ABOUT THE CHARACTERISTIC FUNCTION OF A SET

Prof. Mihály Bencze, Department of Mathematics, University of Braşov, Romania

Prof. Florentin Smarandache, Chair of Department of Math \& Sciences, University of New Mexico, 200 College Road, Gallup, NM 87301, USA, E-mail: smarand@unm.edu

Abstract

: In this paper we give a method, based on the characteristic function of a set, to solve some difficult problems of set theory found in undergraduate studies.

Definition: Let's consider $A \subset E \neq \varnothing$ (a universal set), then $f_{A}: E \rightarrow\{0,1\}$, where the function $f_{A}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{array}\right.$ is called the characteristic function of the set A.

Theorem 1: Let's consider $A, B \subset E$. In this case $f_{A}=f_{B}$ if and only if $A=B$.

Proof.

$$
f_{A}(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in A=B \\
0, & \text { if } x \notin A=B
\end{array}=f_{B}(x)\right.
$$

Reciprocally: For any $x \in A, f_{A}(x)=1$, but $f_{A}=f_{B}$, therefore $f_{B}(x)=1$, namely $x \in B$ from where $A \subset B$. The same way we prove that $B \subset A$, namely $A=B$.

Theorem 2: $f_{\tilde{A}}=1-f_{A}, \quad \tilde{A}=C_{E} A$.

Prof.

$f_{\tilde{A}}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in \tilde{A} \\ 0, & \text { if } x \notin \tilde{A}\end{array}=\left\{\begin{array}{ll}1, & \text { if } x \notin A \\ 0, & \text { if } x \in A\end{array}=\left\{\begin{array}{ll}1-0, & \text { if } x \notin A \\ 1-1, & \text { if } x \in A\end{array}=1-\left\{\begin{array}{ll}0, & \text { if } x \notin A \\ 1, & \text { if } x \in A\end{array}=1-f_{A}(x)\right.\right.\right.\right.$

Theorem 3: $f_{A \cap B}=f_{A} * f_{B}$.

Proof.

$$
\begin{gathered}
f_{A \cap B}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A \cap B \\
0, \\
\text { if } x \notin A \cap B
\end{array}=\left\{\begin{array}{ll}
1, & \text { if } x \in A \text { and } x \in B \\
0, & \text { if } x \notin A \text { or } x \notin B
\end{array}=\left\{\begin{array}{ll}
1, & \text { if } x \in A, x \in B \\
0, & \text { if } x \in A, \\
0 \neq B \\
0, & \text { if } x \notin A, \\
0, & \text { if } x \notin B,
\end{array}=\right.\right.\right. \\
=\left(\{ \begin{array} { l l l }
{ 1 } & { \text { if } } & { x \in A } \\
{ 0 } & { \text { if } } & { x \notin A }
\end{array}) \left\{\left(\begin{array}{lll}
1 & \text { if } & x \in B \\
0 & \text { if } & x \notin B
\end{array}\right)=f_{A}(x) f_{B}(x) .\right.\right.
\end{gathered}
$$

The theorem can be generalized by induction:
Theorem 4: $f_{\prod_{k=1}^{n} A_{k}}=\prod_{k=1}^{n} f_{A_{k}}$
Consequence. For any $n \in \mathbb{N}^{*}, f_{M}^{n}=f_{M}$.
Proof. In the previous theorem we chose $A_{1}=A_{2}=\ldots=A_{n}=M$.
Theorem 5: $f_{A \cup B}=f_{A}+f_{B}-f_{A} f_{B}$.
Proof.
$f_{A \cup B}=f_{\overline{A \cup B}}=f_{\overline{A \cap B}}=1-f_{\bar{A} \cap \bar{B}}=1-f_{\bar{A}} f_{\bar{B}}=1-\left(1-f_{A}\right)\left(1-f_{B}\right)=f_{A}+f_{B}-f_{A} f_{B}$
It can be generalized by induction:
Theorem 6: $f_{\bigcup_{k=1}^{n} A_{k}}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n}(-1)^{k-1} f_{A_{1}} f_{A_{2}} \ldots f_{A_{i_{k}}}$

Theorem 7: $f_{A-B}=f_{A}\left(1-f_{B}\right)$
Proof. $f_{A-B}=f_{A \cap \bar{B}}=f_{A} f_{\bar{B}}=f_{A}\left(1-f_{B}\right)$.
It can be generalized by induction:
Theorem 8: $f_{A_{1}-A_{2}-\ldots-A_{n}}=\sum_{k=1}^{n}(-1)^{k-1} f_{A_{i_{1}}} f_{A_{i_{2}}} \ldots f_{A_{i_{k}}}$.
Theorem 9: $f_{A \triangle B}=f_{A}+f_{B}-2 f_{A} f_{B}$
Proof.

$$
f_{A \triangle B}=f_{A \cup B-A \cap B}=f_{A \cup B}\left(1-f_{A \cap B}\right)=\left(f_{A}+f_{B}-f_{A} f_{B}\right)\left(1-f_{A} f_{B}\right)=f_{A}+f_{B}-2 f_{A} f_{B} .
$$

It can be generalized by induction:
Theorem 10: $F_{\Delta_{k=1}^{n} A_{k}}=\sum_{k=1}^{n}(-2)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} f_{A_{i_{i}} A_{i}, \ldots A_{i_{k}}}$.

Theorem 11: $f_{A \times B}(x, y)=f_{A}(x) f_{B}(y)$.

Proof. If $(x, y) \in A \times B$, then $f_{A \times B}(x, y)=1$ and $x \in A$, namely $f_{A}(x)=1$ and $y \in B$, namely $f_{B}(y)=1$, therefore $f_{A}(x) f_{B}(y)=1$. If $(x, y) \notin A \times B$, then $f_{A \times B}(x, y)=0$ and $x \notin A$, namely $f_{A}(x)=0$ or $y \notin B$, namely $f_{B}(y)=0$, therefore $f_{A}(x) f_{B}(y)=0$.

This theorem can be generalized by induction.
Theorem 12: $f_{x_{k=1}^{n} A_{k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n} f_{A_{k}}\left(x_{k}\right)$.
Theorem 13: (De Morgan) $\overline{\bigcup_{k=1}^{n} A_{k}}=\bigcap_{k=1}^{n} \overline{A_{k}}$
Proof.

$$
f_{\overline{\bigcup_{k=1}^{n} A_{k}}}=1-f_{\bigcup_{k=1}^{n} A_{k}}=1-\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\cdots \ll i_{k} \leq n}^{n} f_{A_{i_{1}}} f_{A_{A_{2}}} \ldots f_{A_{A_{k}}}=\prod_{k=1}^{n}\left(1-f_{A_{k}}\right)=\prod_{k=1}^{n} f_{\bar{A}_{k}}=f_{\prod_{k=1}^{n} \overline{A_{k}}} .
$$

We prove in the same way the following theorem:
Theorem 14: (De Morgan) $\overline{\bigcap_{k=1}^{n} A_{k}}=\bigcup_{k=1}^{n} \overline{A_{k}}$.
Theorem 15: $\left(\bigcup_{k=1}^{n} A_{k}\right) \cap M=\bigcup_{k=1}^{n}\left(A_{k} \cap M\right)$.
Proof.
$f_{\left(\bigcup_{k=1}^{n} A_{k}\right) \cap M}=f_{\bigcup_{k=1}^{n} A_{k}} f_{M}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}} f_{A_{i_{2}}} \ldots f_{A_{i_{k}}} f_{M}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}} f_{A_{i_{2}}} \ldots f_{A_{i_{k}}} f_{M}^{k}=$
$=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{i}} \cap M} f_{A_{i_{2}} \cap M} \ldots f_{A_{i_{k}} \cap M}=f_{\bigcup_{k=1}^{n}\left(A_{k} \cap M\right)}$
In the same way we prove that:
Theorem 16: $\left(\bigcap_{k=1}^{n} A_{k}\right) \cup M=\bigcap_{k=1}^{n}\left(A_{k} \cup M\right)$.
Theorem 17: $\left(\Delta_{k=1}^{n} A_{k}\right) \cap M=\Delta_{k=1}^{n}\left(A_{k} \cap M\right)$

Application.

$\left(\Delta_{k=1}^{n} A_{k}\right) \cup M=\Delta_{k=1}^{n}\left(A_{k} \cup M\right)$ if and only if $M=\Phi$.
Theorem 18: $M \times\left(\bigcup_{k=1}^{n} A_{k}\right)=\bigcup_{k=1}^{n}\left(M \times A_{k}\right)$
Proof.

$$
\begin{aligned}
f_{M \times\left(\bigcup_{k=1}^{n} A_{k}\right)}(x, y) & =f_{M}(y) f_{\bigcup_{k=1}^{n} A_{k}}(x)=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}}(x) f_{A_{i_{2}}}(x) \ldots f_{A_{i_{k}}}(x) f_{M}(y)= \\
& =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}}(x) f_{A_{i_{2}}}(x) \ldots f_{A_{i_{k}}}(x) f_{M}^{k}(y)= \\
& =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}} \times M}(x, y) \ldots f_{A_{i_{k}} \times M}(x, y)=f_{\sum_{k=1}^{n}\left(M \times A_{k}\right)}
\end{aligned}
$$

In the same way we prove that:
Theorem 19: $M \times\left(\bigcap_{k=1}^{n} A_{k}\right)=\bigcap_{k=1}^{n}\left(M \times A_{k}\right)$.
Theorem 20: $M \times\left(A_{1}-A_{2}-\ldots-A_{n}\right)=\left(M \times A_{1}\right)-\left(M \times A_{2}\right)-\ldots-\left(M \times A_{n}\right)$.
Theorem 21: $\left(A_{1}-A_{2}\right) \cup\left(A_{2}-A_{3}\right) \cup \ldots \cup\left(A_{n-1}-A_{n}\right) \cup\left(A_{n}-A_{1}\right)=\bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$
Proof 1.

$$
\begin{aligned}
& f_{\left(A_{1}-A_{2}\right) \cup \ldots \cup\left(A_{n}-A_{1}\right)}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{i}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}-A_{i_{2}}} \ldots f_{A_{i_{k}}-A_{i_{1}}}= \\
& =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n}\left(f_{A_{i_{1}}}-f_{A_{i_{2}}}-f_{A_{i_{1}}} f_{A_{i_{2}}}\right) \ldots\left(f_{A_{A_{k}}}-f_{A_{i_{1}}}-f_{A_{A_{k}}} f_{A_{i_{1}}}\right)= \\
& =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}} \ldots f_{A_{A_{k}}}\left(1-\prod_{p=1}^{n} f_{A_{p}}\right)=f_{\bigcup_{k=1}^{n} A_{k}}\left(1-f_{\prod_{k=1}^{n} A_{k}}\right)=f_{\underbrace{n}_{k=1} A_{k}-\bigcap_{k=1}^{n} A_{k}} .
\end{aligned}
$$

Proof 2. Let's consider $x \in \bigcup_{i=1}^{n}\left(A_{i}-A_{i+1}\right)$, (where $A_{n+1}=A_{1}$), then there exists k such that $\quad x \in\left(A_{k}-A_{k+1}\right)$, namely $\quad x \notin\left(A_{k} \cap A_{k+1}\right) \subset A_{1} \cap A_{2} \cap \ldots \cap A_{n}$, namely $x \notin A_{1} \cap A_{2} \cap \ldots \cap A_{n}$, and $x \in \bigcup_{k=1}^{n} A_{k}-l_{k=1}^{n} A_{k}$.

Now we prove the inverse statement:
Let's consider $x \in \bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$, we show that there exists k such that $x \in A_{k}$ and $x \notin A_{k+1}$. On the contrary, it would result that for any $k \in\{1,2, \ldots, n\}, x \in A_{k}$ and $x \in A_{k+1}$ namely $x \in \bigcup_{k=1}^{n} A_{k}$, it results that there exists p such that $x \in A_{p}$, but from the previous reasoning it results that $x \in A_{p+1}$, and using this we consequently obtain that $x \in A_{k}$ for $k=\overline{p, n}$. But from $x \in A_{n}$ we obtain that $x \in A_{1}$, therefore, it results that $x \in A_{k}, k=\overline{1, p}$, from where $x \in A_{k}, k=\overline{1, n}$, namely $x \in A_{1} \cap \ldots \cap A_{n}$, that is a contradiction. Thus there exists r such that $x \in A_{r}$ and $x \notin A_{r+1}$, namely $x \in\left(A_{r}-A_{r+1}\right)$ and therefore $x \in \bigcup_{k=1}^{n}\left(A_{k}-A_{k+1}\right)$.

In the same way we prove the following theorem:
Theorem 22: $\left(A_{1} \Delta A_{2}\right) \cup\left(A_{2} \Delta A_{3}\right) \cup \ldots \cup\left(A_{n-1} \Delta A_{n}\right)=\bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$.

Theorem 23:

$$
\begin{aligned}
\left(A_{1} \times A_{2} \times \ldots \times\right. & \left.A_{k}\right) \cap\left(A_{k+1} \times A_{k+2} \times \ldots \times A_{2 k}\right) \cap\left(A_{n} \times A_{1} \times \ldots \times A_{k-1}\right)=\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)^{k} . \\
\text { Proof. } & f_{\left(A_{1} \times \ldots \times A_{k}\right) \cap \ldots\left(A_{n} \times A_{1} \times \ldots A_{k-1}\right)}\left(x_{1}, \ldots, x_{n}\right)= \\
& =f_{A_{1} \times \ldots A_{k}}\left(x_{1}, \ldots, x_{n}\right) \ldots f_{A_{n} \times \ldots A_{k-1}}\left(x_{1}, \ldots, x_{n}\right)= \\
& =\left(f_{A_{1}}\left(x_{1}\right) \ldots f_{A_{k}}\left(x_{k}\right)\right) \ldots\left(f_{A_{n}}\left(x_{n}\right) \ldots f_{A_{k-1}}\left(x_{k-1}\right)\right)= \\
& =f_{A_{1}}^{k}\left(x_{1}\right) \ldots f_{A_{n}}^{k}\left(x_{n}\right)=f_{A_{1} \cap \ldots A_{n}}^{k}\left(x_{1}, \ldots, x_{n}\right)= \\
& =f_{\left(A_{1} \cap \ldots \cap A_{n}\right)^{k}}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Theorem 24. $(P(E), \mathrm{U})$ is a commutative monoid.
Proof. For any $A, B \in P(E) ; A \cup B \in P(E)$, namely the intern operation. Because $(A \cup B) \cup C=A \cup(B \cup C)$ is associative, $A \cup B=B \cup A$ commutative, and because $A \cup \varnothing=A$ then \varnothing is the neutral element.

Theorem 25: $(P(E), \cap)$ is a commutative monoid.
Proof. For any $A, B \in P(E) ; \quad A \cap B \in P(E)$ namely intern operation. $(A \cap B) \cap C=A \cap(B \cap C)$ associative, $A \cap B=B \cap A$, commutative $A \cap E=A, E$ is the neutral element.

Theorem 26: $(P(E), \Delta)$ is an abelian group.
Proof. For any $A, B \in P(E) ; A \Delta B \in P(E)$, namely the intern operation. $A \Delta B=B \Delta A$ commutative. The proof of associativity is in the XII ${ }^{\text {th }}$ grade manual as a problem. We'll prove it using the characteristic function of the set.

$$
f_{(A \Delta B) \Delta C}=4 f_{A} f_{B} f_{C}-2 f_{A} f_{B}+f_{B} f_{C}+f_{C} f_{A}+f_{A}+f_{B}+f_{C}=f_{A \Delta(B \Delta C)}
$$

Because $A \Delta \varnothing=A, \varnothing$ is the neutral element and because $A \Delta A=\varnothing$; the symmetric element of A is A itself.

Theorem 27: $(P(E), \Delta, \cap)$ is a commutative Boole ring with a divisor of zero.
Proof. Because the previous theorem satisfies the commutative ring axioms, the first part of the theorem is proved. Now we prove that it has a divisor of zero. If $A \neq \varnothing$ and $B \neq \varnothing$ are two disjoint sets, then $A \cap B=\varnothing$, thus it has divisor of zero. From Theorem 17 we get that it is distributive for $n=2$. Because for any $A \in P(E)$; $A \cap A=A$ and $A \Delta A=\varnothing$ it also satisfies the Boole-type axioms.

Theorem 28: Let's consider $H=\{f \mid f: E \rightarrow\{0,1\}\}$, then (H, \oplus) is an abelian group, where $f_{A} \oplus f_{B}=f_{A}+f_{B}-2 f_{A} f_{B}$ and $(P(E), \Delta) \cong(H, \oplus)$.

Proof. Let's consider $F: P(E) \rightarrow H$, where $f(A)=f_{A}$, then, from the previous theorem we get that it is bijective and because $F(A \Delta B)=f_{A \triangle B}=F(A) \oplus F(B)$ it is compatible.

Theorem 29: $\operatorname{card}\left(A_{1} \Delta A_{n}\right) \leq \operatorname{card}\left(A_{1} \Delta A_{2}\right)+\operatorname{card}\left(A_{2} \Delta A_{3}\right)+\ldots+\operatorname{card}\left(A_{n-1} \Delta A_{n}\right)$.
Proof. By induction. If $n=2$, then it is true, we show that for $n=3$ it is also true. Because $\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{3}\right) \subseteq A_{2} \cup\left(A_{1} \cap A_{3}\right)$;

$$
\begin{aligned}
& \operatorname{card}\left(\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{3}\right)\right) \leq \operatorname{card}\left(A_{2} \cup\left(A_{1} \cap A_{3}\right)\right) \text { but } \\
& \operatorname{card}(M \cup N)=\operatorname{cardM}+\operatorname{cardN}-\operatorname{card}(M \cap N), \text { and thus } \\
& \operatorname{card} A_{2}+\operatorname{card}\left(A_{1} \cap A_{3}\right)-\operatorname{card}\left(A_{1} \cap A_{2}\right)-\operatorname{card}\left(A_{2} \cap A_{3}\right) \geq 0, \quad \operatorname{can} \quad \text { be }
\end{aligned}
$$

written as

$$
\begin{aligned}
& \quad \operatorname{card} A_{1}+\operatorname{card} A_{3}-2 \operatorname{card}\left(A_{1} \cap A_{3}\right) \leq \\
& \leq\left(\operatorname{card} A_{1}+\operatorname{card} A_{2}-2 \operatorname{card}\left(A_{1} \cap A_{2}\right)\right)+\left(\operatorname{card}_{2}+\operatorname{card} A_{3}-2 \operatorname{card}\left(A_{2} \cap A_{3}\right)\right) .
\end{aligned}
$$

But because of

$$
(M \Delta N)=\operatorname{card} M+\operatorname{card} N-2 \operatorname{card}(M \cap N)
$$

then $\operatorname{card}\left(A_{1} \Delta A_{3}\right) \leq \operatorname{card}\left(A_{1} \Delta A_{2}\right)+\operatorname{card}\left(A_{2} \Delta A_{3}\right)$. The proof of this step of the induction relies on the above method.

Theorem 30: $\left(P^{2}(E), \operatorname{card}(A \Delta B)\right)$ is a metric space.
Proof. Let $d(A, B)=\operatorname{card}(A \Delta B): P(E) \times P(E) \rightarrow \square$

1. $d(A, B)=0 \Leftrightarrow \operatorname{card}(A \Delta B)=0 \Leftrightarrow \operatorname{card}((A-B) \cup(B-A))=0$ but
because $\quad(A-B) \cap(B-A)=\varnothing$ we obtain $\quad(A-B)+\operatorname{card}(B-A)=0$ and because $(A-B)=0$ and $\operatorname{card}(B-A)=0$, then $A-B=\varnothing, B-A=\varnothing$, and $A=B$.
2. $d(A, B)=d(B, A)$ results from $A \Delta B=B \Delta A$.
3. As a consequence of the previous theorem $d(A, C) \leq d(A, B)+d(B, C)$.

As a result of the above three properties it is a metric space.

PROBLEMS

Problem 1.

Let's consider $A=B \cup C$ and $f: P(A) \rightarrow P(A) \times P(A)$, where $f(x)=(X \cup B, X \cup C)$. Prove that f is injective if and only if $B \cap C=\varnothing$.

Solution 1. If f is injective. Then

$$
f(\varnothing)=(\varnothing \cup B, \varnothing \cup C)=(B, C)=((B \cap C) \cup B,(B \cap C) \cup C)=f(B \cap C) \quad \text { from }
$$

which we obtain $B \cap C=\varnothing$. Now reciprocally: Let's consider $B \cap C=\varnothing$, then $f(X)=f(Y)$; it results that $X \cup B=Y \cup B$ and $X \cup C=Y \cup C$ or

$$
X=X \cup \varnothing=X \cup(B \cap C)=(X \cup B) \cap(X \cup C)=(Y \cup B) \cap(Y \cup C)=Y \cup(B \cap C)=Y \cup \varnothing=Y
$$ namely it is injective.

Solution 2. Let's consider $B \cap C=\varnothing$ passing over the set function $f(X)=f(Y)$ if and only if $X \cup B=Y \cup B$ and $X \cup C=Y \cup C$, namely $f_{X \cup B}=f_{Y \cup B}$ and $f_{X \cup C}=f_{Y \cup C}$ or $f_{X}+f_{B}-f_{X} f_{B}=f_{Y}+f_{B}-f_{Y} f_{B}$ and $f_{X}+f_{C}-f_{X} f_{C}=f_{Y}+f_{C}-f_{Y} f_{C}$ from which we obtain $\left(f_{X}-f_{Y}\right)\left(f_{B}-f_{C}\right)=0$.
Because $A=B \cup C$ and $B \cap C=\varnothing$, we have

$$
\left(f_{B}-f_{C}\right)(u)=\left\{\begin{array}{ll}
1, & \text { if } u \in B \\
-1, & \text { if } u \in C
\end{array} \neq 0\right.
$$

therefore $f_{X}-f_{Y}=0$, namely $X=Y$ and thus it is injective.
Generalization. Let $M=\bigcup_{k=1}^{n} A_{k}$ and $f: P(A) \rightarrow P^{n}(A)$, where

$$
f(X)=\left(X \cup A_{1}, X \cup A_{2}, \ldots, X \cup A_{n}\right)
$$

Prove that f is injective if and only if $A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\varnothing$.
Problem 2. Let $E \neq \varnothing, A \in P(E)$, and $f: P(E) \rightarrow P(E) \times P(E)$, where $f(X)=(X \cap A, X \cup A)$.
a. Prove that f is injective
b. Prove that $\{f(x), x \in P(E)\}=\{(M, N) \mid M \subset A \subset N \subset E\}=K$.
c. Let $g: P(E) \rightarrow K$, where $g(X)=f(X)$. Prove that g is bijective and compute its inverse.
Solution.
a. $\quad f(X)=f(Y)$, namely $\quad(X \cap A, X \cup A)=(Y \cap A, Y \cup A)$ and then $X \cap A=Y \cap A, \quad X \cup A=Y \cup A, \quad$ from \quad where $\quad X \Delta A=Y \Delta A \quad$ or $(X \Delta A) \Delta A=(Y \Delta A) \Delta A, X \Delta(A \Delta A)=Y \Delta(A \Delta A), X \Delta \varnothing=Y \Delta \varnothing$ and thus $X=Y$, namely f is injective.
b. $\{f(X), X \in P(E)\}=f(P(E))$. We'll show that $f(P(E)) \subset K$. For any
$(M, N) \in f(P(E)), \exists X \in P(E): f(X)=(M, N) ;(X \cap A, X \cup A)=(M, N)$.
From here $X \cap A=M, X \cup A=N$, namely $M \subset A$ and $A \subset N$
thus $M \subset A \subset N$, and, therefore $(M, N) \in X$.
Now, we'll show that $K \subset f(P(E))$, for any $(M, N) \in K, \exists X \in P(E)$ such that $f(X)=(M, N) . \quad f(X)=(M, N)$, namely $\quad(X \cap A, X \cup A)=(M, N) \quad$ from where $X \cap A=M \quad$ and $\quad X \cup A=N, \quad$ namely $\quad X \Delta A=N-M, \quad(X \Delta A) \Delta A=(N-M) \Delta A$, $X \Delta \varnothing=(N-M) \Delta A$,
$X=(N-M) \Delta A, X=(N \cap \bar{M}) \Delta A$,
$X=((N \cap \bar{M})-A) \cup(A-(N \cap \bar{M}))=((N \cap \bar{M}) \cap A) \cup(A \cap(\bar{\cap} \overline{\bar{M}}))=$ $=(N \cap(\bar{M} \cap \bar{A})) \cup(A \cap(N \cap \bar{M}))=(N \cap \bar{A}) \cup((A \cap \bar{N}) \cup(A \cap M))=$
$=(N \cap \bar{A}) \cup(\varnothing \cup M)=(N-A) \cup M$.
From here we get the unique solution: $X=(N-A) \cup M$.
We test $f((N-A) \cup M)=(((N-A) \cup M) \cap A,((N-A) \cup M) \cup A)$
but

$$
\begin{aligned}
& ((N-A) \cup M) \cap A=((N \cap \bar{A}) \cup M) \cap A=((N \cap \bar{A}) \cap A) \cup(M \cap A)= \\
& =((N \cap(\bar{A} \cap A)) \cup M=(N \cap \varnothing) \cup M=\varnothing \cup M=M
\end{aligned}
$$

and

$$
\begin{aligned}
& ((N-A) \cup M) \cup A=(N-A) \cup(M \cup A)=(N-A) \cup A=(N \cap \bar{A}) \cup A= \\
& =(N \cup A) \cap(\bar{A} \cup A)=N \cap E=N, f((N-A) \cup M)=(M, N) .
\end{aligned}
$$

Thus $f(P(E))=K$.
c. From point a. we have that g is injective, from point b. we have that g surjective, thus g is bijective. The inverse function is:

$$
g^{-1}(M, N)=(N-A) \cup M .
$$

Problem 3. Let $E \neq \varnothing, A, B \in P(E)$ and $f: P(E) \rightarrow P(E) \times P(E)$, where $f(X)=(X \cap A, X \cap B)$.
a. Give the necessary and sufficient condition such that f is injective.
b. Give the necessary and sufficient condition such that f is surjective.
c. Supposing that f is bijective, compute its inverse.

Solution.

a. Suppose that f is injective. Then:

$$
f(A \cup B)=((A \cup B) \cap A,(A \cup B) \cap B)=(A, B)=(E \cap A, E \cap B)=f(E)
$$

from where $A \cup B=E$.
Now we suppose that $A \cup B=E$, it results that:
$X=X \cap E=X \cap(A \cup B)=(X \cap A) \cup(X \cap B)=(Y \cap A) \cup(Y \cap B)=Y \cap(A \cup B)=Y \cap E=Y$ namely from $f(X)=f(Y)$ we obtain that $X=Y$, namely f is injective.
b. Suppose that f is surjective, for any $M, N \in P(A) \times P(B)$, there exists

$$
X \in P(E), f(X)=(M, N),(X \cap A, X \cap B)=(M, N), X \cap A=M, X \cap B=N
$$

In special cases $(M, N)=(A, \varnothing)$, there exists $X \in P(E)$, from

$$
X \supset A, \varnothing=X \cap B \supset A \cap B, \mathrm{~A} \cap \mathrm{~B}=\varnothing
$$

Now we suppose that $\mathrm{A} \cap \mathrm{B}=\varnothing$ and show that it is surjective.
Let $(M, N) \in P(A) \times P(B)$, then $M \subset A, N \subset B, \quad M \cap B \subset A \cap B=\varnothing$, and $N \cap A \subset B \cap A=\varnothing$, namely $M \cap B=\varnothing, N \cap A=\varnothing$ and
$f(M \cup N)=((M \cup N) \cap A,(M \cup N) \cap B)=$
$=((M \cap A) \cup(N \cap A),(M \cap B) \cup(N \cap B))=(M \cup \varnothing, \varnothing \cup N)=(M, N)$,
for any (M, N) there exists $X=M \cup N$ such that $f(X)=(M, N)$, namely f is surjective.
c. We'll show that $f^{-1}((M, N))=M \cup N$.

Remark. In the previous two problems we can use the characteristic function of the set as in the first problem. We leave this method for the readers.

Application. Let $E \neq \varnothing, A_{k} \in P(E)(k=1, \ldots, n)$ and $f: P(E) \rightarrow P^{n}(E)$, where $f(X)=\left(X \cap A_{1}, X \cap A_{2}, \ldots, X \cap A_{n}\right)$.
Prove that f is injective if and only if $\bigcup_{k=1}^{n} A_{k}=E$.
Application. Let $E \neq \varnothing, A_{k} \in P(E),(k=1, \ldots, n)$ and $f: P(E) \rightarrow P^{n}(E)$, where $f(X)=\left(X \cap A_{1}, X \cap A_{2}, \ldots, X \cap A_{n}\right)$.
Prove that f is surjective if and only if $\bigcap_{k=1}^{n} \bar{A}_{k}=\varnothing$.
Problem 4. We name the set M convex if for any $x, y \in M \quad t x+(1-t) y \in M$, for any $t \in[0,1]$.
Prove that if $A_{k},(k=1, \ldots, n)$ are convex sets, then $\bigcap_{k=1}^{n} A_{k}$ is also convex.
Problem 5. If $A_{k},(k=1, \ldots, n)$ are convex sets, then $\bigcap_{k=1}^{n} A_{k}$ is also convex.
Problem 6. Give the necessary and sufficient condition such that if A, B are convex/concave sets, then $A \cup B$ is also convex/concave. Generalization for the \mathbb{N} set.

Problem 7. Give the necessary and sufficient condition such that if A, B are convex/concave sets then $A \Delta B$ is also convex/concave. Generalization for the \mathbb{N} set.

Problem 8. Let $f, g: P(E) \rightarrow P(E)$, where $f(x)=A-X$, and

$$
g(x)=A \Delta X, A \in P(E)
$$

Prove that f, g are bijective and compute their inverse functions.

Problem 9. Let $A \circ B=\{(x, y) \in \square \times \square \mid \exists z \in \square:(x, z) \in A$ and $(z, y) \in B\}$. In a particular case let $A=\{(x,\{x\}) \mid x \in \square\}$ and $B=\{(\{y\}, y) \mid y \in \square\}$.
Represent the $A \circ A, B \circ A, B \circ B$ cases.

Problem 10.

i. If $A \cup B \cup C=D, A \cup B \cup D=C, A \cup C \cup D=B, B \cup C \cup D=A$, then $A=B=C=D$
ii. Are there different A, B, C, D sets such that

$$
A \cup B \cup C=A \cup B \cup D=A \cup C \cup D=B \cup C \cup D ?
$$

Problem 11. Prove that $A \Delta B=A \cup B$ if and only if $A \cap B=\varnothing$.

Problem 12. Prove the following identity.

$$
\bigcap_{i, j=1, i<j}^{n} A_{k} \cup A_{j}=\bigcup_{i=1}^{n}\left(\bigcap_{j=1, j \neq i}^{n} A_{j}\right)
$$

Problem 13. Prove the following identities.

$$
(A \cup B)-(B \cap C)=(A-(B \cap C)) \cup(B-C)=(A-B) \cup(A-C) \cup(B-C)
$$

and

$$
A-[(A \cap C)-(A \cap B)]=(A-\bar{B}) \cup(A-C)
$$

Problem 14. Prove that $A \cup(B \cap C)=(A \cup B) \cap C=(A \cup C) \cap B$ if and only if $A \subset B$ and $A \subset C$.

Problem 15. Prove the following identities:

$$
\begin{aligned}
& (A-B)-C=(A-B)-(C-B), \\
& (A \cup B)-(A \cup C)=B-(A \cap C), \\
& (A \cap B)-(A \cap C)=(A \cap B)-C .
\end{aligned}
$$

Problem 16. Solve the following system of equations:

$$
\left\{\begin{array}{l}
A \cup X \cup Y=(A \cup X) \cap(A \cup Y) \\
A \cap X \cap Y=(A \cap X) \cup(A \cap Y)
\end{array}\right.
$$

Problem 17. Solve the following system of equations:

$$
\left\{\begin{array}{l}
A \Delta X \Delta B=A \\
A \Delta Y \Delta B=B
\end{array} .\right.
$$

Problem 18. Let $X, Y, Z \subseteq A$. Prove that:
$Z=(X \cap \bar{Z}) \cup(Y \cap \bar{Z}) \cup(\bar{X} \cap Z \cap \bar{Y})$ if and only if $X=Y=\varnothing$.

Problem 19. Prove the following identity:

$$
\bigcup_{k=1}^{n}\left[A_{k} \cup\left(B_{k}-C\right)\right]=\left(\bigcup_{k=1}^{n} A_{k}\right) \cup\left[\left(\bigcup_{k=1}^{n} A_{k}\right)-C\right] .
$$

Problem 20. Prove that: $A \cup B=(A-B) \cup(B-A) \cup(A \cap B)$.

Problem 21. Prove that:

$$
(A \Delta B) \Delta C=(A \cap \bar{B} \cap \bar{C}) \cup(\bar{A} \cap B \cap \bar{C}) \cup(\bar{A} \cap \bar{B} \cap C) \cup(A \cap B \cap C) .
$$

REFERENCES:

[1] Mihály Bencze, F. Popovici - Permutaciok - Matematikai Lapok, Kolozsvar, pp. 7-8, 1991.
[2] Pellegrini Miklós - Egy ujabb kiserlet, a retegezett halmaz. - M.L., Kolozsvar, 6, 1978.
[3] Halmazokra vonatkozo egyenletekrol - Matematikai Lapok, Kolozsvar, 6, 1970.
[4] Alkalmazasok a halmazokkal kapcsolatban - Matematikai Lapok, Kolozsvar, 3, 1970.
[5] Ion Savu - Produsul elementelor într-un grup finit comutativ - Gazeta Matematică Perf., 1, 1989.
[6] Nicolae Negoescu - Principiul includerii-excluderii - RMT 2, 1987.
[7] F. C. Gheorghe, T. Spiru - Teorema de prelungire a unei probabilităţi, dedusă din teorema de completare metrică - Gazeta Matematică, Seria A, 2, 1974.
[8] C. P. Popovici - Funcții Boolene - Gazeta Matematică, Seria A, 1, 1973.
[9] Algebra tankonyv IX oszt., Romania.
[10] Năstăsescu stb. - Exerciții şi probleme de algebră pentru clasele IX-XII Romania.
[Published in Octogon, Vol. 6, No. 2, pp. 86-96, 1998.]

