CRITERIA OF PRIMALITY

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract: In this article we present four necessary and sufficient conditions for a natural number to be prime.

Theorem 1. Let p be a natural number, $p \geq 3: p$ is prime if and only if $(p-3)!\equiv \frac{p-1}{2}(\bmod p)$.

Proof:
Necessity: p is prime $\Rightarrow(p-1)!\equiv-1(\bmod p)$ conform to Wilson's theorem. It results that $(p-1)(p-2)(p-3)!\equiv-1(\bmod p)$, or $2(p-3)!\equiv p-1(\bmod p)$. But p being a prime number ≥ 3 it results that $(2, p)=1$ and $\frac{p-1}{2} \in \mathbb{Z}$. It has sense the division of the congruence by 2 , and therefore we obtain the conclusion.

Sufficiency: We multiply the congruence $(p-3)!\equiv \frac{p-1}{2}(\bmod p)$ with $(p-1)(p-2) \equiv 2(\bmod p)($ see $[1]$, pp. $10-16)$ and it results that $(p-1)!\equiv-1(\bmod p)$, from Wilson's theorem, which makes us conclude that p is prime.

Lemma 1. Let m be a natural number >4. Then m is a composite number if and only if $(m-1)!\equiv 0(\bmod m)$.

Proof:
The sufficiency is evident conform to Wilson's theorem.
Necessity: m can be written as $m=a_{1}^{\alpha_{1}} \ldots a_{s}^{\alpha_{s}}$, where a_{i} are positive prime numbers, two by two distinct and $\alpha_{i} \in \mathbb{N}^{*}$, for any $i, 1 \leq i \leq s$.

If $s \neq 1$ then $a_{i}^{\alpha_{i}}<m$, for any $i, 1 \leq i \leq s$.
Therefore $a_{1}^{\alpha_{1}} \ldots a_{s}^{\alpha_{s}}$ are distinct factors in the product ($m-1$)! thus $(m-1)!\equiv 0(\bmod m)$.

If $s=1$ then $m=a^{\alpha}$ with $\alpha \geq 2$ (because m is non-prime). When $\alpha=2$ we have $a<m$ and $2 a<m$ because $m>4$. It results that a and $2 a$ are different factors in $(m-1)!$ and therefore $(m-1)!\equiv 0(\bmod m)$. When $\alpha>2$, we have $a<m$ and $a^{\alpha-1}<m$, and a and $a^{\alpha-1}$ are different factors in the product $(m-1)$!.

Therefore $(m-1)!\equiv 0(\bmod m)$ and the lemma is proved for all cases.

Theorem 2. Let p be a natural number greater than 4 . Then p is prime if and only if $(p-4)!\equiv(-1)^{\left[\frac{p}{3}\right]+1} \cdot\left[\frac{p+1}{6}\right](\bmod p)$, where $[\mathrm{x}]$ is the integer part of x , i.e. the largest integer less than or equal to x .

Proof:
Necessity: $(p-4)!(p-3)(p-2)(p-1) \equiv-1(\bmod p)$ from Wilson's theorem, or $6(p-4)!\equiv 1(\bmod p) ; p$ being prime and greater than 4 , it results that $(6, p)=1$.

It results that $p=6 k \pm 1, k \in \mathbb{N}^{*}$.
A) If $p=6 k-1$, then $6 \mid(p+1)$ and $(6, p)=1$, and dividing the congruence $6(p-4)!\equiv p+1(\bmod p)$, which is equivalent with the initial one, by 6 we obtain:

$$
(p-4)!\equiv \frac{p+1}{6} \equiv(-1)^{\left[\frac{p}{3}\right]+1} \cdot\left[\frac{p+1}{6}\right](\bmod p) .
$$

B) If $p=6 k+1$, then $6 \mid(1-p)$ and $(6, p)=1$, and dividing the congruence $6(p-4)!\equiv 1-p(\bmod p)$, which is equivalent to the initial one, by 6 it results:

$$
(p-4)!\equiv \frac{1-p}{6} \equiv-k \equiv(-1)^{\left[\frac{p}{3}\right]+1} \cdot\left[\frac{p+1}{6}\right](\bmod p) .
$$

Sufficiency: We must prove that p is prime. First of all we'll show that $p \neq \mathcal{M} 6$.
Let's suppose by absurd that $p=6 k, k \in \mathbb{N}^{*}$. By substituting in the congruence from hypothesis, it results $(6 k-4)!\equiv-k(\bmod 6 k)$. From the inequality $6 k-5 \geq k$ for $k \in \mathbb{N}^{*}$, it results that $k \mid(6 k-5)$!. From $22 \mid(6 k-4)$, it results that $2 k \mid(6 k-5)!(6 k-4)$. Therefore $2 k \mid(6 k-4)!$ and $2 k \mid 6 k$, it results (conform with the congruencies' property) (see [1], pp. 9-26) that $2 k I(-k)$, which is not true; and therefore $p \neq \mathcal{M} 6$.

From $(p-1)(p-2)(p-3) \equiv-6(\bmod p)$ by multiplying it with the initial congruence it results that: $(p-1)!\equiv(-1)^{\left[\frac{p}{3}\right]} 6 \cdot\left[\frac{p+1}{6}\right](\bmod p)$.

Let's consider lemma 1 ; for $p>4$ we have:
$(p-1)!\equiv\left\{\begin{array}{l}0(\bmod p), \text { if } p \text { is not prime; } \\ -1(\bmod p), \text { if } p \text { is prime; }\end{array}\right.$
a) If $p=6 k+2 \Rightarrow(p-1)!\equiv 6 k \not \equiv 0(\bmod p)$.
b) If $p=6 k+3 \Rightarrow(p-1)!\equiv-6 k \not \equiv 0(\bmod p)$.
c) If $p=6 k+4 \Rightarrow(p-1)!\equiv-6 k \not \equiv 0(\bmod p)$.

Thus $p \neq \mathcal{M} 6+r$ with $r \in\{0,2,3,4\}$.
It results that p is of the form: $p=6 k \pm 1, k \in \mathbb{N}^{*}$ and then we have:
$(p-1)!\equiv-1(\bmod p)$, which means that p is prime.

Theorem 3. If p is a natural number ≥ 5, then p is prime if and only if $(p-5)!\equiv r h+\frac{r^{2}-1}{24}(\bmod p)$, where $h=\left[\frac{p}{24}\right]$ and $r=p-24 h$.

Proof:
Necessity: if p is prime, it results that:
$(p-5)!(p-4)(p-3)(p-2)(p-1) \equiv-1(\bmod p)$ or
$24(p-5)!\equiv-1(\bmod p)$.
But p could be written as $p=24 h+r$, with $r \in\{1,5,7,11,13,17,19,23\}$, because it is prime. It can be easily verified that $\frac{r^{2}-1}{24} \in \mathbb{Z}$.

$$
24(p-5)!\equiv-1+r(24 h+r) \equiv 24 r h+r^{2}-1(\bmod p)
$$

Because $(24, p)=1$ and $24 \mid\left(r^{2}-1\right)$ we can divide the congruence by 24 , obtaining: $(p-5)!\equiv r h+\frac{r^{2}-1}{24}(\bmod p)$.

Sufficiency: p can be written $p=24 h+r, 0 \leq r<24, h \in \mathbb{N}$.
Multiplying the congruence $(p-4)(p-3)(p-2)(p-1) \equiv 24(\bmod p)$ with the initial one, we obtain: $(p-1)!\equiv r(24 h+r)-1 \equiv-1(\bmod p)$.

Theorem 4. Let's consider $p=(k-1)!h+1, k>2$ a natural number.
Then: p is prime if and only if

$$
(p-k)!\equiv(-1)^{h+\left[\frac{p}{h}\right]+1} \cdot h(\bmod p) .
$$

Proof: $(p-1)!\equiv-1(\bmod p) \Leftrightarrow(p-k)!(-1)^{k-1}(\mathrm{k}-1)!\equiv-1(\bmod \mathrm{p}) \Leftrightarrow(\mathrm{p}-\mathrm{k})!(\mathrm{k}-1)!$ $\equiv(-1)^{\mathrm{k}}(\bmod \mathrm{p})$.

We have: $((k-1)!, p)=1$
A) $p=(k-1)!h-1$.
a) k is an even number $\Rightarrow(p-k)!(k-1)!\equiv 1+p(\bmod p)$, and because of the relation (1) and $(k-1)!I(1+p)$, by dividing with $(k-1)$! we have: $(p-k)!\equiv h(\bmod p)$.
b) k is an odd number $\Rightarrow(p-k)!(k-1)!\equiv-1-p(\bmod p)$ and because of the relation (1) and $(k-1)!\mid(-1-p)$, by dividing with $(k-1)$! we have: $(p-k)!\equiv-h(\bmod p)$
B) $p=(k-1)!h+1$
a) k is an even number $\Rightarrow(p-k)!(k-1)!\equiv 1-p(\bmod p)$, and because $(k-1)!\mid(1-p)$ and of the relation (1), by dividing with $(k-1)$! we have: $(p-k)!\equiv-h(\bmod p)$.
b) k is an odd number $\Rightarrow(p-k)!(k-1)!\equiv-1+p(\bmod p)$, and because $(k-1)!\mid(-1+p)$ and of the relation (1), by dividing with $(k-1)$! we have $(p-k)!\equiv h(\bmod p)$.

Putting together all these cases, we obtain: if p is prime, $p=(k-1)!h \pm 1$, with $k>2$ and $h \in \mathbb{N}^{*}$, then

$$
(p-k)!\equiv(-1)^{h+\left[\frac{p}{h}\right]+1} \cdot h(\bmod p) .
$$

Sufficiency: Multiplying the initial congruence by $(k-1)$! it results that:

$$
(p-k)!(k-1)!\equiv(k-1)!h \cdot(-1)^{\left[\frac{p}{h}\right]+1} \cdot(-1)^{k}(\bmod p)
$$

Analyzing separately each of these cases:
A) $p=(k-1)!h-1$ and
B) $p=(k-1)!h+1$, we obtain for both, the congruence:

$$
(p-k)!(k-1)!\equiv(-1)^{k}(\bmod p)
$$

which is equivalent (as we showed it at the beginning of this proof) with $(p-1)!\equiv-1(\bmod p)$ and it results that p is prime.

REFERENCE:

[1] Constantin P. Popovici, "Teoria numerelor", Editura Didactică şi Pedagogică, Bucharest, 1973.
[Published in "Gazeta Matematică", Bucharest, Year XXXVI, No. 2, pp. 49-52, February 1981]

