A GENERALIZATION OF A LEIBNIZ GEOMETRICAL THEOREM

Mihály Bencze, Florin Popovici, Department of Mathematics, Áprily Lajos College, Braşov, Romania

Florentin Smarandache, Chair of Department of Math \& Sciences, University of New Mexico, 200 College Road, Gallup, NM 87301, USA, E-mail: smarand@unm.edu

Abstract

: In this article we present a generalization of a Leibniz's theorem in geometry and an application of this.

Leibniz's theorem. Let M be an arbitrary point in the plane of the triangle $A B C$, then $M A^{2}+M B^{2}+M C^{2}=\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)+3 M G^{2}$, where G is the centroid of the triangle. We generalize this theorem:

Theorem. Let's consider $A_{1}, A_{2}, \ldots, A_{n}$ arbitrary points in space and G the centroid of this points system; then for an arbitrary point M of the space is valid the following equation:

$$
\sum_{i=1}^{n} M A_{i}^{2}=\frac{1}{n} \sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2}+n \cdot M G^{2}
$$

Proof. First, we interpret the centroid of the n points system in a recurrent way. If $n=2$ then is the midpoint of the segment.
If $n=3$, then it is the centroid of the triangle.
Suppose that we found the centroid of the $n-1$ points created system. Now we join each of the n points with the centroid of the $n-1$ points created system; and we obtain n bisectors of the sides. It is easy to show that these n medians are concurrent segments. In this manner we obtain the centroid of the n points created system. We'll denote G_{i} the centroid of the $A_{k}, k=1,2, \ldots, i-1, i+1, \ldots, n$ points created system. It can be shown that $(n-1) A_{i} G=G G_{i}$. Now by induction we prove the theorem.

$$
\text { If } n=2 \text { the } M A_{1}^{2}+M A_{2}^{2}=\frac{1}{2} A_{1} A_{2}^{2}+2 M G^{2}
$$

or

$$
M G^{2}=\frac{1}{4}\left(2\left(M A_{1}^{2}+M A_{2}^{2}\right)\right)
$$

where G is the midpoint of the segment $A_{1} A_{2}$. The above formula is the side bisector's formula in the triangle $M A_{1} A_{2}$. The proof can be done by Stewart's theorem, cosines
theorem, generalized theorem of Pythagoras, or can be done vectorial. Suppose that the assertion of the theorem is true for $n=k$. If $A_{1}, A_{2}, \ldots, A_{k}$ are arbitrary points in space, G_{0} is the centroid of this points system, then we have the following relation:

$$
\sum_{i=1}^{k} M A_{i}^{2}=\frac{1}{k} \sum_{1 \leq i<j \leq k} A_{i} A_{j}^{2}+k \cdot M G_{0}^{k}
$$

Now we prove for $n=k+1$.
Let $A_{k+1} \notin\left\{A_{1}, A_{2}, \ldots, A_{k}, G_{0}\right\}$ be an arbitrary point in the space and let G be the centroid of the $A_{1}, A_{2}, \ldots, A_{k}, A_{k+1}$ points system. Taking into account that G is on the segment $A_{k+1} G_{0}$ and $k \cdot A_{k+1} G=G G_{0}$, we apply Stewart's theorem to the points M, G_{0}, G, A_{k+1}, from where:

$$
M A_{k+1}^{2} \cdot G G_{0}+M G_{0}^{2} \cdot G A_{k+1}-M G^{2} \cdot A_{k+1} G_{0}=G G_{0} \cdot G A_{k+1} \cdot A_{k+1} G_{0} .
$$

According to the previous observation $A_{k+1} G=\frac{k}{k+1} A_{k+1} G_{0}$
and $G G_{0}=\frac{k}{k+1} A_{k+1} G_{0}$.
Using these, the above relation becomes:

$$
M A_{k+1}^{2}+k \cdot M G_{0}^{2}=\frac{k}{k+1} A_{k+1} G_{0}^{2}+(k+1) M G^{2} .
$$

From here

$$
k \cdot M G_{0}^{2}=\sum_{i=1}^{k} M A_{i}^{2}-\frac{1}{k} \sum_{1 \leq i<j \leq k} A_{i} A_{j}^{2} .
$$

From the supposition of the induction, with $M \equiv A_{k+1}$ as substitution, we obtain

$$
\sum_{i=1}^{k} A_{i} A_{j}^{2}=\frac{1}{k} \sum_{1 \leq i<j \leq k} A_{i} A_{j}^{2}+k \cdot A_{k+1} G_{0}^{2}
$$

and thus

$$
\frac{k}{k+1} A_{k+1} G_{0}^{2}=\frac{1}{k+1} \sum_{i=1}^{k} A_{i} A_{k+1}^{2}-\frac{1}{k(k+1)} \sum_{1 \leq i<j \leq k} A_{i} A_{j}^{2}
$$

Substituting this in the above relation we obtain that

$$
\begin{aligned}
\sum_{i=1}^{k+1} M A_{i}^{2} & =\left(\frac{1}{k}-\frac{1}{k(k+1)}\right) \sum_{1 \leq i<j \leq k} A_{i} A_{j}^{2}+\frac{1}{k+1} \sum_{i=1}^{k} A_{i} A_{k+1}^{2}+(k+1) M G^{2}= \\
& =\frac{1}{k+1} \sum_{1 \leq i<j \leq k+1} A_{i} A_{j}^{2}+(k+1) M G^{2} .
\end{aligned}
$$

With this we proved that our assertion is true for $n=k+1$. According to the induction, it is true for every $n \geq 2$ natural numbers.

Application 1. If the points $A_{1}, A_{2}, \ldots, A_{n}$ are on the sphere with the center O and radius R, then using in the theorem the substitution $M \equiv O$ we obtain the identity:

$$
O G^{2}=R^{2}-\frac{1}{n^{2}} \sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2}
$$

In case of a triangle: $O G^{2}=R^{2}-\frac{1}{9}\left(a^{2}+b^{2}+c^{2}\right)$.
In case of a tetrahedron: $O G^{2}=R^{2}-\frac{1}{16}\left(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}\right)$.
Application 2. If the points $A_{1}, A_{2}, \ldots, A_{n}$ are on the sphere with the center O and radius R, then $\sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2} \leq n^{2} R^{2}$.

The equality holds if and only if $G \equiv O$. In case of a triangle: $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$, in case of a tetrahedron: $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2} \leq 16 R^{2}$.

Application 3. Using the arithmetic and harmonic mean inequality, from the previous application, it results the following inequality:

$$
\sum_{1 \leq i<j \leq n} \frac{1}{A_{i} A_{j}^{2}} \geq \frac{(n-1)^{2}}{4 R^{2}}
$$

In the case of a triangle: $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \geq \frac{1}{R^{2}}$, in case of a tetrahedron:

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}} \geq \frac{9}{4 R^{2}} .
$$

Application 4. Considering the Cauchy-Buniakowski-Schwarz inequality from the Application 2, we obtain the following inequality:

$$
\sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2} \leq n R \sqrt{\frac{n(n-1)}{2}}
$$

In case of a triangle: $a+b+c \leq 3 \sqrt{3 R}$, in case of a tetrahedron:

$$
a+b+c+d+e+f \leq 4 \sqrt{6 R}
$$

Application 5. Using the arithmetic and harmonic mean inequality, from the previous application we obtain the following inequality

$$
\sum_{1 \leq i<j \leq n} \frac{1}{A_{i} A_{j}^{2}} \geq \frac{(n-1) \sqrt{n(n-1)}}{2 R \sqrt{2}} .
$$

In case of a triangle: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{\sqrt{3}}{R}$, in case of a tetrahedron:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f} \geq \frac{3}{R} \sqrt{\frac{3}{2}} .
$$

Application 6. Considering application 3, we obtain the following inequality:

$$
\frac{n^{2}(n-1)^{2}}{4} \leq\left(\sum_{1 \leq i<j \leq n} A_{i} A_{j}^{k}\right)\left(\sum_{1 \leq i<j \leq n} \frac{1}{A_{i} A_{j}^{k}}\right) \leq
$$

$$
\leq \begin{cases}\frac{(M+m)^{2} n^{2}(n-1)^{2}}{16 M \cdot m} \text { if } \frac{n(n-1)}{2} & \text { is even, } \\ \frac{(M+m)^{2} n^{2}(n-1)^{2}-4(M-m)^{2}}{16 M \cdot m} & \text { if } \frac{n(n-1)}{2} \text { is odd }\end{cases}
$$

where $m=\min \left\{A_{i} A_{j}^{k}\right\}$ and $M=\max \left\{A_{i} A_{j}^{k}\right\}$. In case of a triangle:

$$
9 \leq\left(a^{k}+b^{k}+c^{k}\right)\left(a^{-k}+b^{-k}+c^{-k}\right) \leq \frac{2 M^{2}+5 M \cdot m+2 m^{2}}{M \cdot m},
$$

in case of a tetrahedron:

$$
36 \leq\left(a^{k}+b^{k}+c^{k}+d^{k}+e^{k}+f^{k}\right)\left(a^{-k}+b^{-k}+c^{-k}+d^{-k}+e^{-k}+f^{-k}\right) \leq \frac{9(M+m)^{2}}{M \cdot m}
$$

Application 7. Let $A_{1}, A_{2}, \ldots, A_{n}$ be the vertexes of the polygon inscribed in the sphere with the center O and radius R. First we interpret the orthocenter of the inscribable polygon $A_{1} A_{2} \ldots A_{n}$. For three arbitrary vertexes, corresponds one orthocenter. Now we take four vertexes. In the obtained four orthocenters of the triangles we construct the circles with radius R, which have one common point. This will be the orthocenter of the inscribable quadrilateral. We continue in the same way. The circles with radius R that we construct in the orthocenters of the $n-1$ sides inscribable polygons have one common point. This will be the orthocenter of the n sides, inscribable polygon. It can be shown that O, H, G are collinear and $n \cdot O G=O H$. From the first application

$$
O H^{2}=n^{2} R^{2}-\sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2}
$$

and

$$
G H^{2}=(n-1)^{2} R^{2}-\left(1-\frac{1}{n}\right)^{2} \sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2}
$$

In case of a triangle $O H^{2}=9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)$ and $G H^{2}=4 R^{2}-\frac{4}{9}\left(a^{2}+b^{2}+c^{2}\right)$.
Application 8. In the case of an $A_{1} A_{2} \ldots A_{n}$ inscribable polygon $\sum_{1 \leq i<j \leq n} A_{i} A_{j}^{2}=n^{2} R^{2}$ if and only if $O \equiv H \equiv G$. In case of a triangle this is equivalent with an equilateral triangle.

Application 9. Now we compute the length of the midpoints created by the $A_{1}, A_{2}, \ldots, A_{n}$ space points system. Let $S=\{1,2, \ldots, i-1, i+1, \ldots, n\}$ and G_{0} be the centroid of the $A_{k}, k \in S$, points system. By substituting $M \equiv A_{i}$ in the theorem, for the length of the midpoints we obtain the following relation:

$$
A_{i} G_{0}^{2}=\frac{1}{n-1} \sum_{k \in S} A_{i} A_{k}^{2}-\frac{1}{(n-1)^{2}} \sum_{u, v \in S: u \neq v} A_{u} A_{v}^{2} .
$$

Application 10. In case of a triangle $m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}$ and its permutations. From here:

$$
\begin{aligned}
& m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right), \\
& m_{a}^{2}+m_{b}^{2}+m_{c}^{2} \leq \frac{27}{4} R^{2}, \\
& m_{a}+m_{b}+m_{c} \leq \frac{9}{2} R .
\end{aligned}
$$

Application 11. In case of a tetrahedron $m_{a}^{2}=\frac{1}{9}\left(3\left(a^{2}+b^{2}+c^{2}\right)-\left(d^{2}+e^{2}+f^{2}\right)\right)$ and its permutations.

From here:

$$
\begin{aligned}
& \sum m_{a}^{2}=\frac{4}{9}\left(\sum a^{2}\right), \\
& \sum m_{a}^{2} \leq \frac{64}{9} R^{2}, \\
& \sum m_{a} \leq \frac{16}{3} R .
\end{aligned}
$$

Application 12. Denote $m_{a, f}$ the length of the segments, which join midpoint of the a and f skew sides of the tetrahedron (bimedian). In the interpretation of the application $9 m_{a, f}^{2}=\frac{1}{4}\left(b^{2}+c^{2}+d^{2}+e^{2}-a^{2}-f^{2}\right)$ and its permutations.

From here

$$
\begin{aligned}
& m_{a, f}^{2}+m_{b, d}^{2}+m_{c, e}^{2}=\frac{1}{4}\left(\sum a^{2}\right), \\
& m_{a, f}^{2}+m_{b, d}^{2}+m_{c, e}^{2} \leq 4 R^{2} \\
& m_{a, f}+m_{b, d}+m_{c, e} \leq 2 R \sqrt{3} .
\end{aligned}
$$

REFERENCES:

[1] Hajós G. - Bevezetés a geometriába - Tankönyvkiadó, Bp. 1966
[2] Kazarinoff N. D. - Geometriai egyenlötlenségek - Gondolat, 1980.
[3] Stoica Gh. - Egy ismert maximum feladatról - Matematikai Lapok, Kolozsvár, 9, 1987, pp. 330-332.
[4] Caius Jacob - Lagrange egyik képletéröl és ennek kiterjesztéséröl Matematikai Lapok, Kolozsvár, 2, 1987, pp. 50-56.
[5] Sándor József - Geometriai egyenlötlenségek - Kolozsvár, 1988.
[Published in Octogon, Vol. 6, No. 1. 67-70, 1998.]

