A Generalized Numeration Base

by Florentin Smarandache, Ph. D. University of New Mexico Gallup, NM 87301, USA

Abstract. A Generalized Numeration Base is defined in this paper, and then particular cases are presented, such as Prime Base, Square Base, m-Power Base, Factorial Base, and operations in these bases.

Keywords: Numeration base, partition.

1991 MSC: 11A67

Introduction.

The following bases are important for partitions of integers into primes, squares, cubes, generally into m-powers, also into factorials, and into any strictly increasing sequence.

1) The Prime Base: (Each number n written in the Prime Base.) (We define over the set of natural numbers the following infinite base: p = 1, and for $k \ge 1$ p is the k-th prime number.) 0 k He proved that every positive integer A may be uniquely written in the Prime Base as: n def --- \land a p , with all a = 0 or 1, (of course a = 1), A = (a ... a a)=== 1 0 (SP) / ii i n i=0 in the following way: - if $p \leq A < p$ then A = p + r; n n+1 1 n - if p <= r < p then r = p + r, m < n; m 1 m+1 1 m 2 and so on until one obtains a rest r = 0. j Therefore, any number may be written as a sum of prime numbers + e, where e = 0 or 1.

If we note by p(A) the superior prime part of A (i.e. the largest prime less than or equal to A), then A is written in the Prime Base as:

 $A = p(A) + p(A-p(A)) + p(A-p(A)-p(A-p(A))) + \dots$

This base is important for partitions with primes.

2) The Square Base:

0,1,2,3,10,11,12,13,20,100,101,102,103,110,111,112,1000,1001,1002,1003,1010,1011,1012,1013,1020,10000,10001,10002,10003,10010,10011,10012,10013, 10020,10100,10101,100000,100001,100002,100003,100010,100011,100012,100013, 100020,100100,100101,100102,100103,100110,100111,100112,101000,101001, 101002,101003,101010,101011,101012,101013,101020,101100,101101,101102, 1000000,....

(Each number n written in the Square Base.)

(We define over the set of natural numbers the following infinite base: for $k \ge 0$ s = k^2 .)

We prove that every positive integer A may be uniquely written in the Square Base as:

n def --- $\$ as , with a = 0 or 1 for i >= 2, A = (a ... a a)=== 1 0 (S2) / ii i n _ _ _ i=0 $0 \le a \le 3$, $0 \le a \le 2$, and of course a = 1, 0 1 n in the following way: - if s <= A < s then A = s + r; n n+1 n 1 - if s <= r < p then r = s + r, m < n; 1 1 m+1 m 2 m and so on until one obtains a rest r = 0. j

Therefore, any number may be written as a sum of squares (1 not counted as a square -- being obvious) + e, where e = 0, 1, or 3.

If we note by s(A) the superior square part of A (i.e. the largest square less than or equal to A), then A is written in the Square Base as:

A = s(A) + s(A-s(A)) + s(A-s(A)-s(A-s(A))) + ...

This base is important for partitions with squares.

3) The m-Power Base (generalization): (Each number n written in the m-Power Base, where m is an integer >= 2.) (We define over the set of natural numbers the following infinite m-Power Base: for $k \ge 0$ t = k^m .) k He proved that every positive integer A may be uniquely written in the m-Power Base as: n def ---=== \setminus at , with a = 0 or 1 for i >= m, A = (a ... a a)n 10(SM) / ii i ___ i=0 --0 <= a <= | ((i+2)^m - 1) / (i+1)^m | (integer part) i for $i = 0, 1, \ldots, m-1$, a = 0 or 1 for $i \ge m$, and of course a = 1, ÷. n in the following way: - if t <= A < t then A = t + r; n n+1 n 1 - if t <= r < t then r = t + r , m < n;</pre> m 1 m+1 1 m 2 and so on until one obtains a rest r = 0. i

Therefore, any number may be written as a sum of m-powers (1 not counted as an m-power -- being obvious) + e, where $e = 0, 1, 2, ..., or 2^m-1$.

If we note by t(A) the superior m-power part of A (i.e. the largest m-power less than or equal to A), then A is written in the m-Power Base as:

A = t(A) + t(A-t(A)) + t(A-t(A)-t(A-t(A))) + ...

This base is important for partitions with m-powers.

4) The Factorial Base:

0,1,10,11,20,21,100,101,110,111,120,121,200,201,210,211,220,221,300,301,310, 311,320,321,1000,1001,1010,1011,1020,1021,1100,1101,1110,1111,1120,1121, 1200,... (Each number n written in the Factorial Base.)

He proved that every positive integer A may be uniquely written in the Factorial Base as:

n def ---

 $A = (a \dots a a) === \setminus a f$, with all $a = 0, 1, \dots, i$ for $i \ge 1$. / ii n 21(F) i --i=1 in the following way: - if $f \leq A \leq f$ then A = f + r; n+1 n n 1 - if f <= r < f then r = f + r , m < n; m 1 m+1 1 m 2 and so on until one obtains a rest r = 0. i. What's very interesting: a = 0 or 1; a = 0, 1, or 2; a = 0, 1, 2, or 3,1 2 3 and so on... If we note by f(A) the superior factorial part of A (i.e. the largest factorial less than or equal to A), then A is written in the Factorial Base as: A = f(A) + f(A-f(A)) + f(A-f(A)-f(A-f(A))) + ...Rules of addition and subtraction in Factorial Base: For each digit a we add and subtract in base i+1, for $i \ge 1$. Ι For example, an addition: base 5432 _____ 210+ 221 -----1 1 0 1 because: 0+1= 1 (in base 2); (in base 3), therefore we write 0 and keep 1; 1+2=10 2+2+1=11 (in base 4). Now a subtraction: base 5432 _____ 1001-320 _____ = = 1 1 because: 1-0=1 (in base 2); 0-2=? it's not possible (in base 3), go to the next left unit, which is 0 again (in base 4), go again to the next left unit, which is 1 (in base 5), therefore 1001 --> 0401 --> 0331 and then 0331-320=11. Find some rules for multiplication and division. In a general case: if we want to design a base such that any number

n def ___ A = (a ... a a)=== \land a b , with all a = 0, 1, ..., t for / ii n 21(B) i ___ i=1 $i \ge 1$, where all $t \ge 1$, then: i this base should be b = 1, b = (t + 1) * b for $i \ge 1$. 1 i+1 i i 5) The Generalized Numeration Base: (Each number n written in the Generalized Numeration Base.) (We define over the set of natural numbers the following infinite Generalized Numeration Base: 1 = g < g < ... < g <) 0 1 k He proved that every positive integer A may be uniquely written in the Generalized Numeration Base as: n def --- $A = (a \dots a a) == \ a g , with 0 <= a <= | (g - 1) / g |$ i -- i+1 / ii n 10(SG) i=0 (integer part) for i = 0, 1, ..., n, and of course a >= 1, n in the following way: - if $g \leq A \leq g$ then A = g + r; n n+1 n 1 - if g <= r < g then r = g + r , m < n;</pre> m 1 m+1 1 m 2 and so on until one obtains a rest r = 0. j If we note by g(A) the superior generalized part of A (i.e. the largest g less than or equal to A), then A is written in the i Generalized Numeration Base as: A = g(A) + g(A-g(A)) + g(A-g(A)-g(A-g(A))) + ...This base is important for partitions: the generalized base may be any infinite integer set (primes, squares, cubes, any m-powers, Fibonacci/Lucas numbers, Bernoully numbers, Smarandache sequences, etc.) those partitions are studied. A particular case is when the base verifies: 2g >= g for any i, i i+1

and g = 1, because all coefficients of a written number in this base 0

References:

- Dumitrescu, C., Seleacu, V., "Some notions and questions in number theory", Xiquan Publ. Hse., Glendale, 1994, Sections #47-51.
- [2] Grebenikova, Irina, "Some Bases of Numerations", <Abstracts of Papers Presented at the American Mathematical Society>, Vol. 17, No. 3, Issue 105, 1996, p. 588.