
 1

 

CRITERIA OF PRIMALITY  
 

Florentin Smarandache 
University of New Mexico 

200 College Road 
Gallup, NM 87301, USA 

E-mail: smarand@unm.edu 
 
  

Abstract: In this article we present four necessary and sufficient conditions for a 
natural number to be prime. 
  
 Theorem 1. Let p  be a natural number, p ≥ 3 : p  is prime if and only if 

p − 3( )!≡ p −1

2
(mod p) . 

 Proof: 
 Necessity: p  is prime ⇒ p −1( )!≡ −1(mod p)  conform to Wilson’s theorem. It 
results that (p −1)(p − 2)(p − 3)!≡ −1(mod p) , or 2(p − 3)!≡ p −1(mod p) . But p  being 

a prime number ≥ 3  it results that (2, p) = 1  and 
 
p −1

2
∈Z . It has sense the division of 

the congruence by 2, and therefore we obtain the conclusion. 

 Sufficiency: We multiply the congruence (p − 3)!≡
p −1

2
(mod p)  with 

(p −1)(p − 2) ≡ 2(mod p)  (see [1], pp. 10-16) and it results that (p −1)!≡ −1(mod p) , 
from Wilson’s theorem, which makes us conclude that p is prime. 
 
 Lemma 1. Let m  be a natural number > 4 . Then m  is a composite number if and 
only if (m −1)!≡ 0(mod m) . 
 Proof: 
 The sufficiency is evident conform to Wilson’s theorem.  
 Necessity: m  can be written as m = a1

α1 ... as
α s , where ai are positive prime 

numbers, two by two distinct and   α i ∈N* , for any i , 1≤ i ≤ s . 
 If 1s ≠  then ai

α i < m , for any i , 1≤ i ≤ s . 
 Therefore a1

α1 ... as
α s  are distinct factors in the product (m −1)!  thus 

(m −1)!≡ 0(mod m) . 
 If 1s =  then m = aα  with α ≥ 2  (because m  is non-prime). When α = 2  we 
have a < m  and 2a < m  because m > 4 . It results that a  and 2a  are different factors in 
(m −1)!  and therefore (m −1)!≡ 0(mod m) . When α > 2 , we have a < m  and aα −1 < m , 
and a and aα −1 are different factors in the product (m −1)! . 
 Therefore (m −1)!≡ 0(mod m) and the lemma is proved for all cases. 
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 Theorem 2. Let p  be a natural number greater than 4. Then p  is prime if and 

only if 
1

3 1( 4)! ( 1) (mod )
6

p pp p
⎡ ⎤+⎢ ⎥⎣ ⎦ +⎡ ⎤− ≡ − ⋅ ⎢ ⎥⎣ ⎦

, where [x] is the integer part of x, i.e. the 

largest integer less than or equal to x. 
 Proof: 
 Necessity: (p − 4)!(p − 3)(p − 2)(p −1) ≡ −1(mod p)  from Wilson’s theorem, or 
6(p − 4)!≡ 1(mod p) ; p  being prime and greater than 4, it results that (6, p) = 1 . 
 It results that p = 6k ±1,  k ∈N* . 

A) If p = 6k −1 , then 6 | (p +1)  and (6, p) = 1 , and dividing the  
congruence 6(p − 4)!≡ p +1(mod p) , which is equivalent with the initial one, by 6 we 
obtain: 

  
1

31 1( 4)! ( 1) (mod )
6 6

pp pp p
⎡ ⎤+⎢ ⎥⎣ ⎦+ +⎡ ⎤− ≡ ≡ − ⋅ ⎢ ⎥⎣ ⎦

. 

B) If p = 6k +1 , then 6 | (1− p)  and (6, p) = 1 , and dividing the congruence 
6(p − 4)!≡ 1− p(mod p) , which is equivalent to the initial one, by 6 it results: 

1
31 1( 4)! ( 1) (mod )

6 6

pp pp k p
⎡ ⎤+⎢ ⎥⎣ ⎦− +⎡ ⎤− ≡ ≡ − ≡ − ⋅ ⎢ ⎥⎣ ⎦

. 

 Sufficiency: We must prove that p  is prime. First of all we’ll show that  p ≠ M6 . 
 Let’s suppose by absurd that p = 6k ,  k ∈N* . By substituting in the congruence 
from hypothesis, it results (6k − 4)!≡ −k(mod6k) . From the inequality 6k − 5 ≥ k for 

 k ∈N* , it results that k | (6k − 5)!. From 22 | (6k − 4) , it results that 
2k | (6k − 5)!(6k − 4) . Therefore 2k | (6k − 4)! and 2k | 6k , it results (conform with the 
congruencies’ property) (see [1], pp. 9-26) that 2k | (−k) , which is not true; and therefore 

 p ≠ M6 . 
 From (p −1)(p − 2)(p − 3) ≡ −6(mod p)  by multiplying it with the initial 

congruence it results that: (p −1)!≡ (−1)
p

3
⎡
⎣⎢

⎤
⎦⎥6 ⋅

p +1

6
⎡
⎣⎢

⎤
⎦⎥
(mod p) . 

 Let’s consider lemma 1; for p > 4  we have: 

 (p −1)!≡
0(mod p),  if p is not prime;

−1(mod p),  if p is prime;

⎧
⎨
⎩

 

a) If p = 6k + 2 ⇒ (p −1)!≡ 6k /≡ 0(mod p) . 
b) If p = 6k + 3⇒ (p −1)!≡ −6k /≡ 0(mod p) . 
c) If p = 6k + 4 ⇒ (p −1)!≡ −6k /≡ 0(mod p) . 
Thus  p ≠ M6 + r with { }0, 2,3, 4r∈ . 

It results that p  is of the form: p = 6k ±1,  k ∈N*  and then we have: 
(p −1)!≡ −1(mod p) , which means that p  is prime. 
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 Theorem 3. If p  is a natural number 5≥ , then p  is prime if and only if 

(p − 5)!≡ rh +
r2 −1

24
(mod p) , where h =

p

24
⎡
⎣⎢

⎤
⎦⎥

 and r = p − 24h . 

 Proof:  
Necessity: if p  is prime, it results that:  
(p − 5)!(p − 4)(p − 3)(p − 2)(p −1) ≡ −1(mod p)  or  
24(p − 5)!≡ −1(mod p) . 

 But p  could be written as p = 24h + r , with { }1,  5,  7,  11,  13,  17,  19,  23r∈ , 

because it is prime. It can be easily verified that 
 
r2 −1

24
∈Z . 

24(p − 5)!≡ −1+ r(24h + r) ≡ 24rh + r2 −1(mod p) . 
 Because ( )24, 1p =  and 24 | (r2 −1)  we can divide the congruence by 24, 

obtaining: (p − 5)!≡ rh +
r2 −1

24
(mod p) . 

 Sufficiency: p  can be written p = 24h + r ,  0 ≤ r < 24,   h ∈N . 
Multiplying the congruence (p − 4)(p − 3)(p − 2)(p −1) ≡ 24(mod p)  with the initial one, 
we obtain: (p −1)!≡ r(24h + r) −1≡ −1(mod p) . 
 
 Theorem 4. Let’s consider p = (k −1)!h +1,   k > 2  a natural number.  
Then: p  is prime if and only if  

(p − k)!≡ (−1)
h+

p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅h(mod p) . 
 

 Proof: (p −1)!≡ −1(mod p) ⇔ (p − k)!(−1)k−1 (k-1)!≡ -1(mod p)  ]  (p-k)!(k-1)! 
≡ (-1)k(mod p) .       
 We have: ((k −1)!, p) = 1   (1) 
 A) p = (k −1)!h −1 . 
 a) k  is an even number ⇒ (p − k)!(k −1)!≡ 1+ p(mod p) , and because of the 
relation (1) and (k −1)! | (1+ p) , by dividing with (k −1)!  we have: (p − k)!≡ h(mod p) . 
 b) k  is an odd number ⇒ (p − k)!(k −1)!≡ −1− p(mod p)  and because of the 
relation (1) and (k −1)! | (−1− p) , by dividing with (k −1)!  we have: 
(p − k)!≡ −h(mod p)  
 B) ( 1)! 1p k h= − +  
 a) k  is an even number ⇒ (p − k)!(k −1)!≡ 1− p(mod p) , and because 
(k −1)! | (1− p)  and of the relation (1), by dividing with (k −1)!  we have: 
( )! (mod )p k h p− ≡ − . 
 b) k  is an odd number ⇒ (p − k)!(k −1)!≡ −1+ p(mod p) , and because 
(k −1)! | (−1+ p)  and of the relation (1), by dividing with (k −1)!  we have 
(p − k)!≡ h(mod p) . 
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 Putting together all these cases, we obtain: if p  is prime, p = (k −1)!h ±1 , with 
k > 2  and  h ∈N* , then  

  (p − k)!≡ (−1)
h+

p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅h(mod p) . 
 Sufficiency: Multiplying the initial congruence by (k −1)!  it results that: 

(p − k)!(k −1)!≡ (k −1)!h ⋅ (−1)
p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅ (−1)k (mod p) . 
 

 Analyzing separately each of these cases:  
A) p = (k −1)!h −1  and  
B) p = (k −1)!h +1 , we obtain for both, the congruence:  

(p − k)!(k −1)!≡ (−1)k (mod p)  
which is equivalent (as we showed it at the beginning of this proof) with 
(p −1)!≡ −1(mod p)  and it results that p  is prime. 
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