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                                                               ABSTRACT 

                         

            We investigate electro-mechanical contributions to the low frequency dielectric 

response of biological cells in colloidal suspension. Prior simulations of biological cells 

in colloidal suspension yield maximum dielectric constant values about 310  in magnitude 

as the frequency of applied electric fields drops below the kHz range. Experimentally 

measured relative dielectric values in yeast cells , on the other hand,  have maximal 

values up to 710  - 810 .  We consider both electrical and mechanical energy stored in 

cellular suspension and show that low frequency mechanical contributions can give rise 

to dielectric constant values of this magnitude.  
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I. Introduction  

            

                      Biological cells in colloidal suspension are often modeled as having 

primarily electromagnetic interactions with an external ac electric field. Except for 

electro-rotation, there has been no discussion of mechanical effects in the α  dispersion 

range. Prior numerical simulations [2] used  formalism appropriate for β   dispersion 

effects, i.e. Maxwell – Wagner based dispersion models [1] Experimental values for the 

low frequency differ from what is predicted using Maxwell-Wagner [3] based 

calculations. We argue that this discrepancy is due to  electro – mechanical effects which 

are not significant  in higher frequencies because of inertial effects. We show that the 

mechanical contributions in the α    dispersion range can result in effective dielectric 

constant values up to 710 -  810  ,  whereas β   dispersion effects only give maximum 

dielectric constant values of about 310  in magnitude. In this paper we  examine   how 

electromechanical rotation of cells can contribute  to a more realistic dielectric models of  

cells in  colloidal suspension . 

 

 



II. Model             

        

           Experimentally , it is found that the complex dielectric constant *ε   for N cells  

in a colloidal suspension of  volume  V has distinct dispersion  regions denoted by α , β , 

and γ .   One of the most recent models for complex dielectric response [5] , is given by  : 
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∞ε    is a very high frequency contribution to the dielectric , and is about ten to twenty 

hertz in value. This is for γ  dispersion and simply is ignored in β  and  α  dispersion 

regimes when we consider lower frequency dispersion effects. The second and third 

terms are for β  dispersion and have a  real valued magnitude of about  103  which is in 

turn  negated when we look at the real part of the fourth ( last )  term due to α  dispersive 

effects with a real valued magnitude of about  108 in upper value. The cellεΔ   term 

represents the magnitude of  β  dispersion effects due to  cells ,  while  suspεΔ  is  the 

magnitude of  β  dispersion effects due to the  fluid the cells are  in suspension, in. 

Usually  cellεΔ  >>  suspεΔ   and  cellεΔ   is  about 103  in upper value. In addition, we should 

look at the cellτ   as a relaxation time parameter for cell dispersion processes, and  suspτ   is 

a  relaxation parameter for fluid medium dispersion processes. Given that the β  

dispersion effects occurred in frequencies between 105  and 107  , a top relaxation time of 

about  10-7  for  cellτ   with suspτ  >  cellτ  . 

               Equation 2.1 is empirical. We should note that if we have no imaginary part in 

equation 2.1 that we no longer have dissipation of the applied electric field energy into 



this suspension. The two β  dispersion  terms are   due to  the  Maxwell- Wagner 

relationship and  represent a spatial mixing of  dielectric regions of cells with the 

suspension material the cells are in. When we look  at the first high frequency dielectric 

term, i.e. the  γ  dispersion ,  ‘Debye relaxation ‘  of  molecular dipoles . We should note 

that  in equation 2.1 that for our problem ( low frequency applied electric fields) ) that 

clearly the  α  term is the most important. However, we should note that our subsequent 

derivation will be to fill in details for this  α  term in terms of known physical processes 

which affects the cells in colloidal suspension. 

We should  begin by stating that our new model will be constructed by 

considering how the cells in colloidal suspension, plus the surrounding medium  has a 

total energy expression  which we may give as : 

medcellrTotal WWWW ++=                                                                                (2.2) 

which we can write up as in a different form as looking like : 
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We have that the total energy of the biological system modeled in equation 2.2 has its 

dominant energy contribution given by 

2

2
1 ω⋅⋅⋅= INWr                                                                                            (2.4) 

Also,  

dVEW
cell cellcellcell ⋅⋅⋅= ∫ 2

2
1 ε                                                                            (2.5) 

       and 

dVEW
med medmedmed ⋅⋅⋅= ∫ 2

2
1 ε                                                                          (2.6) 



we can change equation 2.3 to the expression: 
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  is  for α   dispersion   effects  and is of the order of  810     whereas we 

have   ( )pp medcell −⋅+⋅ ∗∗ 1εε     for  β   and  γ   dispersion    effects and  has  

80≈≡ watermed εε    with  an upper bound  value of the order of  310    . We shall now 

explicitly  show how  equation  2.7  actually is from equation 2.2. To do this , note that  
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whereas  we can make the following approximations : 
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and     
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similarly we have that 
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We should take into consideration that              
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refer to mean effective dielectric values of  individual cells and the medium the cells are 

in suspension. . =totalV  total volume of space between the two  capacitor plates . 

Frequently, we have that 1.01. ≤≤ p .. Here, I   is the moment of inertia of an individual 

cell. For the sake of convenience, we shall assume that the cells are nearly spherical. If so 

then we will write:  
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cellρ    refers to  the net density of  biological cells assumed, and cella  refers to the average 

radius of a biological cell.  We can then obtain a general expression for  cell  values, i.e. 
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We shall now  attempt to make a general derivation of cellω   so as to give a detailed 

experimentally accessible formulation of how angular velocity of a cell influences  

formation of  actual dielectric values, using  equation 2.7  above. 

 

III.                  Rotational   Spectra   of  Biological  Cells   in   Electric  Field 

 



           We are , here , setting up a time independent average value of  the frequency of 

rotation ( actually the angular velocity ), which we will call ( )θω ,2 tcell   which is a spatial 

and time averaged quantity. In order to do this, we will set up a relationship between a 

polarization vector with regards to net charge in the cell, and the external electric field 

impinging upon the cell, to get a net torque, and then from there to set up a differential  

equation relating the net torque with angular velocity, cell moment of inertia, and an 

added damping coefficient we will call  D in order to set up a general expression for 

( )θω ,tcell   .  This is then time wise and spatially averaged so as to obtain  ( )θω ,2 tcell  

which is then placed into equation 2.7  in place of  the simple expression 2
cellω  in equation 

2.7. We shall then compare this expression for ( )θω ,2 tcell   with rotational spectra from 

the research literature more appropriate for β   dispersion effects , and then use this new 

rotational spectra we derived to obtain  cellε   values more in sync  with  known 

experimental values , so we can obtain Re *ε    ≅  107  to  even  108 in magni 

tude as the frequency of the applied AC electric field goes down to one hertz in value ( 

for α  dispersion effects ). 

 

            Let us   examine an external field torque upon a cell, with an equation of  : 

( ) pEte ×−= 0τ                                                                                                (3.1) 

Here, we have that we have an external electric field 0E  which is at a given angle θ  with 

respect to a dipole moment  p of the cell in colloidal suspension. We shall be comparing 

this torque with moment of inertia of the cell times the time derivative of  rotational 

frequency  plus an additional term which is composed of  damping coefficient  D   times 



the rotational frequency of the cell. A critical assumption for making this work is that the  

frequency of rotational movement of the cell , cellω , is far smaller than that of the applied 

AC electric field, 0ω   . If we do this, we have that any time we can set )~exp(0 tpcell θθ ≡ , 

with ω⋅+= iqp~  we may treat the frequency of the cell as a different quantity than the 

frequency of the applied electric field.  Also ,if  0ωω <<cell  , we can set 
td
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Should we be not  be making this assumption, we would be  writing, 
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This assumes that  0ωω ≈cell  in a resonance condition. We are assuming otherwise , here. 

Equation 3.3 is a de facto driven harmonic oscillator problem with the r.h.s. being a 

driving force. Now, the right hand side of  equation 3.2 has a very different , almost 

independent angular dependence from the left hand side, primarily because we set  

0ωω <<cell . And : 
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This has a general solution ; if we set  ( ) ( ) ( )titc ⋅⋅−⋅= 00 exp ωθττ   : 
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where we are setting   
I
DF =         

Furthermore, we set  

ωτ ⋅= Dc                                                                                                      (3.7) 

  Here,  we may take the time average of  the square of  equation 3.5  to get: 
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 where  we will find spatial averaging of  2
cτ    in the following manner :  

First , a ring of cell shell space an angle  θ     from  an axis of rotation of the cell, with a 

radius distance  a  from the center of the sphere  , and a  thickness of the shell as  θd  

leads to a net torque on that particular shell of the  cell we may write as : 

⋅⋅⋅
⋅⋅

⋅⋅= ηθ
λ

ωθπτ da
ring

33 sin2                                                                 (3.9) 

 

We have that λ   is the thickness of the ‘shell’ . For our purposes, we set  a⋅= 2.λ  . Also 

we   have that  =
⋅⋅

λ
ωθsina

 gradient of the ‘velocity’ of the ring ‘surface’ of the cell, 

and that the surface area  of the ‘ring’ is given by  θθπ da ⋅⋅⋅⋅ sin2 2  .  Also,  the 



viscosity of the  ring as its net ‘ friction’ with respect to the medium  the cell is in 

colloidal suspension with is given by  η     .   Here, by dimensional analysis, we have that  

λ
η vA Δ

⋅=    .  The area  A     is  times  a  net  velocity change, divided  by the assumed 

shell thickness of the cell. . We can then get , if we integrate over the entire sphere ,  a 

total torque of  
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So, if we have    

 ωτ ⋅= Dcell                                                                                                                      (3.11) 

and  

F    =  
I
D                                                                                                          (3.12) 

we shall  put these last four equations  directly into equation 3.8 above. In doing so, we 

may then use the net cell frequency as given by equation 3.8 as a function of  an AC  

electric field wave frequency 0ω   and then go directly from this  to construct  how we 

measure the cell dielectric constant value as given by equation  2.7  with the cell 

frequency behavior given by equation 3.8.  In an example given in our next section, this 

leads to  quite high cell dielectric values, and an overall value of  equation 2.3   at least 

four orders of magnitude higher than given by prior numerical simulations , for peak 

values of  biological cells in colloidal suspension in the low end of applied AC electric 

field frequencies ( approaching actual measured dielectric experimental values in the 

process ). 

 



            We will, to help our visualization of the examples given in the next section refer 

to explicit formulations of  dipole moment of a cell, torque, and the damping coefficient, 

D ,of a cell experiencing electromotive rotation in a fluid. These will lead to a 

dimensional analysis  description of a general coefficient for dielectric values of a cell , 

which will experience specific functional variation of parameters leading to answering 

such question as when we can expect an inflection point , signifying the onset of  α  

dispersion effects when we plot cell dielectric constant values as a function of  the 

frequency of an applied electric field to biological cells in colloidal suspension. 

   

            As an example, we derived , for a general dipole moment of the cell 

( )
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +
⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅≡=

2

~
cos2

2

~
cos1

2

~
cos1

4
3~,

2

3

α

α
απα aarP                                         (3.13) 

where α~   is the angle we can make from the center of a spherical cell to the region of 

surface charge which is either positive or negative.  

( )
180
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 We found it useful to set ( )
180

~ πα ⋅= nn  in order to represent the range of the angles of a 

cone facing the charged area on the surface of the cell.  In addition, we have that we can  

conveniently write a cell torque expression as: 

( ) ( ) θααθτ sin~,
2
1~,, ⋅=⋅= arPac                                                                    (3.14) 

where angle  θ   is between the applied electric field to the cell and the net dipole value 

written up in equation 3.13. And, =a  cell radius which can be varied as one sees fit. 



Furthermore we have that the rotational velocity of the cell has a counter acting ‘drag’ 

factor we can write up as our damping coefficient, namely 

   ( ) η
λ
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so if we wrote  individual cell volume represented by  

( ) ( ) 331
3
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as well as consider the cell individual moment of inertia we can represent by 

( ) ( ) ( ) 221
5
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which lead to us determining where the initial frequency drops in half , i.e. about half 

way after  we have  α  dispersion start: 
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which as we will see in the next section varies wildly as we change the radius of cells in 

the colloidal suspension .  Furthermore, we have that we may set up a maximum value for 

the cell dielectric constant which is dependent upon the radius of the cell and the angle α~  

which is measuring the impact of charge distribution on the cell ends, i.e.  : 
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Furthermore , with the above formalism set up, we  can  re write equation 3.8 as, then, 
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Here, the variable   f   refers to the frequency  of   the applied AC electric field impinging 

directly upon the cell in colloidal suspension. We also can  take this  angular cellular 

velocity and then put it directly into a given dielectric constant of the cell , as 
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IV.  Basic  results from the above relationships of section III. 

            We should now discuss some of the basic implications of our model and  what we 

can expect  experimentally, if  the following predictions are true. First of all, we managed 

to find a way to duplicate the  curve for α  dispersion as a function of AC applied electric 

field frequency rates. This is  assuming 03.33~ =α  for the angle of a cone facing the 

charged area of the surface of the cell and a cell radius of  10 microns in value. Then, we 

can show  how we can expect the dispersion relationship involving frequency plotted 

against net cell dielectric values. This dispersion curve matches almost exactly the 

experimental condition, for the α  dispersion region, except that the maximum value of  a 

colloidal suspensions would be by necessity about  710 , if we assume  a very dense 

colloidal mix of cells with fluids with  1.≅p  .Still though, this is four orders of 

magnitude greater than simulations given which are primarily with peak dielectric values 

of about 310  for cells in a colloidal suspension. This means that formula 3.19 has some 

direct  applicability . I.e. a classical model actually may  work . 

 



            Next, we managed to predict  the relative mid – point  of  α  dispersion by 

determining how the dielectric value drops to half in a plot of  dielectric values versus 

applied electric field frequency values . Interestingly enough, we found that if we fixed 

%3.33~ =α  in our value of  fD(r) as given in equation 3.16 and varied the radius of the 

cell, that we observed that the α  dispersion inflection point occurred at a high point of 

about  103   Hertz  for cell radius  about four microns in  radius value, to a low of about 7-

8 Hertz for cell radius approximately about 30 microns in radius.  

 

            We next observed how the maximum dielectric value of a cell dielectric is 

affected by an increase in α~   values. Unsurprisingly, if  the α~   angle increases, which 

indicates a spreading out of  charges on  the surface of a cell, we have that the maximum 

possible value of  dielectric constant of the cell increases. We also see in  that as the 

radius of the cell increases that there is a monotonic increase in the cell  dielectric 

constant. This is attributable to how polarization in the cell is  affected by charge mobility 

on the surface as well as other effects, potentially one of them being  flexoelectric 

variations of the cell membrane [6] in ways affecting the distribution of charges on the 

surface region of the cell. 

 

           Finally, we have an idea of how an increase in cell radius size ( mμ  ) will affect  

maximum dielectric values for cells in colloidal suspension, if we have low frequency 

values for the applied AC electric field. The main point is that if the angle  α~   increases 

due to a less pronounced , or at least a less focused dipolar charge concentration in the 

biological cell, that the net maximum dielectric value of the cell decreases. Also, as the 



cell size INCREASES, we also see a drop in dielectric response .This  most likely can be 

interpreted  as  a geometric measure of how polarization  affects dielectric values.  A full 

simulation of the processes inherent is this will probably require sophisticated finite 

element modeling of piezoelectric phenomena in biological cells..Ulrich Zimmerman et 

al  [7]  in 1998 gave a more typical representation of an electro rotational spectra of 

biological cells in colloidal suspension. We shall write it here and compare it with what 

we wrote for  equation 3.7 above. In addition, we shall also refer to some issues affecting 

the onset of electrorotation  which will be to show how non uniform  charge distribution 

in cell structure will lead to torque allowing us to consider a rotational model along the 

lines we wrote above .We should note that the electro rotation we are working with is not 

the same as discussed by prior authors. Note  that Ulrich Zimmerman et al in 1998  wrote 

the ‘typical’ electrorotational spectra of biological cells as linked to ‘ to  their effective 

polarizability  ( fCM ) ‘ via  
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where      ( fCM )  is  the Clausius-Mosotti factor   which is for  β   dispersion effects.. 

This is simply not useful in  lower frequency α  dispersion  which is what  our problem is 

doing. There is an additional  problem, that electrorotation normally would need a four  

electrode system to split  an AC electric field into four ‘signals of particular phase 

relations’. We will answer this by saying that if the cells were perfectly spherical with 

symmetric distribution of  charges and with a net polarization parallel ( anti parallel ) to 

the direction of an applied electric field to the colloidal suspension of biological cells, 



that there would be no torque and hence no spin to the cells in colloidal suspension. This 

simply does not happen. Numerous effects tend to keep cells non uniform in both 

distribution of charges, and cell shape. This is why a  net torque was used in the 

derivation of ( )θω ,2 tcell  .   The assumption of spherical cells was used to simply what 

would otherwise be a messy calculation of moment of inertia. In addition, non spherical 

cell calculations of moment of inertia will only change the value by less than an order of 

magnitude.  

 

V.                                                        Conclusion  

Asami [2] and other authors  actually calculated realistic dielectric values for cells in 

colloidal suspension for the β  region of dispersion values. Those papers correctly 

calculate the electromagnetic contribution to the low frequency dielectric constant (as 

well as conductivity!). But cell anisotropies and inhomogeneities result in a polarization 

vector that is not parallel to E. Note in our calculation we assumed that P was 

PERPENDICULAR to E.  Of course this represents and extreme case and in general the 

angle between P and E can vary. So our model is somewhat idealized. Also we need to 

mention in the discussion that brownian motion and the elastic energy stored in some 

cells may also give a significant contribution to the low frequency dielectric constant. 

(The elastic contribution may be significant in tissue for example) Also we hope that this 

work will motivate experiments to investigate mechanical contribution to the dielectric 

response in the alpha range 

         Our paper gives a useful start in outlining the importance of what we refer to as  

electromechanical effects in the calculation of  a net dielectric value susε    when we are 



considering when we have applied an electric field to cells in suspension  in the low hertz 

limit for α  dispersion effects. This approach gives order of magnitude agreement with 

some experimental data sets. . One paper actually claims to be able to link both α  and  

β dispersion [8], by use of charge mobility. This may be appropriate for some biological 

systems, but it neglects what we think is an unexplored effect which has been seen 

experimentally. . Another paper [9] is interesting, but is heavily weighed toward 

adjustment of what they call geometrical parameters in order to obtain dielectric values 

for biological cells considerably below our maximal values. Both of these mentioned 

approaches have been extensively utilized in β   dispersion , but do not make sense when  

very low frequency  AC electric fields  are applied to biological cells in colloidal 

suspension. Additional work needs to be done to consider a range of effects , i.e. possible 

interaction effects between biological cells in low frequency  AC electric fields . 

However, we believe that the methodology  outlined is a necessary beginning to start a  

systematic investigation of  α  dispersion effects with biological cells .  
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