] and the
expressions for the star product deformed action are very cumbersome .

In this letter we proceed with the construction of Polyvector-valued Gauge
Field Theories in noncommutative Clifford Spaces ( C-spaces ) which are polyvector-
valued extensions and generalizations of the ordinary noncommutative space-
times. We begin firstly by writing the commutators [ΓA,ΓB ]. For pq = odd one
has [7]

[ γb1b2.....bp
, γa1a2......aq ] = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!
2!(p− 2)!(q − 2)!

δ
[a1a2

[b1b2
γ

a3....aq ]

b3.....bp] +
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ

a5....aq ]

b5.....bp] − ......

(7)
for pq = even one has

[ γb1b2.....bp
, γa1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ

a2a3....aq ]

b2b3.....bp] −

(−1)p−12p!q!
3!(p− 3)!(q − 3)!

δ
[a1....a3

[b1....b3
γ

a4....aq ]

b4.....bp] + ...... (8)

The anti-commutators for pq = even are

{ γb1b2.....bp
, γa1a2......aq } = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!
2!(p− 2)!(q − 2)!

δ
[a1a2

[b1b2
γ

a3....aq ]

b3.....bp] +
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ

a5....aq ]

b5.....bp] − ......

(9)
and the anti-commutators for pq = odd are
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{ γb1b2.....bp
, γa1a2......aq } = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ

a2a3....aq ]

b2b3.....bp] −

(−1)p−12p!q!
3!(p− 3)!(q − 3)!

δ
[a1....a3

[b1....b3
γ

a4....aq ]

b4.....bp] + ...... (10)

For instance,

J a
b = [γb, γ

a] = 2γa
b ; J a1a2

b1b2
, = [γb1b2 , γ

a1a2 ] = − 8 δ
[a1

[b1
γ

a2]
b2]

. (11)

J a1a2a3
b1b2b3

= [γb1b2b3 , γ
a1a2a3 ] = 2 γa1a2a3

b1b2b3
− 36 δ

[a1a2

[b1b2
γ

a3]
b3]

. (12)

J a1a2a3a4
b1b2b3b4

= [γb1b2b3b4 , γ
a1a2a3a4 ] = −32 δ

[a1

[b1
γ

a2a3a4]
b2b3b4]

+ 192 δ
[a1a2a3

[b1b2b3
γ

a4]
b4]

. (13)

etc...
The second step is to write down the noncommutative algebra associated

with the noncommuting poly-vector-valued coordinates in D = 4 and which
can be obtained from the Clifford algebra (7-10) by performing the following
replacements (and relabeling indices)

γµ ↔ Xµ, γµ1µ2 ↔ Xµ1µ2 , ........ γµ1µ2.....µn ↔ Xµ1µ2....µn . (14)

When the spacetime metric components gµν are constant, from the replacements
(14) and the Clifford algebra (7-10) (after one relabels indices), one can then
construct the following noncommutative algebra among the poly-vector-valued
coordinates in D = 4, and obeying the Jacobi identities, given by the relations

[ Xµ1 , Xµ2 ]∗ = Xµ1 ∗ Xµ2 − Xµ2 ∗ Xµ1 = 2 Xµ1µ2 . (15)

[ Xµ1µ2 , Xν ]∗ = 4 ( gµ2ν Xµ1 − gµ1ν Xµ2 ) . (16)

[ Xµ1µ2µ3 , Xν ]∗ = 2 Xµ1µ2µ3ν , [ Xµ1µ2µ3µ4 , Xν ]∗ = −8 gµ1ν Xµ2µ3µ4 ±......
(17)

[ Xµ1µ2 , Xν1ν2 ]∗ = − 8 gµ1ν1 Xµ2ν2 + 8 gµ1ν2 Xµ2ν1 +

8 gµ2ν1 Xµ1ν2 − 8 gµ2ν2 Xµ1ν1 . (18)

[ Xµ1µ2µ3 , Xν1ν2 ]∗ = 12 gµ1ν1 Xµ2µ3ν2 ± ......... (19)

[ Xµ1µ2µ3 , Xν1ν2ν3 ]∗ = − 36 Gµ1µ2 ν1ν2 Xµ3ν3 ± ...... (20)
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[ Xµ1µ2µ3µ4 , Xν1ν2 ]∗ = − 16 gµ1ν1 Xµ2µ3µ4ν2 ± ...... (21)

[ Xµ1µ2µ3µ4 , Xν1ν2 ]∗ = −16 gµ1ν1 Xµ2µ3µ4ν2 + 16 gµ1ν2 Xµ2µ3µ4ν1 − .........
(22)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3 ]∗ = 48 Gµ1µ2µ3 ν1ν2ν3 Xµ4 − 48 Gµ1µ2µ4 ν1ν2ν3 Xµ3 + .....
(23)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3ν4 ]∗ = 192 Gµ1µ2µ3 ν1ν2ν3 Xµ4ν4 − .......... (24)

etc...... where

Gµ1µ2......µn ν1ν2......νn = gµ1ν1 gµ2ν2 ....... gµnνn + signed permutations (25)

The metric components Gµ1µ2......µn ν1ν2......νn in C-space can also be written
as a determinant of the n× n matrix G whose entries are gµIνJ

det Gn×n =
1
n!

εi1i2.....in εj1j2....jn gµi1νj1 gµi2νj2 ....... gµin νjn . (26)

i1, i2, ....., in ⊂ I = 1, 2, ....., D and j1, j2, ....., jn ⊂ J = 1, 2, ....., D. One must
also include in the C-space metric GMN the (Clifford) scalar-scalar component
G00 (that could be related to the dilaton field) and the pseudo-scalar/pseudo-
scalar component Gµ1µ2.....µD ν1ν2......νD (that could be related to the axion field).

One must emphasize that when the spacetime metric components gµν are
no longer constant, the noncommutative algebra among the poly-vector-valued
coordinates in D = 4, does not longer obey the Jacobi identities. For this reason
we restrict our construction to a flat spacetime background gµν = ηµν .

The noncommutative conditions on the polyvector coordinates in condensed
notation can be written as

[ XM , XN ]∗ = XM∗XN −XN∗XM = ΩMN (X) = fMN
L XL = fMNL XL

(27)
the structure constants fMNL are antisymmetric under the exchange of polyvec-
tor valued indices. An immediate consequence of the noncommutativity of co-
ordinates is

[ X̂µ1 , X̂µ2 ] = 2 X̂µ1µ2 ⇒ ∆Xµ ∆Xν ≥ 1
2
| < X̂µν > | = Xµν (28)

Hence, the bivector area coordinates Xµν in C-space can be seen as a measure
of the noncommutative nature of the ”quantized” spacetime coordinates X̂µ.
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The third step is to define the noncommutative star product of functions of
X as

( A1 ∗ A2 )(Z) = exp

(
1
2

ΩMN ∂XM ∂Y N

)
A1(X) A2(Y )|X=Y =Z =

∞∑
n=0

( 1
2 )n

n!
ΩM1N1 ΩM2N2 .......... ΩMnNn (∂n

M1M2......Mn
A1) (∂n

N1N2......Nn
A2) + ......

(29)
where the ellipsis in (29) are the terms involving derivatives acting on ΩMN and

∂n
M1M2......Mn

A1(Z) ≡ ∂M1 ∂M2 ...... ∂Mn
A1(Z). (30a)

∂n
N1N2......Nn

A2(Z) ≡ ∂N1 ∂N2 ...... ∂Nn
A2(Z). (30b)

Derivatives on Ωmn appear in the ordinary Moyal star product when Ωmn de-
pends on the phase space coordinates. For instance, the Moyal star product
when the symplectic structure Ωmn(~q, ~p) is not constant is given by

A ∗ B = A exp

(
ih̄

2
Ωmn ←−∂ m

−→
∂ n

)
B =

A B + ih̄ Ωmn (∂mA ∂nB) +
(ih̄)2

2
Ωm1n1 Ωm2n2 (∂2

m1m2
A) (∂2

n1n2
B) +

(ih̄)2

3
[ Ωm1n1 (∂n1 Ωm2n2) (∂m1∂n2A ∂m2B − ∂m2A ∂m1∂n2B ) ]+O(h̄3). (31)

Due to the derivative terms ∂n1Ω
m2n2 the star product is associative up to

second order only [6] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(h̄3). The derivatives terms
acting on ΩMN (X) in (29) are

∂XL

∂XM
=

∂ (GLN XN )
∂XM

. (32a)

if, and only if, GLN is X-independent, like in a flat C-space, from eq-(32) one
gets

∂XL

∂XM
= GLN

∂XN

∂XM
= GLN δN

M = GLM (32b)

Due to the antisymmetry of the structure constants fMNL the non-zero values
for fMNL require M 6= N 6= L, such that GLM = 0 for a diagonal GLM .
Therefore, for flat (X-independent) diagonal metrics in C-space, the derivatives
terms acting on ΩMN (X) in eq- (29) are zero and the star product is associative
and noncommutative in this special case. For more general metrics in C-space
the star product will no longer be associative as it occurs in eq-(31) .

The C-space differential form associated with the polyvector-valued Clifford
gauge field is

A = AM dXM = Φ dσ + Aµ dxµ + Aµν dxµν + .......... +
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Aµ1µ2.....µd
dxµ1µ2.......µd .. (33a)

where Φ = ΦA ΓA, Aµ = AA
µ ΓA, Aµν = AA

µν ΓA, ...... The C-space differential
form associated with the polyvector-valued field-strength is

F = FMN dXM ∧ dXN = F0 µ dσ ∧ dxµ + F0 µ1µ2 dσ ∧ dxµ1µ2 + ....

F0 ν1ν2.....νd
dσ ∧ dxν1ν2......νd + Fµν dxµ ∧ dxν + Fµ1µ2 ν1ν2 dxµ1µ2 ∧ dxν1ν2 + ..........

+ Fµ1µ2.....µd−1 ν1ν2.....νd−1 dxµ1µ2......µd−1 ∧ dxν1ν2.......νd−1 . (33b)

The field strength is antisymmetric under the exchange of poly-vector indices
FMN = −FNM . For this reason one has F00 = 0 and F12....d 12.....d = 0.
Finally, given the noncommutative conditions on the poly-vector coordinates
(27), the components of the Clifford-algebra valued field strength FC

MNΓC in
Noncommutative C-spaces are

F[MN ] = FC
[MN ] ΓC = ( ∂M AC

N − ∂N AC
M ) ΓC +

1
2

( AA
M ∗AB

N − AB
N ∗AA

M ) { ΓA, ΓB } +
1
2

( AA
M ∗AB

N + AB
N ∗AA

M ) [ ΓA, ΓB ].

(34)
The commutators [ ΓA, ΓB ] and anti-commutators { ΓA, ΓB } in eqs-(34),

where A,B are polyvector-valued indices, can be read from the relations in eqs-
(7-10) . Notice that both the standard commutators and anticommutators of the
gammas appear in the terms containing the star deformed products of (34) and
which define the Clifford-algebra valued field strength in noncommutative C-
spaces; i.e. if the products of fields were to commute one would have had only the
Lie algebra commutator AA

MAJ
B [ΓA,ΓB ] pieces without the anti-commutator

{ΓA,ΓB} contributions in the r.h.s of eq-(34).
We should remark that one is not deforming the Clifford algebra involving

[ ΓA, ΓB ] and { ΓA, ΓB } in eq-(34) but it is the ”point” product algebra
AA

M ∗ AB
N of the fields which is being deformed. (Quantum) q-Clifford algebras

have been studied by [9]. The symmetrized star product is

AA
M ∗s AB

N ≡ 1
2

(
AA

M ∗ AB
N +AB

N ∗ AA
M

)
= AA

M AB
N +

Xµν Xκλ (∂µ ∂κ AA
M ) (∂ν ∂λ AB

N ) + ...... (35)

the antisymmetrized (Moyal bracket) star product is

AA
M ∗a AB

N ≡ 1
2

(
AA

M ∗ AB
N −AB

N ∗ AA
M

)
= Xµν (∂µ AA

M ) (∂ν AB
N ) +

Xµν Xκλ Xαβ (∂µ ∂κ ∂α AA
M ) (∂ν ∂λ ∂β AB

N ) + ........ (36)

It is important to emphasize, as it is customary in Moyal star products, that
the poly-vector coordinates appearing in the r.h.s of eqs-(35-36) are treated
as c-numbers (as if they were commuting) while it is the product of functions
appearing in the l.h.s of (35-36) which are noncommutative.
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Star products in noncommutative C-space lead to many more terms in
eqs-(35-36) than in ordinary noncommutative spaces. For example, there are
derivatives terms involving polyvectors which do not appear in ordinary non-
commutative spaces, like

−4 gµ1ν1 Xµ2ν2
∂AA

M

∂Xµ1µ2

∂AB
N

∂Xν1ν2
± ........ (37a)

2 ( gµ2ν Xµ1 − gµ1ν Xµ2 )
∂AA

M

∂Xµ1µ2

∂AB
N

∂Xν
. (37b)

Xµ1µ2µ3ν ∂AA
M

∂Xµ1µ2µ3

∂AJ
B

∂Xν
. (37c)

96 Gµ1µ2µ3 ν1ν2ν3 Xµ4ν4
∂AA

M

∂Xµ1µ2µ3µ4

∂AB
N

∂Xν1ν2ν3ν4
, etc ...... (37d)

There is a subalgebra of the noncommutative polyvector-valued coordinates al-
gebra (27) involving only Xµ and the bivector coordinates Xµν when the space-
time metric components gµν are constant. However, because [Xµ1µ2 , Xν ] 6= 0
one must not confuse the algebra in this case with the ordinary Θ-noncommutative
algebra [Xµ1 , Xµ2 ] = Θµ1µ2 where the components of Θµ1µ2 are comprised of
constants such that [Θµ1µ2 , Xν ] = 0.

The analog of a Yang-Mills action in C-spaces is

S =
∫

[DX] < FA
MN ΓA ∗ FB

PQ ΓB > GMP GNQ. (38)

where < ΓA ΓB > denotes the Clifford-scalar part of the Clifford geometric
product of two generators. As mentioned in the introduction suitable powers
of a length scale must be included in the expansion of the terms inside the
integrand in order to have consistent dimensions (the action is dimensionless).
The action (38) becomes∫

[DX] ( FMN ∗ FMN + F a
MN ∗ FMN

a +

F a1a2
MN ∗ FMN

a1a2
+ ........ + F a1a2.....ad

MN ∗ FMN
a1a2.....ad

). (39)

the measure in C-space is given by

DX = dσ
∏

dxµ
∏

dxµ1µ2
∏

dxµ1µ2µ3 ..... dxµ1µ2.......µd . (40a)

The Clifford-valued gauge fieldAM transforms under star gauge transformations
according to A′M = U−1

∗ ∗ AM ∗ U∗ + U−1
∗ ∗ ∂MU∗ . The field strength F

transforms covariantly F ′
MN = U−1

∗ ∗FMN ∗U∗ such that the action (39) is star
gauge invariant. U∗ = exp∗(ξ(X)) = exp∗(ξA(X)ΓA) is defined via a star power
series expansion U∗ =

∑
n

1
n! (ξ(X))n

∗ where (ξ(X))n
∗ = ξ(X) ∗ ξ(X) ∗ ..... ∗ ξ(X).
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The integral
∫

F ∗ F =
∫

F F + total derivatives. If the fields vanish fast
enough at infinity and/or there are no boundaries, the contribution of the total
derivative terms are zero. In this way one proves the star gauge invariance of the
action (39) under infinitesimal δF = [F, ξ] transformations due to the relations

δξS =
∫

< F ∗ [F, ξ] > =
∫

< F [F, ξ] > + total derivatives =

∫
1
2

< [F 2, ξ] > =
1
2

∫
< F 2 ξ − ξ F 2 > + total derivatives = 0.

(40b)
after using the Liebnitz rule and the cyclic property of the scalar part of the
geometric product

< F 2 ξ − ξ F 2 > =

FA FB ξC < ΓA ΓB ΓC > − ξC FA FB < ΓC ΓA ΓB > = 0. (40c)

In ordinary commutative C-spaces one can perform the mode expansion in
integer powers of the poly-vector coordinates

AM (X) = AM (σ,xµ, xµ1µ2 , ......, xµ1µ2......µd) =∑
nI

AM,nI
(xµ) σno (x12)n12 ...... (x123)n123 ......... (x12......d)n123......d . (41)

The sum over the spacetime dependent fieldsAM,nI
(xµ) is taken over the infinite

number of integer-valued modes associated with the collection set of integers

nI = no, n12, ......, n123, ......., n1234, ........., n12....d. (42)

In Noncommutative C-spaces we may replace the ordinary products of the poly-
vector valued coordinates in eq-(41) for their star products.

To finalize we provide a description of QM in Noncommutative C-spaces
based on Yang’s Noncommutative phase space algebra [10]. There is a subalgebra
of the C-space operator-valued coordinates which is isomorphic to the Non-
commutative Yang’s 4D spacetime algebra [10]. This can be seen after es-
tablishing the following correspondence between the C-space vector/bivector
(area-coordinates) algebra, associated to the 6D angular momentum (Lorentz)
algebra, and the Yang’s spacetime algebra via the SO(6) generators Σij in 6D
(i, j = 1, 2, 3......, 6) as follows [11]

i h̄ Σµν ↔ i
h̄

λ2
X̂µν , i Σ56 ↔ i

R

λ
N . (43a)

i λ Σµ5 ↔ i X̂µ, i Σµ6 ↔ i
R

h̄
P̂µ (43b)

where the indices µ, ν = 1, 2, 3, 4. The scales λ and R are a lower and upper scale
respectively, like the Planck and Hubble scale. The SO(6) algebra [Σij , Σkl] =
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−gikΣjl + ..... can be recast in terms of a noncommutative phase space algebra
as

[P̂µ, N ] = − i η66 h̄

R2
X̂µ, [X̂µ, N ] = i η55 λ2

h̄
P̂µ. (44)

[X̂µ, X̂ν ] = −i η55 X̂µν , [P̂µ, P̂ ν ] = −i η66 h̄2

R2 λ2
X̂µν , X̂µν = λ2 Σµν .

(45)

[X̂µ, P̂µ] = i h̄ ηµν λ

R
Σ56 = i h̄ ηµν N , [X̂µν , N ] = 0. (46)

The last relation is the modified Heisenberg algebra in 4D since N does not
commute with Xµ nor Pµ. The remaining nonvanishing commutation relations
are

[Σµν , X̂ρ] = − i ηµρ X̂ν + i ηνρX̂µ (47a)

[Σµν , P̂ ρ] = − i ηµρ P̂ ν + i ηνρP̂µ. (47b)

[Σµν , Σρτ ] = − i ηµρ Σντ + i ηνρ Σµτ − ........ (47c)

the last relation is the same as that in eq-(18) after reabsorbing factors of 2
in the definition of Σµν . Eqs-(44-47) are the defining relations of the Yang’s
Noncommutative 4D spacetime algebra involving the 8D phase-space variables
Xµ, Pµ and the angular momentum (Lorentz) generators Σµν in 4D. The above
commutators obey the Jacobi identities. An immediate consequence of Yang’s
noncommutative algebra is that now one has a modified products of uncertain-
ties

∆Xµ ∆P ν ≥ h̄

2
ηµν || < Σ56 > ||; ∆Xµ ∆Xν ≥ λ2

2
|| < Σµν > ||

∆Pµ ∆P ν ≥ 1
2
(
h̄

R
)2 || < Σµν > ||. (48)

The Noncommutative phase space Yang’s algebra in 4D can be general-
ized to the Noncommutative Clifford phase space algebra associated to the 4D
spacetime after following the same prescription as in eqs-(43) by invoking higher
dimensions ( 12D in this case instead of 6D ) as follows

Xµ ↔ λ Γµ ∧ Γ5, Pµ ↔ h̄

R
Γµ ∧ Γ6. (49)

Xµ1µ2 ↔ Υ[µ1µ2] [57] 6= λ2 Γµ1 ∧ Γµ2 ∧ Γ5 ∧ Γ7

Pµ1µ2 ↔ Υ[µ1µ2] [68] 6= (
h̄

R
)2 Γµ1 ∧ Γµ2 ∧ Γ6 ∧ Γ8. (50)

Xµ1µ2µ3 ↔ Υ[µ1µ2µ3] [579] 6= λ3 Γµ1 ∧ Γµ2 ∧ Γµ3 ∧ Γ5 ∧ Γ7 ∧ Γ9
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Pµ1µ2µ3 ↔ Υ[µ1µ2µ3] [6810] 6= (
h̄

R
)3 Γµ1 ∧ Γµ2 ∧ Γµ3 ∧ Γ6 ∧ Γ8 ∧ Γ10. (51)

Xµ1µ2µ3µ4 ↔ Υ[µ1µ2µ3µ4] [57911] 6= λ4 Γµ1 ∧Γµ2 ∧Γµ3 ∧Γµ4 ∧Γ5∧Γ7∧Γ9∧Γ11

Pµ1µ2µ3µ4 ↔ Υ[µ1µ2µ3µ4] [681012] 6= (
h̄

R
)4 Γµ1∧Γµ2∧Γµ3∧Γµ4∧Γ6∧Γ8∧Γ10∧Γ12.

(52)
The indices µ1, µ2, µ3, µ4 range from 1, 2, 3, 4. The extra indices span 8 ad-
ditional directions (dimensions) leaving a total dimension of 4 + 8 = 12. The
noncommutative Clifford phase space algebra commutators are defined in terms
of the algebra

[ΥMN , ΥPQ] = − i GMP ΥNQ + i GMQ ΥNP + i GNP ΥMQ − i GNQ ΥMP

(53)
The generators obey ΥMN = −ΥNM , and GMN = GNM under an exchange of
multi-indices M ↔ N .

The algebra (53) has the same structure as a generalized spin algebra and
satisfies the Jacobi identities. We must stress that

[ΥMN , ΥPQ] 6= [ [ΓM ,ΓN ], [ΓP ,ΓQ] ]. (54)

except in the special case when M,N,P, Q are all bivector indices : hence we
must emphasize that the generalized spin algebra (53) is not isomorphic to
the noncommutative algebra of eqs-(15-24) ! For example, from the commutator

[Υ[µ1µ2µ3] [579], Υ[ν1ν2ν3] [6810]] = − i G[µ1µ2µ3] [ν1ν2ν3] Υ[579] [6810]. (55a)

one can infer the Weyl-Heisenberg algebra commutator

[Xµ1µ2µ3 , P ν1ν2ν3 ] = − i h̄3 G[µ1µ2µ3] [ν1ν2ν3] Υ[579] [6810]. (55b)

From the commutator

[Υ[µ1µ2µ3] [579], Υ[ν1ν2ν3] [579]] = − i G[579] [579] Υ[µ1µ2µ3] [ν1ν2ν3]. (56a)

one can infer the commutator among the tri-vector coordinates

[Xµ1µ2µ3 , Xν1ν2ν3 ] = − i λ6 G[579] [579] Υ[µ1µ2µ3] [ν1ν2ν3]. (56b)

where Υ[µ1µ2µ3] [ν1ν2ν3] is a generalized angular momentum (spin) generator.
From the commutator

[Υ[µ1µ2µ3] [579], Υ[579] [6810]] = i G[579] [579] Υ[µ1µ2µ3] [6810]. (57a)
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one can infer the commutator

[Xµ1µ2µ3 , Υ[579] [6810]] = i λ6 1
h̄3 G[579] [579] Pµ1µ2µ3 . (57b)

which exchanges the Xµ1µ2µ3 for Pµ1µ2µ3 , etc ..... Therefore, eqs-(55,56,57) are
the suitable tri-vector analog of eqs-(44,45,46). Clearly, the above non-vanishing
commutators differ from those in eqs-(15-24) and will modify the QM wave
equations when one introduces potential terms like V (X) = g(X ∗X ∗ .......∗X).
QM in ordinary (commutative) C-spaces can be found in [11].

Having provided the basic ideas and results behind polyvector gauge field
theories in Noncommutative Clifford spaces, the construction of Noncommuta-
tive Clifford-space gravity as polyvector valued gauge theories of twisted diffeo-
morphisms in C-spaces will be the subject of future investigations. It would
require quantum Hopf algebraic deformations of Clifford algebras [9]. Such the-
ory is far richer than gravity in Noncommutative spacetimes [12].
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