There are infinitely many prime triplets

$P, 3 P-2,3 P+2$
Chun-Xuan Jiang
P. O. Box 3924, Beijing 10085
4, P. R. China
Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang's function we prove that there are infinitely many primes P such that $3 P-2$ and $3 P+2$ are primes.

In studying Williams numbers Echi conjectures that there are infintely many prime triplets $P, 3 P-2,3 P+2$ [1]. In this paper using Jiang's function we prove this conjecture and find the best asymptotic formula for the number of primes P.

Theorem 1. The prime equations are

$$
\begin{equation*}
P_{1}=3 P-2 \text { and } P_{2}=3 P+2 \tag{1}
\end{equation*}
$$

There are infinitely many primes P such that P_{1} and P_{2} are primes.
Proof. Jiang's function is

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}(P-1-x(P)) \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, x(P)$ is the number of solutions of the following congruence

$$
\begin{equation*}
(3 q-2)(3 q+2)=0(\bmod P) \tag{3}
\end{equation*}
$$

where $q=1,2, \cdots P-1$
From (3) we obtain
Table 1

q	$3 q-2$	$3 q+2$	
1	1	5	$x(2)=0, J_{2}(2)=1$
2	4	8	$x(3)=0, J_{2}(3)=2$
3	7	11	
4	2×5	2×7	$x(5)=2, J_{2}(5)=2$
5	13	17	
6	16	20	$x(7)=2, J_{2}(7)=4$
7	19	23	
8	2×11	2×13	
9	25	29	
10	28	32	$x(11)=2, J_{2}(11)=8$
\cdots	\cdots	\cdots	
$P-1$	$3 P-5$	$3 P-1$	$x(P)=2, J_{2}(P)=P-3$

In order to understand the Jiang's function we explain the table 1.
Let $\omega=2$, Euler function $\phi(2)=1$. There is the prime equation

$$
\begin{equation*}
2 n+1 \tag{4}
\end{equation*}
$$

where $n=1,2, \cdots$.
$J_{2}(2)=1$, there is the prime equation

$$
\begin{equation*}
P=2 n+1 \tag{5}
\end{equation*}
$$

Substituting (5) into (1) we obtain

$$
\begin{equation*}
P_{1}=6 n+1 \text { and } P_{2}=6 n+5 \tag{6}
\end{equation*}
$$

There are infinitely many integers n such that P, P_{1} and P_{2} are primes.
Let $\omega=6, \phi(6)=2$. There are the prime equations

$$
\begin{equation*}
6 n+h \tag{7}
\end{equation*}
$$

where $n=0,1,2, \cdots h=1,5$.
$J_{2}(6)=2$, there is the prime equation

$$
\begin{equation*}
P=6 n+h \tag{8}
\end{equation*}
$$

Substituting (8) into (1) we obtain

$$
\begin{equation*}
P_{1}=18 n+3 h-2 \text { and } P_{2}=18 n+3 h+2 . \tag{9}
\end{equation*}
$$

There are infintely many integers n such that P, P_{1} and P_{2} are primes.
Let $\omega=30, \phi(30)=8$. There are the prime equations

$$
\begin{equation*}
30 n+h \tag{10}
\end{equation*}
$$

where $h=1,3,11,13,17,19,23,29, n=0,1, \ldots$
$J_{2}(30)=4$, there is the prime equation

$$
\begin{equation*}
P=30 n+u, \tag{11}
\end{equation*}
$$

where $u=7,13,17,23$.
Substituting (11) into (1)

$$
\begin{equation*}
P_{1}=90 n+3 u-2 \text { and } P_{2}=90 n+3 u+2 \tag{12}
\end{equation*}
$$

There are infinitely many integers n such that P, P_{1} and P_{2} are primes.
Let $\omega=210, \phi(210)=48$. There are the prime equations

$$
\begin{equation*}
210 n+u \tag{13}
\end{equation*}
$$

where $u=1,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79$, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, $163,167,169,173,179,181,187,191,193,197,199,209, \quad n=0,1,2 \ldots$
$J_{2}(210)=16$, there is the prime equations

$$
\begin{equation*}
P=210 n+u \tag{14}
\end{equation*}
$$

where $u=13,23,37,43,47,83,97,103,107,113,127,163,167,173,187,197$.
Substituting (14) into (1) we obtain

$$
\begin{equation*}
P_{1}=630 n+3 u-2 \text { and } P_{2}=630 n+3 u+2 \tag{15}
\end{equation*}
$$

There are infinitely many integers n such that P, P_{1} and P_{2} are primes.
Let $\omega=2310, \phi(2310)=480$. There are the prime equations

$$
\begin{equation*}
2310 n+h \tag{16}
\end{equation*}
$$

where $n=0,1, \cdots, h=13,17, \ldots, \ldots, 2309$.
$J_{2}(2310)=128$, there is the prime equation

$$
\begin{equation*}
P=2310 n+u, \tag{17}
\end{equation*}
$$

where $u=13,17, \ldots 2287,2297$.
Substituting (17) into (1)

$$
\begin{equation*}
P_{1}=6930 n+3 u-2 \text { and } P_{2}=6930 n+3 u+2 . \tag{18}
\end{equation*}
$$

There are infinitely many integers n such that P, P_{1} and P_{3} are primes.
$J_{2}(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$, there infinitely many prime equations such that P, P_{1} and P_{2} are primes.
We prove the theorem 1
From (2) we obtain

$$
\begin{equation*}
J_{2}(\omega)=2 \prod_{5 \leq P}(P-3) \tag{19}
\end{equation*}
$$

We obtain the best asymptotic formula for the number of primes P [2]

$$
\begin{align*}
\pi_{3}(N, 2)= & \mid\{P \leq N, 3 P-2=\text { prime, } 3 P+2=\text { prime }\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{2}}{\phi^{3}(\omega)} \frac{N}{\log ^{3} N}\right. \\
& =9 \prod_{5 \leq P}\left(1-\frac{3 P-1}{(P-1)^{3}}\right) \frac{N}{\log ^{3} N} \sim 5.77 \frac{N}{\log ^{3} N} \tag{20}
\end{align*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.
From (20) we obtain

Table 2

N	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi_{3}(N, 2)(20)$	6	18	74	378	2188	13780	92312
$\pi_{3}(N, 2)$ (exact)	7	21	89	445	2420	14828	98220

From table 2 we consider that prime distribution is order rather than random [2].

References

[1] Othman Echi, Williams numbers, C. R. Math. Rep. Acad. Sci. Canada Vol. 29(2) 2007, PP. 41-47
[2] Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. Inter Acad. Press. America-Europe-Asia, 2002.

