A NUMERICAL FUNCTION IN THE CONGRUENCE THEORY

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA

Abstract

In this paper we define a function L which will allow us to (separately or simultaneously) generalize many theorems from Number Theory obtained by Wilson, Fermat, Euler, Gauss, Lagrange, Leibniz, Moser, and Sierpinski.

1991 MSC: 33B99, 11A25, 11A07

Introduction.

1. Let A be the set $\left\{m \in Z / m= \pm p^{\beta}, \pm 2 p^{\beta}\right.$ with p an odd prime, $\beta \in \mathbb{N}^{*}$, or $m= \pm 2^{\alpha}$ with $\alpha=0,1,2$, or $\left.m=0\right\}$.
$\alpha_{1} \quad \alpha_{r}$
Let $m=\varepsilon p_{1} \ldots \mathrm{p}_{\mathrm{r}}$, with $\varepsilon= \pm 1$, all $\alpha_{\mathrm{i}} \in \mathrm{N}^{*}$, and p_{1}, \ldots, p_{r} are distinct positive primes.

We construct the function L: Z x Z,
$L(x, m)=\left(x+C_{1}\right) \cdot \ldots \cdot\left(x+C_{\varphi_{(m)}}\right)$
where $c_{1}, \ldots, C_{\varphi_{(m)}}$ are all modulo m rests relatively prime to m, and φ is Euler's function. If all distinct primes which divide x and m simultaneously are $\mathrm{p}_{\mathrm{i}_{1}}, \ldots, \mathrm{p}_{\mathrm{i}}$ then:

$$
\mathrm{L}(\mathrm{x}, \mathrm{~m}) \equiv \pm 1 \quad\left(\bmod \mathrm{p}_{\mathrm{i}}^{{\underset{1}{1}}^{\alpha_{1}}} \ldots \mathrm{p}_{\mathrm{i}}{ }_{\mathrm{r}}^{\alpha_{\mathrm{r}}}\right) \text {, when } \mathrm{m} \in \mathrm{~A}
$$

respectively m $\notin \mathrm{A}$, and

$$
\mathrm{L}(\mathrm{x}, \mathrm{~m}) \equiv 0 \quad\left(\bmod \mathrm{~m} /\left(\mathrm{p}_{\mathrm{i}}{\underset{\mathrm{i}}{1}}_{\alpha_{1}}^{\ldots} \mathrm{p}_{\mathrm{i}}{ }_{\mathrm{r}}^{\alpha_{\mathrm{r}}}\right)\right) .
$$

For $d=p_{i_{1}}^{\alpha_{i_{1}}} \ldots p_{i_{r}}^{\alpha_{r}}{ }_{r}$ and $m^{\prime}=m / d$ we find

$$
L(x, m) \equiv \pm 1+k_{1}^{0} d \equiv k_{2}^{0} m^{\prime}(\bmod m),
$$

where k_{1}^{0}, k_{2}^{0} constitute a particular integer solution of the diophantine equation $\mathrm{k}_{2} \mathrm{~m}^{\prime}-\mathrm{k}_{1} \mathrm{~d}= \pm 1$ (the signs are chosen in accordance with the affiliation of m to A). This result generalizes Gauss' theorem. ($\mathrm{c}_{1} \ldots \mathrm{c}_{\varphi_{(m)}} \equiv \pm 1$ (mod m) when $m \in A$ respectively $m \neq A$) (see [1]) which
generalized in its turn the Wilson's theorem (if p is prime then $(\mathrm{p}-1)!\equiv-1(\bmod m))$.

Proof.

The following two lemmas are trivial:
Lemma 1. If c_{1}, \ldots, c are all modulo p^{α} rests, $\varphi\left(\mathrm{p}^{\alpha}\right)$
relatively prime to p^{α}, with p an integer and $\alpha \in \mathrm{N}^{*}$, then for $\mathrm{k} \in \mathrm{Z}$ and $\beta \in \mathrm{N}^{*}$ we have also that $\mathrm{kp}^{\beta}+\mathrm{c}_{1}, \ldots, \mathrm{kp}^{\beta}+$ $+\mathrm{C}_{\varphi\left(\mathrm{p}^{\alpha}\right)}$ constitute all modulo p^{α} rests relatively prime to p^{α}.

It is sufficient to prove that for $1 \leq i \leq \varphi\left(\mathrm{p}^{\alpha}\right)$ we have $\mathrm{kp}^{\beta}+\mathrm{c}_{\mathrm{i}}$ relatively prime to p^{α}, but this is obvious.

Lemma 2. If $C_{1}, \ldots, C_{\varphi_{(m)}}$ are all modulo m rests relatively prime to m, p_{i} divides m and p_{i} does not divide m, then $c_{1}, \ldots, c_{\varphi_{(m)}}$ constitute $\varphi\left(m / p_{i}\right)^{\alpha_{i}}$ systems of all modulo $\mathrm{p}_{\mathrm{i}}^{\alpha_{i}}$ rests relatively prime to p_{i}.

Lemma 3. If $C_{1}, \ldots, C_{\varphi_{(q)}}$ are all modulo q rests relatively prime to b and (b, q) ~ 1 then $b+c_{1}, \ldots, b+$ $c_{\varphi_{(q)}}$ contain a representative of the class ô modulo q.

Of course, because (b, q-b) ~ 1 there will be a $c_{o_{i}}=$ $=q-b$, whence $b+c_{i}=M q$ (multiple of q).

From this we have:

Theorem 1. If $\left(x, m /\left(p_{i_{1}}^{\alpha_{1}} \ldots p_{i}{ }_{r}^{\alpha_{i}}\right)\right) \sim 1$ then

$$
\left(\mathrm{x}+\mathrm{c}_{1}\right) \cdot \ldots \cdot\left(\mathrm{x}+\mathrm{c}_{(\mathrm{m})}\right) \equiv 0\left(\bmod \mathrm{~m} /\left(\mathrm{p}_{\mathrm{i}}{ }_{1}^{\alpha_{i}} \ldots \mathrm{p}_{\mathrm{i}}{ }_{\mathrm{r}}^{\alpha_{\mathrm{i}}}\right)_{x}\right) .
$$

Lemma 4. Because $c_{1} \ldots C_{\varphi_{(m)}} \equiv \pm 1(\bmod m)$ it results that $c_{1} \ldots c_{\varphi_{(m)}} \equiv \pm 1\left(\bmod p_{i}{ }_{i}\right)$, for all i, when $m \in A$ respectively m $\notin \mathrm{A}$.

Lemma 5. If p_{i} divides x and m simultaneously, then $\left(x+c_{1}\right) \ldots\left(x+c_{\varphi_{(m)}}\right) \equiv \pm 1\left(\bmod p_{i}\right)$, when $m \in A$ respectively $m \notin A$. Of course, from the lemmas 2 and 1, respectively 4 , we have $\left(\mathrm{x}+\mathrm{C}_{1}\right) \ldots\left(\mathrm{x}+\mathrm{C}_{\varphi_{(\mathrm{m})}}\right) \equiv$ $\equiv \mathrm{c}_{1} \ldots \mathrm{c}_{\varphi_{(\mathrm{m})}} \equiv \pm 1\left(\bmod \mathrm{p}_{\mathrm{i}} \stackrel{\alpha_{\mathrm{i}}}{)}\right.$.

From the lemma 5 we obtain:
Theorem 2. If $p_{i_{1}}, \ldots, p_{i_{r}}$ are all primes which divide x and m simultaneously then $\left(\mathrm{x}+\mathrm{c}_{1}\right) \ldots\left(\mathrm{x}+\mathrm{C}_{\varphi_{(\mathrm{m})}}\right)$
$\equiv \pm 1\left(\bmod p_{1}^{\alpha_{i}} \ldots p_{i}^{\alpha_{i_{r}}}\right)$, when $m \in A$ respectively $m \notin A$.
From the theorems 1 and 2 it results $L(x, m)= \pm 1+$ $+k_{1} d=k_{2} m^{\prime}$, where $k_{1}, k_{2} \in Z$. Because (d, m^{\prime}) ~ 1 the diophantine equation $k_{2} m^{\prime}-k_{1} d= \pm 1$ admits integer solutions (the unknowns being k_{1} and k_{2}). Hence $k_{1}=m ' t+$ $+k_{1}^{0}$ and $k_{2}^{0}=d t+k_{2}^{0}$, with $t \in Z$, and k_{1}^{0}, k_{2}^{0} constitute a
particular integer solution of our equation. Thus:

$$
\mathrm{L}(\mathrm{x}, \mathrm{~m}) \equiv \pm 1+\mathrm{m}^{\prime} d t+\mathrm{k}_{1}^{0} \mathrm{~d} \equiv \pm 1+\mathrm{k}_{1}^{0}(\bmod m)
$$

Or
$L(x, m) \equiv k_{2}^{0} m^{\prime}(\bmod m)$.

2. APPLICATIONS.

(1) Lagrange extended Wilson as follows:
"if p is prime, then $\mathrm{x}^{\mathrm{p}-1}-1 \equiv(\mathrm{x}+1)(\mathrm{x}+2) \ldots(\mathrm{x}+$
 following way: For any $m \neq 0, \pm 4$ we have for $x^{2}+$
$+s^{2} \neq 0$ that $x x^{\varphi\left(m_{s}\right)+s}-x^{s} \equiv(x+1)(x+2) \ldots$
$(x+|m|-1)(\bmod m)$, where m_{s} and s are obtained from the algorithm:
(0) $\left(x=x_{0} d_{0} ; \quad\left(x_{0}, m_{0}\right) \sim 1\right.$ $m=m_{0} d_{0} ; d_{0} \neq 1$
(1) $\left(d_{0}=d_{0}^{1} d_{1} ;\left(d_{0}^{1}, m_{1}\right) \sim 1\right.$

$$
m_{0}=m_{1} d_{1} ; d_{1} \neq 1
$$

$$
\begin{gathered}
(s-1)\left(\begin{array}{l}
d_{s-2}=d_{s-2}^{1} d_{s-1} ; \quad\left(d_{s-2}^{1}, m_{s-1}\right) \sim 1 \\
m_{s-2}=m_{s-1} d_{s-1} ; \quad d_{s-1} \neq 1 \\
5
\end{array}\right.
\end{gathered}
$$

(see [3] or [4]). For m a positive prime we have $m_{s}=m$, s $=0$ and $\varphi(\mathrm{m})=\mathrm{m}-1$, that is Lagrange $\square \mathrm{s}$.
(2) L. Moser enunciated the following theorem: "If p is prime, the (p - 1)! $a^{p}+a=M p ", ~ a n d ~ S i e r p i n s k i ~(s e e ~$ [2], p. 57): "If p is prime then $a^{p}+(p-1)!a=M p "$ which merges Wilson's and Fermat's theorems in a single one.

The function L and the algorithm from \& 2 will help us to generalize them too, so: if "a" and m are integers, m \neq 0 , and $C_{1}, \ldots, C_{\varphi_{(m)}}$ are all modulo m rests relatively prime to m then

$$
\varphi\left(m_{s}\right)+s-L(0, m) \quad a^{s}=M m
$$

respectively

$$
-L(0, m) a^{\varphi\left(m_{s}\right)+s}+c_{1} \ldots c_{\varphi_{(m)}} a^{s}=M m,
$$ or more,

$$
\left(x+c_{1}\right) \ldots\left(x+c_{\varphi_{(m)}}\right) a^{\varphi\left(m_{s}\right)+s}-L(x, m) a^{s}=M m
$$

respectively

$$
-\mathrm{L}(\mathrm{x}, \mathrm{~m}) \mathrm{a}^{\varphi\left(\mathrm{m}_{\mathrm{s}}\right)+\mathrm{s}}+\left(\mathrm{x}+\mathrm{c}_{1}\right) \ldots\left(\mathrm{x}+\mathrm{c}_{\varphi_{(m)}}\right) \mathrm{a}^{\mathrm{s}}=\mathrm{Mm}
$$

which reunites Fermat, Euler, Wilson, Lagrange and Moser (respectively, Sierpinski).
(3) The author also obtained a partial extension of Moser's and Sierpinski's results (see [6], problem 7.140, pp. 173-174), so: if m is a positive integer, $m \neq 0,4$, and "a" is an integer, then ($\left.a^{m}-a\right)(m-1)!=M m$, reuniting Fermat and Wilson in another way.
(4) Leibniz enunciated that: "if p is prime then $(\mathrm{p}-2)!\equiv 1(\bmod \mathrm{p})$ "; we consider $" C_{i}<C_{i+1}(\bmod m) "$ if C_{i} $<C_{i+1}$ where $0 \leq c_{i}<|m|, 0 \leq c_{i+1}<|m|$ and $c_{i} \equiv C_{i}(\bmod$ $m), c_{i+1} \equiv c_{i+1}(\bmod m) ;$ one simply gives that if c_{1}, c_{2}, \ldots, $\mathrm{C}_{\varphi_{(\mathrm{m})}}$ are all modulo m rests relatively prime to m (c_{1} <
$<c_{i+1}(\bmod m)$ for all $\left.i, m \neq 0\right)$ then $c_{1} c_{2} \ldots c_{\varphi_{(m)-1}} \equiv \pm 1(\bmod$ m) if $m \in A$ respectively $m \notin A$, because $C_{\varphi_{(m)}} \equiv-1(\bmod m)$.

References:

[1] Lejeune-Dirichlet, "Vorlesungen über Zahlentheorie", 4te Auflage, Braunschweig, 1894, \&38.
[2] Sierpinski, Waclaw, "Cestimsi ce nustim despre numerele prime", Ed. Stiintifica, Bucharest, 1966.
[3] Smarandache, Florentin, "O generalizare a teoremei lui Euler referitoare la congruente", Bulet. Univ. Brasov, Seria C, Vol. XXIII, pp. 7-12, 1981; see Mathematical Reviews: 84j: 10006.
[4] Smarandache, Florentin, "Généralisations et Généralités", Ed. Nouvelle, Fès, Morocco, pp. 9-13, 1984.
[5] Smarandache, Florentin, "A function in the number theory," An. Univ. Timisoara, SeriaSt. Mat., Vol. XVIII, Fasc. 1, pp. 79-88, 1980; see M.R.: 83c: 10008.
[6] Smarandache, Florentin, "Problèmes avec et sans ... problèmes!", Somipress, Fès, Morocco, 1983; see M.R.: 84k: 00003.

