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Abstract: 
 In this article we present a generalization of a Leibniz’s theorem in geometry and 
an application of this. 
  
 Leibniz’s theorem. Let M  be an arbitrary point in the plane of the triangle ABC , 

then MA2 + MB2 + MC 2 =
1

3
(a2 + b2 + c2 ) + 3MG2 , where G is the centroid of the 

triangle. We generalize this theorem: 
 
 Theorem. Let’s consider A1, A2 ,..., An  arbitrary points in space and G the centroid 
of this points system; then for an arbitrary point M  of the space is valid the following 
equation: 

    MAi
2

i=1

n

∑ =
1

n
Ai

1≤i< j≤n
∑ Aj

2 + n ⋅MG2 . 

 Proof.  First, we interpret the centroid of the n  points system in a recurrent way.  
 If n = 2  then is the midpoint of the segment.  
 If n = 3 , then it is the centroid of the triangle.  
 Suppose that we found the centroid of the n −1  points created system. Now we join 
each of the n  points with the centroid of the n −1  points created system; and we obtain 
n  bisectors of the sides. It is easy to show that these n  medians are concurrent segments. 
In this manner we obtain the centroid of the n  points created system. We’ll denote iG  
the centroid of the Ak , 1, 2,..., 1, 1,...,k i i n= − +  points created system. It can be shown 
that ( 1) i in AG GG− = . Now by induction we prove the theorem.  

 If n = 2  the MA1
2 + MA2

2 =
1

2
A1A2

2 + 2MG2   

or 

   MG2 =
1

4
2 MA1

2 + MA2
2( )( ), 

where G  is the midpoint of the segment A1A2 . The above formula is the side bisector’s 
formula in the triangle MA1A2 . The proof can be done by Stewart’s theorem, cosines 
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theorem, generalized theorem of Pythagoras, or can be done vectorial. Suppose that the 
assertion of the theorem is true for n = k . If A1, A2 ,..., Ak  are arbitrary points in space, G0   
is the centroid of this points system, then we have the following relation: 

      MAi
2

i=1

k

∑ =
1

k
Ai

1≤i< j≤k
∑ Aj

2 + k ⋅MG0
k . 

 Now we prove for n = k +1.  
 Let Ak+1 ∉ A1, A2 ,..., Ak ,G0{ } be an arbitrary point in the space and let G  be the 
centroid of the A1, A2 ,..., Ak , Ak+1  points system. Taking into account that G is on the 
segment Ak+1G0  and k ⋅ Ak+1G = GG0 , we apply Stewart’s theorem to the points 
M ,  G0 ,  G,  Ak+1 , from where: 
 MAk+1

2 ⋅GG0 + MG0
2 ⋅GAk+1 − MG2 ⋅ Ak+1G0 = GG0 ⋅GAk+1 ⋅ Ak+1G0 . 

 According to the previous observation Ak+1G =
k

k +1
Ak+1G0   

and GG0 =
k

k +1
Ak+1G0 . 

 Using these, the above relation becomes: 

   MAk+1
2 + k ⋅MG0

2 =
k

k +1
Ak+1G0

2 + (k +1)MG2 . 

 From here  

  k ⋅MG0
2 = MAi

2

i=1

k

∑ −
1

k
Ai

1≤i< j≤k
∑ Aj

2 . 

 From the supposition of the induction, with M ≡ Ak+1  as substitution, we obtain  

  Ai Aj
2

i=1

k

∑ =
1

k
Ai

1≤i< j≤k
∑ Aj

2 + k ⋅ Ak+1G0
2  

and thus  

  2 2 2
1 0 1

1 1

1 1
1 1 ( 1)

k

k i k i j
i i j k

k A G A A A A
k k k k+ +

= ≤ < ≤

= −
+ + +∑ ∑ . 

 Substituting this in the above relation we obtain that  

  
1

2 2 2 2
1

1 1 1

1 1 1 ( 1)
( 1) 1

k k

i i j i k
i i j k i

MA A A A A k MG
k k k k

+

+
= ≤ < ≤ =

⎛ ⎞
= − + + + =⎜ ⎟+ +⎝ ⎠

∑ ∑ ∑  

   ( )2 2

1 1

1 1
1 i j

i j k

A A k MG
k ≤ < ≤ +

= + +
+ ∑ . 

 With this we proved that our assertion is true for n = k +1. According to the 
induction, it is true for every n ≥ 2  natural numbers. 
 
 Application 1. If the points A1, A2 ,..., An  are on the sphere with the center O  and 
radius R , then using in the theorem the substitution M ≡ O  we obtain the identity: 

  2 2 2
2

1

1
i j

i j n
OG R A A

n ≤ < ≤

= − ∑ . 
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In case of a triangle: OG2 = R2 −
1

9
a2 + b2 + c2( ). 

In case of a tetrahedron: OG2 = R2 −
1

16
a2 + b2 + c2 + d2 + e2 + f 2( ). 

 
Application 2. If the points A1, A2 ,..., An  are on the sphere with the center O  and 

radius R , then 2 2 2

1
i j

i j n

A A n R
≤ < ≤

≤∑ . 

 The equality holds if and only if G ≡ O . In case of a triangle: a2 + b2 + c2 ≤ 9R2 , 
in case of a tetrahedron: a2 + b2 + c2 + d 2 + e2 + f 2 ≤ 16R2 . 

 
Application 3. Using the arithmetic and harmonic mean inequality, from the 

previous application, it results the following inequality: 

  
( )2

2 2
1

11
4i j n i j

n
A A R≤ < ≤

−
≥∑ . 

 In the case of a triangle: 
1

a2
+

1

b2
+

1

c2
≥

1

R2
, in case of a tetrahedron:  

  
1

a2 +
1

b2 +
1

c2 +
1

d 2 +
1

e2 +
1

f 2 ≥
9

4R2 . 

 
Application 4. Considering the Cauchy-Buniakowski-Schwarz inequality from 

the Application 2, we obtain the following inequality: 

  2

1

( 1) 
2i j

i j n

n nA A nR
≤ < ≤

−
≤∑ . 

In case of a triangle: a + b + c ≤ 3 3R , in case of a tetrahedron: 

   a + b + c + d + e + f ≤ 4 6R . 
Application 5. Using the arithmetic and harmonic mean inequality, from the 

previous application we obtain the following inequality  

  2
1

( 1) ( 1)1
2 2i j n i j

n n n
A A R≤ < ≤

− −
≥∑ . 

In case of a triangle: 
1

a
+

1

b
+

1

c
≥

3

R
, in case of a tetrahedron: 

  
1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

1

f
≥

3

R

3

2
. 

 
Application 6. Considering application 3, we obtain the following inequality: 

   
2 2

1 1

( 1) 1
4

k
i j k

i j n i j n i j

n n A A
A A≤ < ≤ ≤ < ≤

⎛ ⎞⎛ ⎞−
≤ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑  
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2 2 2

2 2 2 2

( ) ( 1) ( 1)  if     is even,
16 2

( ) ( 1) 4( ) ( 1) if   is odd
16 2

M m n n n n
M m

M m n n M m n n
M m

⎧ + − −
⎪⎪ ⋅≤ ⎨

+ − − − −⎪
⎪ ⋅⎩

 

where m = min AiAj
k{ } and M = max AiAj

k{ }. In case of a triangle: 

  9 ≤ ak + bk + ck( ) a−k + b−k + c−k( )≤ 2M 2 + 5M ⋅m + 2m2

M ⋅m
,  

in case of a tetrahedron: 

 ( )( ) ( )29
36 k k k k k k k k k k k k M m

a b c d e f a b c d e f
M m

− − − − − − +
≤ + + + + + + + + + + ≤

⋅
. 

 
Application 7. Let A1, A2 ,..., An  be the vertexes of the polygon inscribed in the 

sphere with the center O  and radius R . First we interpret the orthocenter of the 
inscribable polygon A1A2 ...An . For three arbitrary vertexes, corresponds one orthocenter. 
Now we take four vertexes. In the obtained four orthocenters of the triangles we construct 
the circles with radius R , which have one common point. This will be the orthocenter of 
the inscribable quadrilateral. We continue in the same way. The circles with radius R  
that we construct in the orthocenters of the n −1  sides inscribable polygons have one 
common point. This will be the orthocenter of the n  sides, inscribable polygon. It can be 
shown that  O,  H ,  G  are collinear and n ⋅OG = OH . From the first application 

  2 2 2 2

1
i j

i j n

OH n R A A
≤ < ≤

= − ∑  

and 

  ( )
2

22 2 2

1

11 1 i j
i j n

GH n R A A
n ≤ < ≤

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑ . 

In case of a triangle OH 2 = 9R2 − a2 + b2 + c2( ) and GH 2 = 4R2 −
4

9
a2 + b2 + c2( ). 

 
 Application 8.  In the case of an A1A2 ...An  inscribable polygon 2 2 2

1
i j

i j n
A A n R

≤ < ≤

=∑  

if and only if O ≡ H ≡ G . In case of a triangle this is equivalent with an equilateral 
triangle. 
 
 Application 9.  Now we compute the length of the midpoints created by the 
A1, A2 ,..., An  space points system. Let S = 1,2,..., i −1, i +1,...,n{ } and G0  be the centroid 

of the Ak , k ∈S , points system. By substituting M ≡ Ai  in the theorem, for the length of 
the midpoints we obtain the following relation: 

  AiG0
2 =

1

n −1
Ai Ak

2

k∈S
∑ −

1

n −1( )2
Au Av

2

u ,v∈S:u≠v
∑ . 
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 Application 10. In case of a triangle ma
2 =

2 b2 + c2( )− a2

4
 and its permutations. 

From here:  

  ( )2 2 2 2 2 23
4a b cm m m a b c+ + = + + , 

   ma
2 + mb

2 + mc
2 ≤

27

4
R2 ,   

  ma + mb + mc ≤
9

2
R . 

 Application 11. In case of a tetrahedron ma
2 =

1

9
3 a2 + b2 + c2( )− d 2 + e2 + f 2( )( ) 

and its permutations.  
 From here: 

   ma
2 =∑ 4

9
a2∑( ),   

  ma
2 ≤∑ 64

9
R2 ,   

  ma ≤∑ 16

3
R . 

 
 Application 12. Denote ma, f  the length of the segments, which join midpoint of 

the a  and f  skew sides of the tetrahedron (bimedian). In the interpretation of the 

application 9ma, f
2 =

1

4
b2 + c2 + d 2 + e2 − a2 − f 2( ) and its permutations.  

 From here  

  ma, f
2 + mb,d

2 + mc,e
2 =

1

4
a2∑( ),   

  ma, f
2 + mb,d

2 + mc,e
2 ≤ 4R2 ,   

  ma, f + mb,d + mc,e ≤ 2R 3 . 
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