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ABSTRACT 
This paper proposes a class of estimators for population correlation coefficient 

when information about the population mean and population variance of one of the 
variables is not avaliable but information about these parameters of another variable 
(auxiliary) is avaliable, in two phase sampling and analyzes its properties. Optimum 
estimator in the class is identified with its variance formula. The estimators of the class 
involve unknown constants whose optimum values depend on unknown population 
parameters.Following Singh (1982) and Srivastava and Jhajj (1983), it has been shown 
that when these  population parameters are replaced by their consistent estimates the 
resulting class of estimators has the same asymptotic variance as that of optimum 
estimator. An empirical study is carried out to demonstrate  the performance of the 
constructed estimators. 
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1. Introduction  

Consider a finite population U= {1,2,..,i,..N}. Let y and x be the study and auxiliary 
variables taking values yi and xi respectively for the ith unit. The correlation coefficient 
between y and x is defined by 

 
   yxρ  = Syx /(SySx)    (1.1) 
where 
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Based on a simple random sample of size  n drawn without replacement,  



 (xi , yi), i = 1,2,…,n; the usual estimator of yxρ is the corresponding sample correlation 
coefficient :  
   r= syx /(sxsy)     (1.2) 
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The problem of estimating yxρ  has been earlier taken up by various authors including 
Koop (1970), Gupta et. al. (1978, 79), Wakimoto (1971), Gupta and Singh (1989), Rana 
(1989) and Singh et. al. (1996) in different situations. Srivastava and Jhajj (1986) have 
further considered the problem of estimating yxρ  in the situations where the information 
on auxiliary variable x for all units in the population is available. In such situations, they 
have suggested a class of estimators for yxρ  which utilizes the known values of the 

population mean X and the population variance 2
xS of the auxiliary variable x.  

 In this paper, using two – phase sampling mechanism, a class of estimators for 
yxρ in the presence of the available knowledge ( Z  and 2

zS ) on second auxiliary variable z 

is considered, when the population mean X  and population variance 2
xS of the main 

auxiliary variable x are not known.  
 
2. The Suggested Class of Estimators  
 In many situations of practical importance, it may happen that no information is 
available on the population mean X  and population variance 2

xS , we seek to estimate the 
population correlation coefficient yxρ  from a sample ‘s’ obtained through a two-phase 
selection. Allowing simple random sampling without replacement scheme in each phase, 
the two- phase sampling scheme will be as follows: 
(i)  The first phase sample ∗s  ( )Us ⊂∗  of fixed size 1n , is drawn to observe only x in 
order to furnish a good estimates of X  and 2

xS . 
(ii)  Given  ∗s , the second- phase sample s ( )∗⊂ ss   of fixed size n is drawn to 
observe y only.  
Let 
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We write ∗= xxu , 22 ∗= xx ssv . Whatever be the sample chosen let (u,v) assume values in 
a bounded closed convex subset, R, of the two-dimensional real space containing the 
point (1,1). Let h (u, v) be a function of u and v such that  
  h(1,1)=1                         (2.1) 
and such that it satisfies the following conditions:  
1.  The function h (u,v) is continuous and bounded in R.  
2. The first and second partial derivatives of h(u,v) exist and are continuous and 

bounded in R. 



Now one may consider the class of estimators of yxρ defined by  
 ),(ˆ vuhrhd =ρ                   (2.2) 

which is double sampling version of the class of estimators  
 
 ),(~ ∗∗= vufrrt  
 
Suggested by Srivastava and Jhajj (1986), where Xxu =∗ , 22

xx Ssv =∗  and ( )2, xSX  are 
known.  
 Sometimes even if the population mean X  and population variance 2

xS  of x are 
not known, information on a cheaply ascertainable variable z, closely related to x but 
compared to x remotely   related to y, is available on all units of the population. This type 
of situation has been briefly discussed by, among others, chand (1975), Kiregyera (1980 
,84).  

Following Chand (1975) one may define a chain ratio- type estimator for yxρ  as  
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where the population mean Z   and population variance 2
zS  of second auxiliary variable z 

are known, and   
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are the sample mean and sample variance of z based on preliminary large sample s*  of 
size n1 (>n). 
 
 The estimator d1ρ̂  in (2.3) may be generalized as  
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where  si 'α  (i=1,2,3,4) are suitably chosen constants.  
Many other generalization of  d1ρ̂ is possible. We have, therefore, considered a 

more general class of yxρ  from which a number of estimators can be generated.  
 The proposed generalized estimators for population correlation coefficient yxρ  is 
defined by  
  ),,,(ˆ awvutrtd =ρ                 (2.5) 
where Zzw ∗= , 22

zz Ssa ∗= and t(u,v,w,a) is a function of (u,v,w,a) such that  
  t (1,1,1,1)=1                       (2.6) 
Satisfying the following conditions:  
(i)  Whatever be the samples (s* and s) chosen, let (u,v,w,a) assume values in a closed 
convex subset S, of the four dimensional real space containing the point P=(1,1,1,1). 
(ii) In S, the function t(u,v,w,a) is continuous and bounded.   
(iii) The first and second order partial derivatives of t(u,v,w, a) exist and are 

continuous and bounded in S 
To find the bias and variance of  tdρ̂ we write  
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such that E(e0) =E (e1)=E(e2)=E(e5)=0 and E(ei
*) = 0 ∀    i = 1,2,3,4,  

and ignoring the finite population correction terms, we write to  the first degree of 
approximation 
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non-negative integers. 
To find the expectation and variance of  tdρ̂ , we expand t(u,v,w,a) about the point  

P= (1,1,1,1) in a second- order Taylor’s series, express this value and the value of r in 
terms of e’s . Expanding in powers of e’s and retaining terms up to second power, we 
have  
 E( tdρ̂ )= ( )1−+ noyxρ         (2.7) 
 
which shows that the bias of tdρ̂ is of the order n-1and so up to order n-1 , mean square 
error and the variance of  tdρ̂  are same. 
 Expanding ( )2ˆ yxtd ρρ − , retaining terms up to second power in e’s, taking 
expectation and using the above expected values, we obtain the variance of tdρ̂  to the 
first degree of approximation, as  
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              (2.8) 
where t1(P), t2(P), t3(P)and t4(P) respectively denote the first partial derivatives of 
t(u,v,w,a) white respect to u,v,w and a respectively at the point P= (1,1,1,1), 
Var(r)= ( ) }]/){()2)(4/1(/)[/( 310130220400040

2
220

2
yxyxyx n ρδδδδδρδρ +−+++     (2.9)                                            

)}/(2{,)}/(2{

)},/(2{,)}/(2{

112022202111021201

130040220120030210

yxzyx

yxxyx

FCD
BCA

ρδδδρδδδ

ρδδδρδδδ

−+=−+=

−+=−+=  
 
Any parametric function t(u,v,w,a) satisfying (2.6) and the conditions (1) and (2) can 
generate an estimator of the class(2.5). 
 
The variance of tdρ̂  at (2.6) is minimized for 
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Thus the resulting (minimum) variance of tdρ̂  is given by  
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 It is observed from (2.11) that if optimum values of the parameters given by 
(2.10) are used, the variance of the estimator tdρ̂  is always less than that of r as the last 
two terms on the right hand sides of (2.11) are non-negative. 
 Two simple functions t(u,v,w,a) satisfying the required conditions are 
 
t(u,v,w,a)= 1+ )1()1()1()1( 4321 −+−+−+− awvu αααα  

4321),,,( αααα awvuawvut =  
and for both these functions t1(P) = 1α , t2 (P) = 2α , t3 (P) = 3α  and t4 (P) = 4α . Thus one 
should use optimum values of 1α , 2α , 3α and 4α in tdρ̂  to get the minimum variance. It is 
to be noted that the estimated tdρ̂  attained the minimum variance only when the optimum 



values of the constants iα  (i=1,2,3,4), which are functions of unknown population 
parameters, are known. To use such estimators in practice, one has to use some guessed 
values of population parameters obtained either through past experience or through a 
pilot sample survey. It may be further noted that even if the values of the constants used 
in the estimator are not exactly equal to their optimum values as given by (2.8) but are 
close enough, the resulting estimator will be better than the conventional estimator, as has 
been illustrated by Das and Tripathi   (1978, Sec.3). 

If no information on second auxiliary variable z is used, then the estimator tdρ̂  
reduces to hdρ̂  defined in (2.2). Taking z ≡  1 in (2.8), we get the variance of hdρ̂   to the 
first degree of approximation, as    

( ) ( )[ ])1,1()1,1(2)1,1()1,1()1,1(11,111)()ˆ( 2103021
2
2040

2
1

22

1
hhCBhAhhhC

nn
rVarVar xxyxhd δδρρ +−−−+








−+=

                       (2.12)        
        
which is minimized for 
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Thus the minimum variance of hdρ̂  is given by 
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It follows from (2.11) and (2.14) that 
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which is always positive. Thus the proposed estimator tdρ̂  is always better than hdρ̂ .     
 
3. A Wider Class of Estimators 
    In this section we consider a class of estimators of yxρ  wider than ( 2.5) given by  

                                                      gdρ̂ =g(r,u,v,w,a)                                 (3.1) 
       
where g(r,u,v,w,a) is a function of r,u,v, w,a  and such that  

g( ρ ,1,1,1,1)= ρ  and 
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Proceeding as in section 2, it can easily be shown, to the first order of approximation, that 
the minimum variance of gdρ̂  is same as that of tdρ̂    given in (2.11). 

It is to be noted that the difference-type estimator           
rd= r + 1α  (u-1)  + 2α  (v-1) + 3α  (w-1) + 4α  (a-1), is a particular case of gdρ̂  , but it is 

not the member of tdρ̂  in (2.5). 
 



4. Optimum Values and Their Estimates 
 

The optimum values t1(P) = α , t2(P) = β  , t3(P) = γ   and  t4(P) =δ   given at 
(2.10) involves unknown population parameters. When these optimum values are 
substituted in (2.5) , it no longer remains an estimator since it involves unknown 
(α , β ,γ ,δ ), which are functions of unknown population parameters, say,, pqmδ  (p, q,m= 
0,1,2,3,4), Cx, Cz and  yxρ  itself. Hence it is advisable to replace them by their consistent 

estimates from sample values. Let ( δγβα ˆ,ˆ,ˆ,ˆ ) be consistent estimators of t1(P),t2(P), 
t3(P) and  t4(P) respectively, where  
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We then replace (α , β ,γ ,δ ) by ( δγβα ˆ,ˆ,ˆ,ˆ ) in the optimum tdρ̂ resulting in the estimator 

∗
tdρ̂  say, which is defined by  

 
                      )ˆ,ˆ,ˆ,ˆ,,,,(ˆ ** δγβαρ awvutrtd = ,     (4.2) 

 
where the function t*(U), U= ( δγβα ˆ,ˆ,ˆ,ˆ,,,, awvu ) is derived from the the function 
t(u,v,w,a) given at (2.5) by replacing the unknown constants involved in it by the 
consistent estimates of optimum values. The condition (2.6) will then imply that  
                              t*(P*) = 1                                                 (4.3)            
 where              P* = (1,1,1,1, α , β ,γ ,δ )    
 We further assume that  
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Expanding t*(U) about P*= (1,1,1,1, α , β ,γ ,δ ), in Taylor’s series, we have 
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Using (4.4) in (4.5) we have 
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Expressing (4.6) in term of e’s squaring and retaining terms of e’s up to second degree, 
we have 

2*
4

*
3

*
22

*
11205

22* ])()()2(
2
1[)ˆ( eeeeeeeeeyxyxtd δγβαρρρ ++−+−+−−=−                (4.7) 

Taking expectation of both sides in (4.7), we get the variance of ∗
tdρ̂ to the first degree of 

approximation, as 
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which is same as (2.11), we thus have established the following result. 
 
Result 4.1: If optimum values of constants in (2.10) are replaced by their consistent 
estimators and conditions (4.3) and (4.4) hold good, the resulting estimator *ˆ tdρ  has the 
same variance to the first degree of approximation, as that of optimum tdρ̂ . 
 
Remark 4.1: It may be easily examined that some special cases: 
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(iv) 1*
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of *ˆ tdρ satisfy the conditions (4.3) and (4.4) and attain the variance (4.8). 
 
Remark 4.2: The efficiencies of the estimators discussed in this paper can be compared 
for fixed cost, following the procedure given in Sukhatme et. al. (1984) and Gupta et. al. ( 
1992-93). 
 
5. Empirical Study 
                          To illustrate the performance of various estimators of population 
correlation coefficient, we consider the data given in Murthy [1967, P.226].  The variates 
are: 
y=output, x=Number of Workers, z =Fixed Capital 
N=80,  n=10,   n1 =25 ,    

,875.283=X  ,638.5182=Y  ,1126=Z  ,9430.0=xC  ,3520.0=yC ,7460.0=zC  
,030.1003 =δ   ,8664.2004 =δ  ,1859.1021 =δ  ,1522.3022 =δ  ,295.1030 =δ  ,65.3040 =δ        
,7491.0102 =δ    ,9145.0120 =δ     ,8234.0111 =δ      ,8525.2130 =δ        
,5454.2112 =δ ,5475.0210 =δ ,3377.2220 =δ ,4546.0201 =δ ,2208.2202 =δ ,1301.0300 =δ
,2667.2400 =δ ,9136.0=yxρ        ,9859.0=xzρ      9413.0=yzρ . 

The percent relative efficiencies (PREs) of d1ρ̂ , hdρ̂ , tdρ̂  with respect to conventional 
estimator r have been computed and compiled in Table 5.1. 
 
Table 5.1: The PRE’s of different estimators of yxρ  
Estimator r hdρ̂  

tdρ̂ (or ∗
tdρ̂ ) 

PRE(.,r) 100 129.147 305.441 
 

Table 5.1 clearly shows that the proposed estimator  tdρ̂ (or ∗
tdρ̂ ) is more efficient 

than  r and hdρ̂ . 
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