There are infinitely many prime triplets

P, 3P - 2, 3P + 2

Chun-Xuan Jiang P. O. Box 3924, Beijing 10085 4, P. R. China Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang's function we prove that there are infinitely many primes P such that 3P-2 and 3P+2 are primes.

In studying Williams numbers Echi conjectures that there are infinitely many prime triplets P, 3P-2, 3P+2 [1]. In this paper using Jiang's function we prove this conjecture and find the best asymptotic formula for the number of primes P.

Theorem 1. The prime equations are

$$P_1 = 3P - 2$$
 and $P_2 = 3P + 2$ (1)

There are infinitely many primes P such that P_1 and P_2 are primes. **Proof.** Jiang's function is

$$J_2(\omega) = \prod_{p} (P - 1 - x(P)) \tag{2}$$

where $\omega = \prod_{P} P$, x(P) is the number of solutions of the following congruence $(3q-2)(3q+2) = 0 \pmod{P}$ (3)

where $q = 1, 2, \dots P - 1$ From (3) we obtain

Table 1							
q	3q - 2	3 <i>q</i> + 2					
1	1	5	$x(2) = 0, J_2(2) = 1$				
2	4	8	$x(3) = 0, J_2(3) = 2$				
3	7	11					
4	2×5	2×7	$x(5) = 2, J_2(5) = 2$				
5	13	17					
6	16	20	$x(7) = 2, J_2(7) = 4$				
7	19	23					
8	2×11	2×13					
9	25	29					
10	28	32	$x(11) = 2, J_2(11) = 8$				
•••	•••	•••	•••				
P-1	3P - 5	3P - 1	$x(P) = 2, J_2(P) = P - 3$				

In order to understand the Jiang's function we explain the table 1.

Let $\omega = 2$, Euler function $\phi(2) = 1$. There is the prime equation

$$2n+1$$
 (4)

where $n = 1, 2, \cdots$.

 $J_2(2) = 1$, there is the prime equation

$$P = 2n + 1 \tag{5}$$

Substituting (5) into (1) we obtain

$$P_1 = 6n+1$$
 and $P_2 = 6n+5$ (6)

There are infinitely many integers *n* such that *P*, *P*₁ and *P*₂ are primes. Let $\omega = 6$, $\phi(6) = 2$. There are the prime equations

$$6n+h \tag{7}$$

where $n = 0, 1, 2, \dots h = 1, 5$.

 $J_2(6) = 2$, there is the prime equation

$$P = 6n + h \tag{8}$$

Substituting (8) into (1) we obtain

$$P_1 = 18n + 3h - 2$$
 and $P_2 = 18n + 3h + 2$. (9)

There are infinitely many integers n such that P, P_1 and P_2 are primes. Let $\omega = 30$, $\phi(30) = 8$. There are the prime equations 30n + h (10)

where h = 1, 3, 11, 13, 17, 19, 23, 29, n = 0, 1, ...

 $J_2(30) = 4$, there is the prime equation

$$P = 30n + u , \tag{11}$$

where u = 7, 13, 17, 23. Substituting (11) into (1)

$$P_1 = 90n + 3u - 2$$
 and $P_2 = 90n + 3u + 2$ (12)

There are infinitely many integers n such that P, P_1 and P_2 are primes. Let $\omega = 210$, $\phi(210) = 48$. There are the prime equations

$$210n + u$$
 (13)

where *u* = 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157,

163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, n = 0, 1, 2...

 $J_2(210) = 16$, there is the prime equations

$$P = 210n + u \tag{14}$$

where *u*=13, 23, 37, 43, 47, 83, 97, 103, 107, 113, 127, 163, 167, 173, 187, 197. Substituting (14) into (1) we obtain

$$P_1 = 630n + 3u - 2$$
 and $P_2 = 630n + 3u + 2$ (15)

There are infinitely many integers *n* such that *P*, *P*₁ and *P*₂ are primes. Let $\omega = 2310$, $\phi(2310) = 480$. There are the prime equations

$$2310n+h$$
, (16)

where $n = 0, 1, \dots, h = 13, 17, \dots, 2309$. $J_2(2310) = 128$, there is the prime equation P = 2310n + u, (17)

where *u*=13, 17,... 2287, 2297. Substituting (17) into (1)

$$P_1 = 6930n + 3u - 2$$
 and $P_2 = 6930n + 3u + 2$. (18)

There are infinitely many integers *n* such that P, P_1 and P_3 are primes. $J_2(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$, there infinitely many prime equations such that P, P_1 and P_2 are primes. We prove the theorem 1 From (2) we obtain

$$J_{2}(\omega) = 2 \prod_{5 \le P} (P - 3)$$
(19)

We obtain the best asymptotic formula for the number of primes P [2]

$$\pi_3(N,2) = \left| \left\{ P \le N, 3P - 2 = prime, 3P + 2 = prime \right\} \right| \sim \frac{J_2(\omega)\omega^2}{\phi^3(\omega)} \frac{N}{\log^3 N}$$

$$=9\prod_{5\le P} \left(1 - \frac{3P - 1}{(P - 1)^3}\right) \frac{N}{\log^3 N} \sim 5.77 \frac{N}{\log^3 N}$$
(20)

where $\phi(\omega) = \prod_{P} (P-1)$.

From (20) we obtain

Table 2									
Ν	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}		
$\pi_3(N,2)$ (20)	6	18	74	378	2188	13780	92312		
$\pi_3(N,2)$ (exact)	7	21	89	445	2420	14828	98220		

From table 2 we consider that prime distribution is order rather than random [2].

References

- Othman Echi, Williams numbers, C. R. Math. Rep. Acad. Sci. Canada Vol. 29(2) 2007, PP. 41-47
- [2] Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. Inter Acad. Press. America-Europe-Asia, 2002.