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Abstract:  In this paper we present theorems and applications of Wallis theorem 
related to trigonometric integrals. 

 
 Let’s recall Wallis Theorem: 
 Theorem 1. (Wallis, 1616-1703) 

   sin2n+1 xdx =
0

π
2

∫ cos2n+1 xdx =
0

π
2

∫
2 ⋅ 4 ⋅ ... ⋅ (2n)

1 ⋅ 3 ⋅ ... ⋅ (2n +1)
. 

 Proof: Using the integration by parts, we obtain 

  In = sin2n+1 xdx =
0

π
2

∫ sin2n x sin xdx =
0

π
2

∫ − cos x ⋅ sin2nx 
0

π
2

+  

   +2n sin2n+1 x 1− sin2 x( )dx =
0

π
2

∫ 2nIn−1 − 2nIn  

from where: 

   In =
2n

2n +1
In−1 . 

 By multiplication, we obtain the statement.  
 We prove in the same manner for cos x . 
  

Theorem 2.  

   sin2n xdx =
0

π
2

∫ cos2n xdx =
0

π
2

∫
1 ⋅ 3 ⋅ ... ⋅ (2n −1)

2 ⋅ 4 ⋅ ... ⋅ (2n)
⋅
π
2

. 

 Proof: Same as the first theorem. 
  

Theorem 3. If f (x) = a2k
k=0

∞

∑ x2k , then 

   f (sin x)dx =
0

π
2

∫ f (cos x)dx =
0

π
2

∫
π
2

a0 +
π
2

a2k
k=1

∞

∑ 1 ⋅ 3 ⋅ ... ⋅ (2k −1)

2 ⋅ 4 ⋅ ... ⋅ (2k)
. 
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 Proof: In the function f (x) = a2k
k=0

∞

∑ x2k  we substitute x  by sin x  and then 

integrate from 0 to 
π
2

, and we use the second theorem. 

 Theorem 4. If g(x) = a2k+1
k=0

∞

∑ x2k+1 , then 

   g(sin x)dx =
0

π
2

∫ g(cos x)dx =
0

π
2

∫ a1 + a2k+1
k=1

∞

∑ 2 ⋅ 4 ⋅ ... ⋅ (2k)

1 ⋅ 3 ⋅ ... ⋅ (2k +1)
. 

 Theorem 5. If h(x) = ak
k=0

∞

∑ xk , then 

h(sin x)dx =
0

π
2

∫ h(cos x)dx =
π
2

a0 +
0

π
2

∫ a1 +
π
2

a2k

⎛
⎝⎜k=1

∞

∑ 1 ⋅ 3 ⋅ ... ⋅ (2k −1)

2 ⋅ 4 ⋅ ... ⋅ (2k)
+

+ a2k+1

2 ⋅ 4 ⋅ ... ⋅ (2k)

1 ⋅ 3 ⋅ ... ⋅ (2k +1)

⎞
⎠⎟

. 

 Application 1. 

  sin(sin x)dx =
0

π
2

∫ sin(cos x)dx =
0

π
2

∫ (−1)k

k=0

∞

∑ 1

12 ⋅ 32 ⋅ ... ⋅ (2k +1)2
 

 Proof: We use that sin x = (−1)k

k=0

∞

∑ x2k+1

(2k +1)!
. 

 Application 2. 

   cos(sin x)dx =
0

π
2

∫ cos(cos x)dx =
0

π
2

∫
π
2

(−1)k

4 k (k!)2
k=0

∞

∑ . 

  

 Proof: We use that cos x = (−1)k

k=0

∞

∑ x2k

(2k)!
. 

 Application 3. 

   sh(sin x)dx =
0

π
2

∫ sh(cos x)dx =
0

π
2

∫
1

12 ⋅ 32 ⋅ ... ⋅ (2k +1)2
k=0

∞

∑ . 

  

 Proof: We use that shx =
x2k+1

(2k +1)!k=0

∞

∑  

    
  Application 4. 
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   ch(sin x)dx =
0

π
2

∫ ch(cos x)dx =
0

π
2

∫
π
2

1

4 k (k!)2
k=0

∞

∑ . 

 Proof: We use that chx =
x2k

(2k)!k=0

∞

∑ . 

 
 
 Application 5. 

    
1

k2
k=1

∞

∑ π 2

6
 

 Proof: In the expression of 
2 1

1

1 3 ... (2 1)arcsin
2 4 ... (2 )(2 1)

k

k

k xx x
k k

+∞

=

⋅ ⋅ ⋅ −
= +

⋅ ⋅ ⋅ +∑  we substitute x  

by sin x , and use theorem 4. It results that 
π 2

8
=

1

(2k +1)2
k=0

∞

∑ .  

Because: 

   
1

k2 =
k=1

∞

∑ 1

(2k +1)2 +
1

4k=0

∞

∑ 1

k2
k=1

∞

∑  

we obtain: 

   
1

k 2
=

k=1

∞

∑ π
6

. 

 Application 6. 

  
2 2

2
10 0

sin  ctg(sin ) cos  ctg(cos )
2 2 ( !)

k

k

Bx x dx x x dx
k

π π

π π ∞

=

= = − ∑∫ ∫  

where Bk is the k-th Bernoulli type number (see [1]). 

 Proof: We use that xctgx = 1−
4 k Bk

(2k)!k=1

∞

∑ x2k . 

 Application 7. 

  arctg(sin x)dx =
0

π
2

∫ arctg(cos x)dx = 1+
0

π
2

∫ −1( )k
k=1

∞

∑ 2 ⋅ 4 ⋅ ... ⋅ (2k)

1 ⋅ 3 ⋅ ... ⋅ (2k −1)(2k +1)2
. 

 Proof: We use that arctgx = (−1)k x2k+1

2k +1k=0

∞

∑ . 

 Application 8. 

  
2 2

2
10 0

2 4 ... (2 )arg (sin ) arg (cos ) 1
1 3 ... (2 1)(2 1)k

kth x dx th x dx
k k

π π
∞

=

⋅ ⋅ ⋅
= = +

⋅ ⋅ ⋅ − +∑∫ ∫ . 

 Proof: We use that 
2 1

0
arg  

2 1

k

k

xth x
k

+∞

=

=
+∑ . 

  



 4

 Application 9. 

  arg sh(sin x)dx =
0

π
2

∫ arg sh(cos x)dx
0

π
2

∫ = (−1)k 1

(2k +1)2
k=1

∞

∑ . 

 Proof: We use that arg shx = (−1)k 1 ⋅ 3 ⋅ ... ⋅ (2k −1)x2k+1

2 ⋅ 4 ⋅ ... ⋅ (2k)(2k +1)k=0

∞

∑ . 

 
 Application 10. 

2 12 2

2 2 2
10 0

2 (4 1)tg(sin ) tg(cos )
1 3 ... (2 1)

k k
k

k

Bx dx x dx
k k

π π
−∞

=

−
= =

⋅ ⋅ ⋅ −∑∫ ∫ . 

 Proof: We use that tg x =
22k (4 k −1)Bk

(2k)!k=1

∞

∑ x2k−1 . 

  
 Application 11. 

sin x

sin(sin x)
dx

0

π
2

∫ =
cos x

sin(cos x)
dx =

0

π
2

∫
π
2
+ π

22k−1 −1( )Bk

22k (k!)2
k=1

∞

∑  

Proof: We use that 
x

sin x
= 1+ 2

22k−1 −1( )Bk

(2k)!k=1

∞

∑ x2k . 

 
 Application 12. 

sin x

sh(sin x)
dx

0

π
2

∫ =
cos x

sh(cos x)
dx =

0

π
2

∫
π
2
+ π

22k−1 −1( )Bk

22k (k!)2
k=1

∞

∑ . 

 Proof: We use that 
x

shx
= 1+ 2 (−1)k

22k−1 −1( )Bk

(2k)!k=1

∞

∑ x2k . 

 Application 13. 

  sec(sin x)dx =
0

π
2

∫ sec(cos x)dx =
π
2
+ π

Ek

22k+1(k!)2
k=1

∞

∑
0

π
2

∫ , 

where Ek  is the k-th Euler type number (see [1]). 

  Proof: We use that sec x = 1+
Ek

(2k)!k=1

∞

∑ x2k  

 Application 14. 

  sech(sin x)dx =
0

π
2

∫ sech(cos x)dx =
π
2
+ π (−1)k Ek

22k+1(k!)2
k=1

∞

∑
0

π
2

∫ . 

Proof: We use that sech x = 1+ (−1)k Ek

(2k)!k=1

∞

∑ x2k . 
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