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Abstract.  In this paper, we present some new inequalities for factorial sum. 
 
 Application 1.We have the following inequality  
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the Chebishev’s inequality.  
 

If ,  k kx y  have different monotonity, then holds true the reverse inequality, we take 
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 Application 2. We have the following inequality  
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 Proof. In (1) we take  
2 1kx k k= + + ; 
! ( 1,2,..., )ky k k n= =   

and the identity  
2

1
( 1) ! ( 1)( 1)! 

n

k
k k k n n

=

+ + = + +∑  

 
 Application 3. We have the following inequality  
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 Proof. Using the Application 1, we take  
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 Application 4. We have the following inequality 
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 Application 5. We have the following inequality: 
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 Application 6. We have the following inequality: 
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 Application 7.We have the following inequality: 
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 Application 8. We have the following inequality: 
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 Application 9. We have the following inequality: 
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