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   Introduction: During the height of the 'tech-bubble' in the late nineties I was the 
treasurer of a small faculty investment club at my school. One question we always 
debated was whether we invest in 'value stocks' with low P/E ratio and low growth, or 
'growth stocks' with high P/E ratio but also high growth. To help in making investment 
decisions I formulated a simple mathematical model for stock comparison. All else 
being equal, I used the (equilibrium) 'break-even time' as a measure for comparison. 
For simplicity I also assumed a period of exponential growth of earnings for all stocks. 

   The Model: Let P be the price paid for a stock and E be its earnings (as determined 
by the P/E ratio). Consider that the earnings grow exponentially at a rate r. Let t∆  be 
the interval of time when the accumulated earnings of the stock equals the price paid 
for the stock. We will then have that 
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From (1) we have that
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   Example: Consider two stocks. Stock A sells for $105 per share, has a P/E ratio of  
15 and a growth rate of 6%. Stock B sells for $25 per share, has a P/E ratio of 95 and 
a growth rate of 30%. All else being equal, which is a better value?
   Answer: Using (2), we can calculate the 'break-even time' for stock A to be 10.7  
years while the 'break-even time' for stock B is 11.3 years. Therefore stock A is a 
better value!

Although the collapse of the 'tech bubble' invalidated all my assumptions (and put an 
end to our investment club), this simple model did leave me with something to think 
about. It led to a surprising connection to Planck's Law in Quantum Physics.

   Planck's Law connection in Quantum Physics: We can rewrite eq. (1) above as    
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   For exponential functions E(s) it is easy to show that E rP∆ = . Always,
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Substituting these in (3) we get,
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Planck's Law for 'blackbody radiation' states that
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where E is energy, h  is Planck’s constant, k is Boltzmann’s constant, ν  is frequency 
of radiation and T is temperature of the 'blackbody'. It is well know in Quantum 
Physics that a 'quantum of energy' E∆ is equal to hν while the average energy of the 
'blackbody' (per degree of freedom) is given by kT . If we where to substitute 

E hν∆ = and avE kT= in (5), we see that Planck's Law has the exact same 
mathematical form as (4). We can show that (4) is an exact mathematical identity (a  
tautology) that characterizes all exponential functions. We have the following 
theorem (proven elsewhere):
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   Planck's Law derivation without using 'energy quanta': The above results 
suggest a derivation of Planck’s Law for ‘blackbody’ radiation using continuous 
processes only and without needing the ‘quantization of energy’ hypothesis. We will 
show that Planck’s Formula is an exact mathematical identity that describes the 
'interaction of measurement' --  i.e. the functional relationship between the energy E(s) 
at the ‘sensor’ at time s, the energy E∆ absorbed by the ‘sensor’ making the 
measurement, and the average energy avE  at the ‘sensor’ during measurement. We 
will use the following notation in the discussion below, where E is energy and t is 
time:
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‘accumulation of  energy’ over the interval [ ],s s t+ ∆ , 
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average value of energy over the interval [ ],s s t+ ∆ , h  is Planck’s constant, k is 
Boltzmann’s constant, ν is frequency of radiation and T is temperature.
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   It is always true that 
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temperature T . Then the average energy will equal kT. Let P=h be the (minimal) 
‘accumulation of energy’ necessary for a measurement to be made (figure 2). For 
measurement to occur, the 'source' is in equilibrium with the 'sensor'. And so, the 
average energy at the ‘sensor’ will equal to the average energy of the ‘source’. We 

will then have that avE kT= .  Substituting, we will get that 
ht

kT
∆ = . Therefore 

( )
hs

kT
s

h E u du
+

= ∫ , an exact mathematical identity. If we assume that 0( ) uE u E eν=  

(as suggested by the Theorem stated above), integrating we get 

0
( ) 1

h hs u kTkT
s

E sh E e du e
νν

ν
+  = = −  ∫ , and from this we get Planck’s Law for 

'blackbody' radiation,  ( )
1

h
kT

hE s
e

ν

ν=
−

. 

   Using this understanding of Planck's Law and its derivation, we can now easily 
explain the phenomenon of 'energy quanta'; why energy is proportional to the 
frequency of radiation; why the energy of a single quantum is hν ; the true meaning of 
h andν ; and the energy-time 'uncertainty principle'.
 

       
          figure 3                figure 4

   When a measurement is made the 'sensor' absorbs a (minimal) amount of energy E∆
and therefore the function E(t) 'collapses' (figure 3). We can calculate this (minimal) 
amount of energy E∆  absorbed by the 'sensor' to be
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This explains why the change in energy is proportional to the frequency and is hν . 
Figure 4 shows the energy absorbed by the 'sensor' is in discrete integral units of hν . 
This shows that though the propagation of energy can be continuous, the measurement 
of energy is made in discrete ‘equal size sips’. Figure 4 also shows that for constant 
temperature T the energy absorbed by the 'sensor' is linear with respect to time, with 
slope equal to kTν . (This provides an easy way of experimentally confirming these 

results). Note further that if we take 
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3



   Furthermore, it can be mathematically shown that no matter what is the value of E∆
absorbed by the 'sensor', Planck's Law always reduces to the same familiar form, 
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invariant to E∆ . This helps explains why Planck's Law is such an exact fit to data.

   The assumption 0( ) tE t E eν= makes Planck’s Formula an 'exact mathematical  
identity'. However, if we were to consider that E(t) is only an integrable function we 
will still have that Planck’s Formula is the ‘best fit’ to the experimental data. In theory 
we cannot do better than Planck’s Formula in describing the experimental results, as 
the following argument shows.

   It is easy to mathematically verify that for any integrable function E(t), 
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the corresponding (minimal) time interval for measurement, this approximation 
represents the ‘best fit’ that we can theoretically have to experimental data. The data 
itself cannot be any different from this. 

Summary:
• Planck's Law describes the 'interaction of measurement' – i.e the functional 

relationship between the energy E(t) at the 'sensor' at any time, the energy E∆  
'absorbed' by the 'sensor' making the measurement, and the average energy 

avE  at the 'sensor' during measurement.
• Planck's Law can be derived using continuous processes and without needing 

the 'quantization of energy' hypothesis.
• Planck's Law is an exact mathematical identity which is invariant to the 

amount of energy E∆  absorbed by the 'sensor'. No matter what is the value of
E∆ , or if t∆  is positive or negative, the Formula always reduces to the same 

familiar form. This proves that Planck's Law is independent of the 
instrumentation or methodology used in making measurements, and why 
Planck's Law is such an exact fit to data.

• The experimental phenomenon of 'energy quanta' has a simple and intuitive 
explanation. Planck's constant h is the minimal amount of accumulated energy 
that can be manifested (absorbed/measured).

• The quantization of energy hypothesis, E hν∆ = , can be mathematically 
proven.

• The time required for an amount h of accumulated energy to manifest at 
temperature T  is equal to h/kT.

• The energy-time 'uncertainty principle' can be mathematically explained. 
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