APPLICATIONS OF WALLIS THEOREM

Mihály Bencze ${ }^{1}$, Florentin Smarandache ${ }^{2}$
${ }^{1}$ Department of Mathematics, Áprily Lajos College, Braşov, Romania;
${ }^{2}$ Chair of Department of Math \& Sciences, University of New Mexico, Gallup, NM 87301, USA

Abstract

In this paper we present theorems and applications of Wallis theorem related to trigonometric integrals.

Let's recall Wallis Theorem:
Theorem 1. (Wallis, 1616-1703)

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot \ldots \cdot(2 n)}{1 \cdot 3 \cdot \ldots \cdot(2 n+1)}
$$

Proof: Using the integration by parts, we obtain

$$
\begin{aligned}
& I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x=\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x \sin x d x=-\left.\cos x \cdot \sin 2 n x\right|_{0} ^{\frac{\pi}{2}}+ \\
&+2 n \int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x\left(1-\sin ^{2} x\right) d x=2 n I_{n-1}-2 n I_{n}
\end{aligned}
$$

from where:

$$
I_{n}=\frac{2 n}{2 n+1} I_{n-1} .
$$

By multiplication, we obtain the statement.
We prove in the same manner for $\cos x$.
Theorem 2.

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x=\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)} \cdot \frac{\pi}{2} .
$$

Proof: Same as the first theorem.

Theorem 3. If $f(x)=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}$, then

$$
\int_{0}^{\frac{\pi}{2}} f(\sin x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x=\frac{\pi}{2} a_{0}+\frac{\pi}{2} \sum_{k=1}^{\infty} a_{2 k} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{2 \cdot 4 \cdot \ldots \cdot(2 k)} .
$$

Proof: In the function $f(x)=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}$ we substitute x by $\sin x$ and then integrate from 0 to $\frac{\pi}{2}$, and we use the second theorem.

Theorem 4. If $g(x)=\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1}$, then

$$
\int_{0}^{\frac{\pi}{2}} g(\sin x) d x=\int_{0}^{\frac{\pi}{2}} g(\cos x) d x=a_{1}+\sum_{k=1}^{\infty} a_{2 k+1} \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{1 \cdot 3 \cdot \ldots \cdot(2 k+1)} .
$$

Theorem 5. If $h(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} h(\sin x) d x=\int_{0}^{\frac{\pi}{2}} h(\cos x) d x=\frac{\pi}{2} a_{0}+a_{1}+\sum_{k=1}^{\infty}\left(\frac{\pi}{2} a_{2 k} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{2 \cdot 4 \cdot \ldots \cdot(2 k)}+\right. \\
& \left.+a_{2 k+1} \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{1 \cdot 3 \cdot \ldots \cdot(2 k+1)}\right) .
\end{aligned}
$$

Application 1.

$$
\int_{0}^{\frac{\pi}{2}} \sin (\sin x) d x=\int_{0}^{\frac{\pi}{2}} \sin (\cos x) d x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{1^{2} \cdot 3^{2} \cdot \ldots \cdot(2 k+1)^{2}}
$$

Proof: We use that $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$.

Application 2.

$$
\int_{0}^{\frac{\pi}{2}} \cos (\sin x) d x=\int_{0}^{\frac{\pi}{2}} \cos (\cos x) d x=\frac{\pi}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k}(k!)^{2}}
$$

Proof: We use that $\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$.

Application 3.

$$
\int_{0}^{\frac{\pi}{2}} \operatorname{sh}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \operatorname{sh}(\cos x) d x=\sum_{k=0}^{\infty} \frac{1}{1^{2} \cdot 3^{2} \cdot \ldots \cdot(2 k+1)^{2}}
$$

Proof: We use that $\operatorname{sh} x=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$

Application 4.

$$
\int_{0}^{\frac{\pi}{2}} c h(\sin x) d x=\int_{0}^{\frac{\pi}{2}} c h(\cos x) d x=\frac{\pi}{2} \sum_{k=0}^{\infty} \frac{1}{4^{k}(k!)^{2}} .
$$

Proof: We use that chx $=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}$.

Application 5.

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \frac{\pi^{2}}{6}
$$

Proof: In the expression of $\arcsin x=x+\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1) x^{2 k+1}}{2 \cdot 4 \cdot \ldots \cdot(2 k)(2 k+1)}$ we substitute x by $\sin x$, and use theorem 4. It results that $\frac{\pi^{2}}{8}=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}$.
Because:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

we obtain:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi}{6} .
$$

Application 6.

$$
\int_{0}^{\frac{\pi}{2}} \sin x \operatorname{ctg}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \cos x \operatorname{ctg}(\cos x) d x=\frac{\pi}{2}-\frac{\pi}{2} \sum_{k=1}^{\infty} \frac{B_{k}}{(k!)^{2}}
$$

where B_{k} is the k -th Bernoulli type number (see [1]).
Proof: We use that $x \operatorname{ctg} x=1-\sum_{k=1}^{\infty} \frac{4^{k} B_{k}}{(2 k)!} x^{2 k}$.

Application 7.

$$
\int_{0}^{\frac{\pi}{2}} \operatorname{arctg}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \operatorname{arctg}(\cos x) d x=1+\sum_{k=1}^{\infty}(-1)^{k} \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{1 \cdot 3 \cdot \ldots \cdot(2 k-1)(2 k+1)^{2}} .
$$

Proof: We use that $\operatorname{arctg} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}$.

Application 8.

$$
\int_{0}^{\frac{\pi}{2}} \arg \operatorname{th}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \arg \operatorname{th}(\cos x) d x=1+\sum_{k=1}^{\infty} \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{1 \cdot 3 \cdot \ldots \cdot(2 k-1)(2 k+1)^{2}} .
$$

Proof: We use that \arg th $x=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{2 k+1}$.

Application 9.

$$
\int_{0}^{\frac{\pi}{2}} \arg \operatorname{sh}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \arg \operatorname{sh}(\cos x) d x=\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{(2 k+1)^{2}} .
$$

Proof: We use that $\arg \operatorname{sh} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1) x^{2 k+1}}{2 \cdot 4 \cdot \ldots \cdot(2 k)(2 k+1)}$.

Application 10.

$$
\int_{0}^{\frac{\pi}{2}} \operatorname{tg}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \operatorname{tg}(\cos x) d x=\sum_{k=1}^{\infty} \frac{2^{2 k-1}\left(4^{k}-1\right) B_{k}}{1^{2} \cdot 3^{2} \cdot \ldots \cdot(2 k-1)^{2} k} .
$$

Proof: We use that $\operatorname{tg} x=\sum_{k=1}^{\infty} \frac{2^{2 k}\left(4^{k}-1\right) B_{k}}{(2 k)!} x^{2 k-1}$.

Application 11.

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin (\sin x)} d x=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin (\cos x)} d x=\frac{\pi}{2}+\pi \sum_{k=1}^{\infty} \frac{\left(2^{2 k-1}-1\right) B_{k}}{2^{2 k}(k!)^{2}}
$$

Proof: We use that $\frac{x}{\sin x}=1+2 \sum_{k=1}^{\infty} \frac{\left(2^{2 k-1}-1\right) B_{k}}{(2 k)!} x^{2 k}$.

Application 12.

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\operatorname{sh}(\sin x)} d x=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\operatorname{sh}(\cos x)} d x=\frac{\pi}{2}+\pi \sum_{k=1}^{\infty} \frac{\left(2^{2 k-1}-1\right) B_{k}}{2^{2 k}(k!)^{2}} .
$$

Proof: We use that $\frac{x}{s h x}=1+2 \sum_{k=1}^{\infty}(-1)^{k} \frac{\left(2^{2 k-1}-1\right) B_{k}}{(2 k)!} x^{2 k}$.

Application 13.

$$
\int_{0}^{\frac{\pi}{2}} \sec (\sin x) d x=\int_{0}^{\frac{\pi}{2}} \sec (\cos x) d x=\frac{\pi}{2}+\pi \sum_{k=1}^{\infty} \frac{E_{k}}{2^{2 k+1}(k!)^{2}}
$$

where E_{k} is the k-th Euler type number (see [1]).
Proof: We use that $\sec x=1+\sum_{k=1}^{\infty} \frac{E_{k}}{(2 k)!} x^{2 k}$

Application 14.

$$
\int_{0}^{\frac{\pi}{2}} \sec h(\sin x) d x=\int_{0}^{\frac{\pi}{2}} \sec h(\cos x) d x=\frac{\pi}{2}+\pi \sum_{k=1}^{\infty}(-1)^{k} \frac{E_{k}}{2^{2 k+1}(k!)^{2}}
$$

Proof: We use that $\sec h x=1+\sum_{k=1}^{\infty}(-1)^{k} \frac{E_{k}}{(2 k)!} x^{2 k}$.

REFERENCES

[1] Octav Mayer - Theoria funcțiilor de o variabilă complexă - Ed. Academiei, Bucharest, 1981.
[2] Mihály Bencze - About Taylor formula - (manuscript).
[Published in "Octogon", Vol. 6, No. 2, 117-120, 1998.]

