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Abstract

The objective of this paper is to identify a way to relate entropy with
the synchronization of the input/output power of a system of oscillators.
This view is ultimately reconciled through an examination of the geo-
metric differences that exist between 2D shell and 3D lattice oscillator
arrangements. Keywords: generalizations of lattices, black holes, mea-
sures of information, entropy. MSC codes: 06B75, 83C57, 94A17.

1 Introduction

This paper’s objective is to argue that entropy is related to the synchroniza-
tion of energy flux (e.g., synchronization of interaction via streams of exchange
quanta) involving a system of oscillators. Maximal synchronization is taken to
occur when each and every oscillator both sends and receives its relative maxi-
mum amount of power in such a way that the power is equidistributed along all
of the oscillator’s respective degrees of freedom.

The system’s n oscillators each have n degrees of freedom: one inherent
degree, plus (n − 1) non-inherent degrees that associate it with the remaining
(n − 1) oscillators. In total, the system has n2 degrees. Each oscillator can
receive or send (e.g., “input”, “output”) energy from either or both of the two
opposing directions (e.g., “left”, “right”) that exist along each degree (e.g., in
total, there are 4 ways to interact per degree).

In terms of quantum gravity, the Bekenstein entropy bound (e.g., via the
Hawking area theorem and the generalized second law of thermodynamics) infers
that the entropy S of a Schwarzschild black hole is proportional to the area of
its event horizon (e.g., a 2D shell of radius Rs)

Rs =
2GE

c4
, (1)
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A = 4πR2
s =

16πG2E2

c8
, (2)

S ∝ A, (3)

and that the black hole’s interior represents the smallest spherical region that
this amount of entropy can be fit into.

With regard to the black hole’s macroscopic state as observed from some
distance far from the black hole’s event horizon where gravitational time di-
lation is negligible (e.g., r ≫ Rs, dτ/dt ≈ 1), the black hole appears to emit
electromagnetic energy (e.g., Hawking radiation) that is characteristic of the
Planck black body spectrum associated with the temperature

T =
h̄c5

k8πGE
. (4)

An intuitive plausibility argument for this phenomenon involving oscillator (e.g.,
particle-antiparticle) creation and annihilation is given in [1].

The first law of thermodynamics (e.g., the fundamental thermodynamic re-
lation) defines the change in statistical thermodynamic entropy, the change in
energy, and temperature to be

dS =
dE

T
, (5)

dS

dE
=

1

T
. (6)

Given that S ∝ A, the change in event horizon area with respect to the change
in rest energy dA/dE can be used as a template to determine the black hole’s
statistical thermodynamic entropy

dA

dE
=

32πG2E

c8
, (7)

A =
dA

dE

E

2︸ ︷︷ ︸
template

=⇒ S =
dS

dE

E

2︸ ︷︷ ︸
solution

, (8)

S =
1

T

E

2
=

k4πGE2

h̄c5
=

kA

4ℓ2p
. (9)

Dropping Boltzmann’s constant k converts statistical thermodynamic en-
tropy into Shannon entropy (e.g., information), which is given in terms of nat-
ural digits (e.g., “nats”, base e number system)

S =
A

4ℓ2p
= π

R2
s

ℓ2p
. (10)

Here ℓp represents the Planck length

ℓp =

√
h̄G

c3
≈ 1.6× 10−35 metres. (11)

The holographic principle further expands on this Planck length quantization
of the black hole. See [2–5].
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2 Method

Rather than quantizing the black hole in terms of the Planck length, the remain-
der of this argument quantizes the black hole in terms of the Planck energy Ep

instead. Consider a 2D shell consisting of n uniformly distributed Planck oscil-
lators that are taken to possess maximal entropy

Ep =

√
h̄c5

G
≈ 1.9× 109 Joules, (12)

n =
E

Ep
, (13)

n

A
=

c8

EEp16πG2
, (14)

S = 4n2π, (15)

where equations (10) and (15) are equivalent as a matter of course. It is taken
that the factor of 4 represents the previously mentioned number of ways that
interaction can occur along each of the individual n2 degrees (e.g., input/output,
left/right). For lack of a simpler physically-related explanation, the factor of π
is taken to represent rotation (e.g., radians, spin).

The Planck oscillators are related to the frequency

fp =
Ep

h
≈ 2.9× 1042 Hertz. (16)

Each Planck oscillator is taken to oscillate along all of its n degrees equally over
time, outputting the maximum amount of power possible to both the left and
right of each degree

P ′ =
Epfp
n

=
E2

p

nh
≈ 5.7× 1051

n
Joules per second. (17)

The total output power of the entire set of Planck oscillators is 2n2P ′, where
one half is sent to the black hole’s interior and one half is sent to its exterior.
Barring Hawking radiation, the static solitary black hole is taken to neither
gain nor lose rest energy over time, and so the same amount of output power
sent to the interior/exterior must be simultaneously returned back to the Planck
oscillators as input power (e.g., also 2n2P ′). As a result, all 4 ways of interacting
are simultaneously maximal for all n2 degrees.

The following is a detailed breakdown of the input/output power per oscil-
lator, where n is an odd number (e.g. see Fig. 1):

1. Each of the (n− 1) non-inherent degrees outputs P ′ to the interior (e.g.,
(n − 1)P ′ total), which is eventually reabsorbed by the other oscillators
as input.

2. Each of the (n − 1) non-inherent degrees also outputs P ′ to the exterior
(e.g., also (n− 1)P ′ total), which is taken to be lost.
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3. The oscillator’s inherent degree is taken to point toward/away from the
centre of the black hole (e.g., not toward/away from one of the other
oscillators), and so the power that it outputs to both the interior and
exterior (e.g., 2P ′ total) is also taken to be lost (e.g., is not eventually
reabsorbed by some other oscillator).

Where the required total input power per oscillator is 2nP ′, it appears that
(n − 1)P ′ comes from the black hole itself (e.g., via the internal halves of the
non-inherent degrees), and so (n+ 1)P ′ must come from the vacuum.

Oppositely, where n is an even number (e.g. see Fig. 2), the oscillator’s
inherent degree points not only toward/away from the centre of the black hole,
but also toward/away from some other oscillator (e.g. the two oscillators are
antipodal). The power that the oscillator outputs to the exterior along its
inherent degree (e.g., P ′ total) is still taken to be lost, but the power that it
outputs to the interior along its inherent degree (e.g., P ′ total) is now taken
to be eventually reabsorbed by some other oscillator. Where the required total
input power per oscillator is 2nP ′, it appears that nP ′ comes from the black
hole itself (e.g., via the internal halves of the inherent and non-inherent degrees),
and so nP ′ must come from the vacuum.

It is taken that an oscillator can only oscillate along one degree at any given
time (e.g., where a change of degree occurs fp times per second), and so each
of the oscillator’s degrees must possess a unique positive integer phase number
from within the closed interval [1, n]. In terms of the linear power distribution
model given here, the black hole’s exchange quanta are of energy-momentum
Ep = ppc (e.g., inherent wavelength c/fp = λp), and are spaced apart along
the degrees by steplengths of nλp = λ′ = n2πℓp. Where i and j refer to the
ith oscillator’s jth degree (e.g., coincidentally, this jth degree relates the ith
oscillator to the jth oscillator), a solution for phase is

φ(i, j) =

{
j − (n− i+ 1) if j > n− i+ 1,
j + i− 1 if j ≤ n− i+ 1.

(18)

By using this solution to plot n× n matrices1 (e.g., related to Fig. 1 for n = 5,
and Fig. 2 for n = 4)

M(5) =


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 , M(4) =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 , (19)

the following properties of the solution are illustrated:

1. As required, no two degrees (e.g., elements) of any one oscillator (e.g.,
row) share the same phase number.

1. . . of the Hankel variety, where the skew diagonals are constant. . .
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2. With respect to non-inherent degrees (e.g., those not along the main diag-
onal Mii), counterbalancing output streams share the same phase number
(e.g., the matrix is symmetric Mij = Mji).

3. With respect to inherent degrees (e.g., those along the main diagonal
Mii), all phase numbers are unique where n is an odd number. Where n
is an even number, only one half of the inherent degree phase numbers are
unique because the oscillators are in antipodal pairs.

Perhaps this solution is loosely related to total colouring in graph theory [6–13],
where chromatic number is synonymous with phase number.

It is taken that the left and right of each degree are also slightly out of phase
with respect to each other. To simplify, where left is synonymous with interior
and right is synonymous with exterior:

φ(i, j)Interior = φ(i, j), (20)

φ(i, j)Exterior = φ(i, j)− 1/2. (21)

All said, the black hole would neither gain nor lose rest energy over time even
though there would be astronomical amounts of energy continually being carried
in and out of each and every one of its constituent oscillators (e.g., 4nP ′ Joules
per second, per Planck oscillator). From this alone it seems that gravitation
is doubly symmetric (e.g., spin-2) with respect to the ways of interacting per
degree (e.g., simultaneous left-input, right-input, left-output, and right-output
by default), and so its mechanism is the cycling (e.g., counterbalanced bidi-
rectional emission) of energy (e.g., 4n2P ′ Joules per second, per Schwarzschild
black hole).2 On the other hand, electromagnetism would be only singly sym-
metric (e.g., spin-1, only simultaneous left-output and right-output by default,
non-counterbalanced bidirectional emission of energy).3

3 Results

To summarize the properties of the black hole:

1. Power output is matched by power input by default. Barring Hawking
radiation, no net change in the system’s rest energy occurs over time
even though some of its exchange quanta (e.g., gravitons) are lost to the
exterior. Gravitation is doubly symmetric.

2. In terms of Bachmann-Landau notation, the complexity of energy ex-
change for each degree is Θ(1).

2In classical terms, the gravitational time dilation that a body undergoes at a distance of
r > Rs is related to the black hole’s rest energy by (dτ/dt)2 = 1− 2GE/(rc4). The factor of
2 represents the doubly symmetric nature of the gravitational field.

3As such, a field that is half symmetric (e.g., only left-output or right-output by default,
non-counterbalanced unidirectional emission of energy) is spin-1/2, and a field that is involved
with no such power input or output is spin-0 (e.g., a scalar field, non-directional).

5



3. The complexity of energy exchange for each Planck oscillator is Θ(n).

4. The complexity of energy exchange for each black hole is Θ(n2). Entropy
is proportional to the system’s rest energy squared.

5. The n oscillators lie uniformly distributed along a 2D shell (e.g., event
horizon). Measure the combined distance from any one oscillator to all
of the other (n− 1) oscillators. This combined value is roughly the same
for all oscillators. As well, none of the n oscillators block any of the
other (n − 1) oscillators from directly exchanging energy with any of the
remaining (n−2) oscillators. That is, entropy can be maximal only where
blocking does not occur.

On the other hand, consider the low entropy of a cube of weakly self-
gravitating sodium chloride (e.g., Na+ and Cl− ions, table salt). As tempera-
ture reduces toward absolute zero and input/output power reduces toward the
minimum (e.g., see: zero-point energy), the ions align to form a 3D lattice of
uniformly spaced points:

1. The primary form of energy exchange in this case is light, where power
output is not matched by power input by default. Where T > 0 Kelvin
always, a net negative change in the system’s rest energy occurs over time
as some of its exchange quanta (e.g., photons) are lost to the exterior.
Electromagnetism is singly symmetric.

2. The complexity of energy exchange for each degree is Θ(1).

3. The complexity of energy exchange for each ion is Θ(1). Ignoring inherent
degrees altogether, each ion directly exchanges energy primarily with up to
only 6 nearest neighbours along the lattice, regardless of the total number
of ions within the entire system.

4. The complexity of energy exchange for each system is Θ(n). Entropy is
proportional to the system’s rest energy.

5. The n ions lie uniformly distributed along a 3D lattice. Measure the
combined distance from any one ion to all of the other (n− 1) ions. This
combined value varies from ion to ion. As well, some of the n ions block
some of the other (n− 1) ions from directly exchanging energy with some
of the remaining (n− 2) ions. That is, entropy cannot be maximal where
blocking occurs.

4 Discussion

To generalize, where i and j refer to the ith oscillator’s jth degree, the entropy
of a system of n oscillators is taken to be

P ′(i) =
E(i)2

nh
, (22)
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f(u, v) =
min(u, v)

max(u, v)︸ ︷︷ ︸
normalized ratio

, (23)

γ(i, j) = f(P In
Left(i, j), P

′(i)) + f(P In
Right(i, j), P

′(i))

+ f(POut
Left (i, j), P

′(i)) + f(POut
Right(i, j), P

′(i)),
(24)

S =
n∑

i=1

n∑
j=1

γ(i, j)π. (25)

This entropy calculation accounts for various types of systems:

1. E(i) ̸= Ep. The oscillators need not be Planck oscillators.

2. PBoth
Both (i, j) ̸= P ′(i). With regard to equation (23), entropy contribution

reduces as PBoth
Both (i, j) become increasingly smaller or larger than P ′(i)

(e.g., P ′(i) is an equilibrium point).

3. E(i) ̸= constant, as is with chemical compounds (e.g., sodium chloride).

It is important to note that even if this linear power distribution model is in-
correct (e.g., P ′(i) ̸= E(i)2/(nh)), the remaining speculations represented by
equations (23 - 25) (e.g., power synchronization/equilibrium, 4-way interaction,
and spin) do not automatically become incorrect as well. That is, the impor-
tance of the role that P ′(i) plays is irrespective of P ′(i)’s specific algebraic
constitution.

It is also important to note that systemic phase synchronization, like that
which is described by equation (18), can occur even where PBoth

Both (i, j) = constant,
PBoth
Both (i, j) ≪ P ′(i). If phase synchronization were the source of entropy (con-

trary to the argument presented here), this would mean that a system of os-
cillators of arbitrarily large individual rest energy could still possess maximal
entropy even where power input/output is arbitrarily close to zero. It seems
counterintuitive to ascribe maximal entropy to a relatively non-interacting sys-
tem such as this (e.g., relatively non-interacting in comparison to the possibility
represented by PBoth

Both (i, j) = P ′(i) anyway), and so power synchronization is
taken to be the source of entropy in this argument, not phase synchronization.

It seems that the argument presented here is in dispute with models that take
the Schwarzschild black hole’s entropy to be anything other than S = A/(4ℓ2p).
For instance, see page 294 in [4] where entropy is implicitly redefined to be
S = A/ℓ2p. In order to preserve equivalence with equations (10) and (15), the

Planck scale is redefined to be ℓp =
√
4h̄G/c3 and Ep =

√
4h̄c5/G. Applying

the concepts argued for here, n = E/Ep =⇒ S = 16n2π, and so the maximum
entropy contribution per degree would be 16π = 8× 2π, not 4π = 2× 2π (e.g.,
equation (24) would consist of 16 terms, not 4). This is undesirable, given that
this implies that gravitation is a spin-8 interaction, even though it is widely
considered to be spin-2. To be fair however, this discrepancy could also simply
mean that the spin-related interpretation of the factor of π argued for here is
incorrect.

Thanks to T. Nagoshi and V. Rolem for their inspiring work on shells.
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5 Appendix

The model presented here is inherently classical:

1. There is no uncertainty in position/velocity for either the Planck oscilla-
tors or their exchange quanta.

2. Barring Hawking radiation, the number of oscillators n is constant.

3. The exchange quanta form an exterior gravitational field that somewhat
resembles a 1/r “potential” (e.g., inverse-square intensity falloff), but is
most definitely not spherically symmetric; there is inhomogeneity in the
distribution of the positions and normal vectors defined by the intersec-
tions of the n2 degrees and the event horizon.

In an attempt to account for uncertainty, non-constant oscillator count, and
a spherically symmetric 1/r exterior gravitational field “potential” without the
use of exchange quanta, the black hole is taken to have not only one oscillator
count n(Rs) = E/Ep, but all oscillator counts n(r) ≥ 1, at all times. This
forms not just an event horizon, but an entire continuum of concentric shells
that all obey the Bekenstein entropy bound

n(r) =
E

E(r)
=

r

2ℓp
, (26)

E(r) =
E2ℓp
r

, (27)

n(r) ≥ 1, E ≥ E(r), r ≥ 2ℓp. (28)

Where r > Rs, the gtt and grr components of the Schwarzschild metric are
given by

gtt = −(1−Rs/r), grr = 1/(1−Rs/r), (29)

gtt = −(1− n/n(r)), grr = 1/(1− n/n(r)), (30)

gtt = −(1− E(r)/Ep), grr = 1/(1− E(r)/Ep). (31)

For example, the Earth’s mean radius is r ≈ 6371 kilometres, and its mass
is M ≈ 5.97 × 1024 kilograms. The resulting characteristic energy level at the
surface of this idealized Earth is E(r) ≈ 2.7 Joules (e.g., ∼ 1.7 × 1019 eV).
Given the magnitude of E(r), it seems interesting to consider whether or not the
observed abrupt falloff in the cosmic ray energy spectrum [14–16] at ∼ 1019 eV
is largely dependent on the values of r and M at the site of observation.
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(a) Output along non-inherent degrees. (b) Input along non-inherent degrees.

(c) Output along inherent degree. (d) Input along inherent degree.

Figure 1: Diagram of a Schwarzschild black hole that illustrates input/output
per oscillator, where n = 5 (e.g., an odd number). For ease of visualization,
a 1D shell arrangement (e.g., a circle) has been used in place of a 2D shell
arrangement. Regarding subfigures 1(b) and 1(d), the total number of inputs
per oscillator is 2n = 10, where (n − 1) = 4 come from the black hole and
(n+1) = 6 come from the vacuum. It is interesting to note that the black hole’s
total number of synchronized inputs/outputs (e.g., S/π = 4n2 = 100) remains
the same for both 1D and 2D shell arrangements. Entropy is independent of the
dimension of the shell. Lattice arrangements do not exhibit this property, in
that there are 4 nearest neighbours in 2D, 6 in 3D, etc. Entropy is proportional
to the dimension of the lattice.
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(a) Output along non-inherent degrees. (b) Input along non-inherent degrees.

(c) Output along inherent degree. (d) Input along inherent degree.

Figure 2: Diagram of a Schwarzschild black hole that illustrates input/output
per oscillator, where n = 4 (e.g., an even number). It is important to note that
even though the horizontal arrows from subfigures 2(a) and 2(b) are duplicated
by subfigures 2(c) and 2(d), these two identical sets of arrows represent two
different degrees (e.g., one non-inherent, one inherent). Regarding subfigures
2(b) and 2(d), the total number of inputs per oscillator is 2n = 8, where n = 4
come from the black hole and n = 4 come from the vacuum.
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