CRITERIA OF PRIMALITY

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Abstract: In this article we present four necessary and sufficient conditions for a natural number to be prime.

Theorem 1. Let p be a natural number, $p \ge 3$: p is prime if and only if $(p-3)! \equiv \frac{p-1}{2} \pmod{p}$. *Proof:*

Necessity: p is prime $\Rightarrow (p-1)! \equiv -1 \pmod{p}$ conform to Wilson's theorem. It results that $(p-1)(p-2)(p-3)! \equiv -1 \pmod{p}$, or $2(p-3)! \equiv p-1 \pmod{p}$. But p being a prime number ≥ 3 it results that (2, p) = 1 and $\frac{p-1}{2} \in \mathbb{Z}$. It has sense the division of the congruence by 2, and therefore we obtain the conclusion.

Sufficiency: We multiply the congruence $(p-3)! \equiv \frac{p-1}{2} \pmod{p}$ with $(p-1)(p-2) \equiv 2 \pmod{p}$ (see [1], pp. 10-16) and it results that $(p-1)! \equiv -1 \pmod{p}$, from Wilson's theorem, which makes us conclude that p is prime.

Lemma 1. Let *m* be a natural number > 4. Then *m* is a composite number if and only if $(m-1)! \equiv 0 \pmod{m}$.

Proof:

The sufficiency is evident conform to Wilson's theorem.

Necessity: m can be written as $m = a_1^{\alpha_1} \dots a_s^{\alpha_s}$, where a_i are positive prime numbers, two by two distinct and $\alpha_i \in \mathbb{N}^*$, for any $i, 1 \le i \le s$.

If $s \neq 1$ then $a_i^{\alpha_i} < m$, for any $i, 1 \le i \le s$.

Therefore $a_1^{\alpha_1} \dots a_s^{\alpha_s}$ are distinct factors in the product (m-1)! thus $(m-1)! \equiv 0 \pmod{m}$.

If s = 1 then $m = a^{\alpha}$ with $\alpha \ge 2$ (because *m* is non-prime). When $\alpha = 2$ we have a < m and 2a < m because m > 4. It results that *a* and 2a are different factors in (m-1)! and therefore $(m-1)! \equiv 0 \pmod{m}$. When $\alpha > 2$, we have a < m and $a^{\alpha-1} < m$, and *a* and $a^{\alpha-1}$ are different factors in the product (m-1)!.

Therefore $(m-1)! \equiv 0 \pmod{m}$ and the lemma is proved for all cases.

Theorem 2. Let *p* be a natural number greater than 4. Then *p* is prime if and only if $(p-4)! \equiv (-1)^{\left\lfloor \frac{p}{3} \right\rfloor + 1} \cdot \left\lfloor \frac{p+1}{6} \right\rfloor \pmod{p}$, where [x] is the integer part of x, i.e. the

largest integer less than or equal to x.

Proof:

obtain:

Necessity: $(p-4)!(p-3)(p-2)(p-1) \equiv -1 \pmod{p}$ from Wilson's theorem, or $6(p-4)! \equiv 1 \pmod{p}$; *p* being prime and greater than 4, it results that (6, p) = 1.

It results that $p = 6k \pm 1, k \in \mathbb{N}^*$.

A) If p = 6k - 1, then 6 | (p + 1) and (6, p) = 1, and dividing the congruence $6(p - 4)! \equiv p + 1 \pmod{p}$, which is equivalent with the initial one, by 6 we

$$(p-4)! \equiv \frac{p+1}{6} \equiv (-1)^{\left\lfloor \frac{p}{3} \right\rfloor^{+1}} \cdot \left\lfloor \frac{p+1}{6} \right\rfloor \pmod{p}.$$

B) If p = 6k + 1, then $6 \mid (1 - p)$ and (6, p) = 1, and dividing the congruence $6(p - 4)! \equiv 1 - p \pmod{p}$, which is equivalent to the initial one, by 6 it results:

$$(p-4)! \equiv \frac{1-p}{6} \equiv -k \equiv (-1)^{\left\lfloor \frac{p}{3} \right\rfloor_{+1}} \cdot \left\lfloor \frac{p+1}{6} \right\rfloor \pmod{p}$$

Sufficiency: We must prove that p is prime. First of all we'll show that $p \neq \mathcal{M}6$.

Let's suppose by absurd that p = 6k, $k \in \mathbb{N}^*$. By substituting in the congruence from hypothesis, it results $(6k-4)! \equiv -k \pmod{6k}$. From the inequality $6k-5 \ge k$ for $k \in \mathbb{N}^*$, it results that $k \mid (6k-5)!$. From $22 \mid (6k-4)$, it results that $2k \mid (6k-5)!(6k-4)$. Therefore $2k \mid (6k-4)!$ and $2k \mid 6k$, it results (conform with the congruencies' property) (see [1], pp. 9-26) that $2k \mid (-k)$, which is not true; and therefore $p \neq \mathcal{M}6$.

From $(p-1)(p-2)(p-3) \equiv -6 \pmod{p}$ by multiplying it with the initial congruence it results that: $(p-1)! \equiv (-1)^{\left\lfloor \frac{p}{3} \right\rfloor} 6 \cdot \left\lfloor \frac{p+1}{6} \right\rfloor \pmod{p}$.

Let's consider lemma 1; for p > 4 we have:

 $(p-1)! \equiv \begin{cases} 0(\mod p), \text{ if } p \text{ is not prime;} \\ -1(\mod p), \text{ if } p \text{ is prime;} \end{cases}$ a) If $p = 6k + 2 \Rightarrow (p-1)! \equiv 6k \not\equiv 0(\mod p)$. b) If $p = 6k + 3 \Rightarrow (p-1)! \equiv -6k \not\equiv 0(\mod p)$. c) If $p = 6k + 4 \Rightarrow (p-1)! \equiv -6k \not\equiv 0(\mod p)$. Thus $p \neq \mathcal{M}6 + r$ with $r \in \{0, 2, 3, 4\}$. It results that p is of the form: $p = 6k \pm 1, k \in \mathbb{N}^*$ and then we have:

 $(p-1)! \equiv -1 \pmod{p}$, which means that p is prime.

Theorem 3. If p is a natural number ≥ 5 , then p is prime if and only if $(p-5)! \equiv rh + \frac{r^2 - 1}{24} \pmod{p}$, where $h = \left[\frac{p}{24}\right]$ and r = p - 24h. *Proof: Necessity:* if p is prime, it results that: $(p-5)!(p-4)(p-3)(p-2)(p-1) \equiv -1 \pmod{p}$ or $24(p-5)! \equiv -1 \pmod{p}$. But p could be written as p = 24h + r, with $r \in \{1, 5, 7, 11, 13, 17, 19, 23\}$, because it is prime. It can be easily verified that $\frac{r^2 - 1}{24} \in \mathbb{Z}$. $24(p-5)! \equiv -1 + r(24h + r) \equiv 24rh + r^2 - 1 \pmod{p}$.

Because (24, p) = 1 and $24 | (r^2 - 1)$ we can divide the congruence by 24, obtaining: $(p-5)! \equiv rh + \frac{r^2 - 1}{24} \pmod{p}$.

Sufficiency: p can be written p = 24h + r, $0 \le r < 24$, $h \in \mathbb{N}$. Multiplying the congruence $(p-4)(p-3)(p-2)(p-1) \equiv 24 \pmod{p}$ with the initial one, we obtain: $(p-1)! \equiv r(24h+r) - 1 \equiv -1 \pmod{p}$.

Theorem 4. Let's consider p = (k-1)!h+1, k > 2 a natural number. Then: p is prime if and only if

$$(p-k)! \equiv (-1)^{h+\left\lfloor \frac{p}{h} \right\rfloor+1} \cdot h \pmod{p}.$$

 $Proof: (p-1)! \equiv -1 \pmod{p} \Leftrightarrow (p-k)! (-1)^{k-1} (k-1)! \equiv -1 \pmod{p} \iff (p-k)! (k-1)! \equiv (-1)^k \pmod{p}.$

We have: ((k-1)!, p) = 1 (1)

A) p = (k-1)!h-1.

a) k is an even number $\Rightarrow (p-k)!(k-1)! \equiv 1 + p \pmod{p}$, and because of the relation (1) and $(k-1)! \mid (1+p)$, by dividing with (k-1)! we have: $(p-k)! \equiv h \pmod{p}$.

b) k is an odd number $\Rightarrow (p-k)!(k-1)! \equiv -1 - p \pmod{p}$ and because of the relation (1) and $(k-1)! \mid (-1-p)$, by dividing with (k-1)! we have: $(p-k)! \equiv -h \pmod{p}$

B) p = (k-1)!h+1

a) k is an even number $\Rightarrow (p-k)!(k-1)! \equiv 1 - p \pmod{p}$, and because (k-1)! | (1-p) and of the relation (1), by dividing with (k-1)! we have: $(p-k)! \equiv -h \pmod{p}$.

b) k is an odd number $\Rightarrow (p-k)!(k-1)! \equiv -1 + p \pmod{p}$, and because (k-1)!!(-1+p) and of the relation (1), by dividing with (k-1)! we have $(p-k)! \equiv h \pmod{p}$.

Putting together all these cases, we obtain: if p is prime, $p = (k-1)!h \pm 1$, with k > 2 and $h \in \mathbb{N}^*$, then

$$(p-k)! \equiv (-1)^{h+\left\lfloor \frac{p}{h} \right\rfloor+1} \cdot h \pmod{p}$$

Sufficiency: Multiplying the initial congruence by (k-1)! it results that:

$$(p-k)!(k-1)! \equiv (k-1)!h \cdot (-1)^{\left\lfloor \frac{p}{h} \right\rfloor + 1} \cdot (-1)^k \pmod{p}.$$

Analyzing separately each of these cases:

- A) p = (k-1)!h 1 and
- B) p = (k-1)!h+1, we obtain for both, the congruence:

$$(p-k)!(k-1)! \equiv (-1)^k \pmod{p}$$

which is equivalent (as we showed it at the beginning of this proof) with $(p-1)! \equiv -1 \pmod{p}$ and it results that p is prime.

REFERENCE:

- [1] Constantin P. Popovici, "Teoria numerelor", Editura Didactică și Pedagogică, Bucharest, 1973.
- [Published in "Gazeta Matematică", Bucharest, Year XXXVI, No. 2, pp. 49-52, February 1981]