Euclid-Euler-Jiang Prime Theorem

lacksquare

Chun-Xuan Jiang

P.O.Box 3924, Beijing 100854, P. R. China

jiangchunxuan@sohu.com

Abstract

Santilli's prime chains: $P_{j+1} = aP_j \pm b$, $j = 1, \dots, k-1$, (a,b) = 1, 2|ab. If $a-1 = P_1^{\lambda_1} \cdots P_n^{\lambda_n}$, $P_1 \cdots P_n|b$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$. There exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k. It is the Book proof. This is a generalization of Euclid-Euler proof for the existence of infinitely many primes. Therefore Euclid-Euler-Jiang theorem in the distribution of primes is advanced. It is the Book theorem.

AMS Mathematics subject classification: Primary 11N05, 11N32.

1. Introduction

A new branch of number theory: Santilli's additive isoprime theory is introduced. By using the arithmetic function $J_n(\omega)$ the following prime theorems have been proved. It is the Book proof. [1-10]

- 1. There exist infinitely many twin primes.
- 2. The Goldbach's theorem. Every even number greater than 4 is the sum of two odd primes.
- 3. There exist finitely many Mersenne primes, that is, primes of the form $2^{P} 1$ where *P* is prime.
- 4. There exist finitely many Fermat primes, that is, primes of the form $2^{2^n} + 1$.
- 5. There exist finitely many repunit primes whose digits (in base 10) are all ones.
- 6. There exist infinitely many primes of the forms: $x^2 + 1$, $x^4 + 1$, $x^8 + 1$, $x^{16} + 1$, $x^{32} + 1$, $x^{64} + 1$.
- 7. There exist infinitely many primes of the forms: $x^2 + b$, $x^3 + 2$, $x^5 + 2$, $x^7 + 2$
- 8. There exist infinitely many prime *m*-chains, $P_{j+1} = mP_j \pm (m-1)$, $m = 2, 3, \dots$, including Cunningham chains.
- 9. There exist infinitely many triplets of consecutive integers, each being the product of k distinct primes, (Here is an example: 1727913=3×11×52361, 1727914=2×17×50821, 1727915=5×7×49369.)
- 10. There exist infinitely many k-tuples of consecutive integers, each being the product of m primes, where k > 3, m > 2.
- 11. Every integer m may be written in infinitely many ways in the form

$$m = \frac{P_2 + 1}{P_1^k - 1}$$

where $k = 1, 2, 3, \dots, P_1$ and P_2 are primes.

- 12. There exist infinitely many Carmichael numbers, which are the product of three primes, four primes, and five primes.
- 13. There exist infinitely many prime chains in the arithmetic progressions.
- 14. In a table of prime numbers there exist infinitely many k-tuples of primes, where

 $k = 2, 3, 4, \cdots, 10^5$.

- 15. Proof of Schinzel's hypothesis.
- 16. Every large even number is representable in the form $P_1 + P_2 \cdots P_n$. It is the *n* primes theorem which has no almost-primes.
- 17. Diophantine equation

$$P_{n+1}^{\lambda_{n+1}} = \frac{P_{n+2} + \dots + P_{2n+1} + b}{P_1^{\lambda_1} + \dots + P_n^{\lambda_n} + b}$$

has infinitely many prime solutions.

- 18. There are infinitely many primes of the forms: $x^2 + y^n$, $n \ge 2$ and $mP_1^3 + nP_2^3$, (m, n) = 1, 2|mn, $n \ne \pm b^3$.
- 19. There are infinitely many prime 5-tuples represented by

$$P^{6} - 42^{6} = (P - 42)(P + 42)(P^{2} + 42P + 1764)(P^{2} - 42P + 1764)$$

20. There are infinitely many prime k-tuples represented by $P^m \pm A^m$.

In this paper by using the arithmetic function $J_2(\omega)$ santilli's prime chains: $P_{j+1} = aP_j \pm b$ are studied. It is a generalization of santillis isoprime m-chains: $P_{j+1} = mP_j \pm (m-1)$ [6].

2. Euclid-Euler-Jiang Prime Theorem: $P_{i+1} = aP_i \pm b$

Theorem 1. An increasing sequence of primes P_1, P_2, \dots, P_k is called a Santilli's prime chain of the first kind of length k if

$$P_{i+1} = aP_i + b$$

for $j = 1, \dots, k - 1$, (a, b) = 1, 2|ab.

We have the arithmetic function[6]

$$J_2(\omega) = \prod_{3 \le P \le P_i} \left(P - \chi(P) \right)$$

where $\omega = \prod_{2 \le P \le P_i} P$ is called the primorials, P_i the last prime of the primorials.

We now calculate $\chi(P)$. The smallest positive integer such that

$$a^s \equiv 1 \pmod{P}, (a,b) = 1.$$

$$\chi(P) = k$$
 if $k < s$; $\chi(P) = s$ if $k \ge s$; $\chi(P) = 1$ if $P | ab$.

If $J_2(\omega) = 0$, there exist finitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k. If $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k. It is the Book proof. This is a generalization of the Euclid-Euler proof for the existence of infinitely many primes.

We have the best asymptotic formula of the number of primes $P_1 \le N$

$$\pi_{k}(N,2) = \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N} (1+O(1)),$$

where $\phi(\omega) = \prod_{2 \le P \le P_i} (P-1)$ is called the Euler function of the primorials.

The $P_{j+1} = aP_j - b$ is called a Santilli's prime chain of the second kind of length k.

Both $P_{j+1} = aP_j \pm b$ have the same arithmetic function $J_2(\omega)$. If a = m and b = m-1, it is Santilli's isoprime *m*-chains[6].

Theorem 2. $P_{j+1} = 2P_j \pm b$, $j = 1, \dots, k-1$, b is an odd number.

We have the arithmetic function [6]

$$J_2(\omega) = \prod_{3 \leq P \leq P_i} \left(P - \chi(P) \right) \neq 0$$

We now calculate $\chi(P)$. The smallest positive integer s such that

$$2^s \equiv 1 \pmod{P},$$

 $\chi(P) = k$ if k < s; $\chi(P) = s$ if $k \ge s$; $\chi(P) = 1$ if P|b. Since $J_3(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k. This is the Book proof. We have the best asymptotic formula of the number of primes $P_1 \leq N$.

$$\pi_{k}(N,2) = \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N} (1+O(1))$$

The $P_{j+1} = 2P_j \pm 1$ are Cunningham prime chains [6].

Example 1. $P_{j+1} = 2P_j + 7$, j = 1, 2, 3, 4, 5.

We have the arithmetic function

$$J_2(\omega) = 6 \prod_{1 \leq P \leq P_i} \left(P - 6 - \chi(P) \right) \neq 0,$$

where $\chi(31) = -1$, $\chi(p) = 0$ otherwise.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_6 are primes.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_6(N,2) = \frac{1}{8} \left(\frac{35}{8}\right)^5 \prod_{11 \le P \le P_i} \frac{P^5(P-6-\chi(P))}{(P-1)^6} \frac{N}{\log^6 N} (1+O(1)).$$

Theorem 3. $P_{j+1} = 3P_j \pm b$, $j = 1, \dots, k-1$, (3,b) = 1, 2|b.

We have the arithmetic function

$$J_{2}(\omega) = \prod_{3 \leq P \leq P_{i}} \left(P - \chi(P) \right) \neq 0.$$

We now calculate $\chi(P)$. The smallest positive integer s such that

$$3^s \equiv 1 \pmod{P},$$

$$\chi(P) = k$$
 if $k < s$; $\chi(P) = s$ if $k \ge s$; $\chi(3) = 1$; $\chi(P) = 1$ if $P|b$.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_k(N,2) = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} \frac{N}{\log^k N} (1+O(1))$$

Example 2. $P_{j+1} = 3P_j + 4$, j = 1, 2, 3, 4, 5.

We have the arithmetic function

$$J_{2}(\omega) = 96 \prod_{17 \le P \le P_{i}} (P-6) \ne 0$$

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_6 are primes.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_6(N,2) = \frac{1}{60} \left(\frac{1001}{192}\right)^5 \prod_{17 \le P \le P_i} \frac{P^5(P-6)}{(P-1)^6} \frac{N}{\log^6 N} \left(1 + O(1)\right).$$

Theorem 4. $P_{j+1} = 4P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number.

(1) 3|b, we have the arithmetic function

$$J_{2}(\omega) = \prod_{3 \leq P \leq P_{i}} \left(P - \chi(P) \right) \neq 0.$$

We now calculate $\chi(P)$. The smallest positive integer s such that

$$4^s \equiv 1 \pmod{P}$$
.

 $\chi(P) = k$ if k < s; $\chi(P) = s$ if $k \ge s$; $\chi(P) = 1$ if P|b.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_{k}(N,2) = \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N} (1+O(1)) \,.$$

(2) $3 \mid b, k = 3$, we have $J_2(3) = 0$.

(3) $3 \mid b, k = 2$, we have $P_2 = 4P_1 \pm b$. Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2 is a prime.

Theorem 5. $P_{j+1} = 5P_j \pm b$, $j = 1, \dots, k-1$, (5,b) = 1, 2|b.

We have the arithmetic function

$$J_{2}(\omega) = \prod_{3 \leq P \leq P_{i}} \left(P - \chi(P) \right) \neq 0$$

We now calculate $\chi(P)$. The smallest positive integer s such that

$$5^s = 1 \pmod{P}$$
.

 $\chi(P) = k$ if k < s; $\chi(P) = s$ if $k \ge s$; $\chi(5) = 1$; $\chi(P) = 1$ if P|b. Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_{k}(N,2) = \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N} (1+O(1))$$

Theorem 6. $P_{j+1} = 6P_j \pm b$, $j = 1, \dots, k-1$, (3,b) = 1, b is an odd number.

(1) 5|b, we have the arithmetic function

$$J_{2}(\omega) = \prod_{3 \leq P \leq P_{i}} \left(P - \chi(P) \right) \neq 0.$$

We calculate $\chi(P)$. The smallest positive integer s such that

$$6^s \equiv 1 \pmod{P} \, .$$

 $\chi(P) = k$ if k < s; $\chi(P) = s$ if $k \ge s$; $\chi(3) = 1$; $\chi(P) = 1$ if P|b. Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes $P_1 \leq N$,

$$\pi_{k}(N,2) = \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} (1+O(1)).$$

(2) $5 \mid b, k = 5$, we have $J_2(5) = 0$.

(3) 5 $| b, k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 7. $P_{j+1} = 7P_j \pm b$, $j = 1, \dots, k-1$, (7,b) = 1, 2|b.

(1) 6|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) 6 b, k = 3, we have $J_2(3) = 0$.

(3) 6 | b, k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 8. $P_{j+1} = 8P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number.

(1) 7|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

- (2) 7 | b, k = 7, we have $J_2(7) = 0$.
- (3) 7 | b, $k \le 6$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 9. $P_{j+1} = 9P_j \pm b$, $j = 1, \dots, k-1$, (3,b) = 1, 2|b. We have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

Theorem 10. $P_{j+1} = 10P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number. (5, b) = 1.

(1) 3|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

- (2) 3 | b, k = 3, we have $J_2(3) = 0$.
- (3) 3 b, k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 11. $P_{j+1} = 11P_j \pm b$, $j = 1, \dots, k-1$, 2|b, (11,b) = 1.

(1) 5|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

- (2) 5 b, k = 5, we have $J_2(5) = 0$.
- (3) 5 $| b, k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 12. $P_{j+1} = 12P_j \pm b$, $j = 1, \dots, k-1, (3,b) = 1$, *b* is an odd number.

(1) 11|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

- (2) 11 b, k = 11, we have $J_2(11) = 0$.
- (3) 11 $| b, k \le 10$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 13. $P_{j+1} = 16P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number.

(1) 15|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) $3 \mid b$, k = 3, we have $J_2(3) = 0$. k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

(3) 3|b, k=5, we have $J_2(5) = 0$. $k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 14. $P_{j+1} = 17P_j \pm b$, $j = 1, \dots, k-1, 2|b, (17,b) = 1$.

We have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

Theorem 15. $P_{j+1} = (2^{\lambda} + 1)P_j \pm b, \ j = 1, \dots, k-1, \ 2|b, \ ((2^{\lambda} + 1), b) = 1.$

We have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

Theorem 16. $P_{j+1} = (3^{\lambda} + 1)P_j \pm b$, $j = 1, \dots, k-1$, $((3^n + 1), b) = 1$, b is an odd number.

(1) 3|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) $3 \mid b$, k = 3, we have $J_2(3) = 0$. k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 17. $P_{j+1} = (2^{\lambda_1} \cdot 3^{\lambda_2} + 1)P_j \pm b, \quad j = 1, \dots, k-1, 2|b,$ $((2^{\lambda_1} \cdot 3^{\lambda_2} + 1), b) = 1.$

(1) 6 b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1

such that P_2, \dots, P_k are primes for arbitrary length k.

(2) $6 \mid b$, k = 3, we have $J_2(3) = 0$. k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 18. $P_{j+1} = (3^{\lambda_1} \cdot 5^{\lambda_2} + 1)P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number.

$$((3^{\lambda_1} \cdot 5^{\lambda_2} + 1), b) = 1$$

(1) 15|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) $3 \mid b, k = 3$, we have $J_2(3) = 0$. k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$. (3) $3 \mid b, k = 5$, we have $J_2(5) = 0$. $k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 19. $P_{j+1} = (3^{\lambda_1} \cdot 5^{\lambda_2} \cdot 7^{\lambda_3} + 1)P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number, $((3^{\lambda_1} \cdot 5^{\lambda_2} \cdot 7^{\lambda_3} + 1), b) = 1$

(1) 105|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) 3|b, k=5, we have $J_2(5) = 0$. $k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$. (3) 3|b, k=3, we have $J_2(3) = 0$. k=2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 20. $P_{j+1} = (3^{\lambda_1} \cdot 5^{\lambda_2} \cdot 7^{\lambda_3} \cdot 11^{\lambda_4} + 1)P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number, $((3^{\lambda_1} \cdot 5^{\lambda_2} \cdot 7^{\lambda_3} \cdot 11^{\lambda_4} + 1), b) = 1$

- (1) 1155|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.
- (2) 3|b, k=5, we have $J_2(5)=0$. $k \le 4$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.
- (3) 3 b, k = 3, we have $J_2(3) = 0$. k = 2, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 21. $P_{j+1} = (7^{\lambda_1} \cdot 19^{\lambda_2} \cdot 31^{\lambda_3} + 1)P_j \pm b$, $j = 1, \dots, k-1$, *b* is an odd number, $((7^{\lambda_1} \cdot 19^{\lambda_2} \cdot 31^{\lambda_3} + 1), b) = 1$

(1) 4123|b, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes for arbitrary length k.

(2) 7|b, k = 19, we have $J_2(19) = 0$. $k \le 18$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$. (3) 7|b, k = 7, we have $J_2(7) = 0$. $k \le 6$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$.

Theorem 22. $P_{j+1} = aP_j \pm b$, $j = 1, \dots, k-1$, (a,b) = 1, 2|ab.

If $a-1 = P_1^{\lambda_1} \cdots P_n^{\lambda_n}$, $P_1 \cdots P_n | b$, we have $J_2(\omega) \to \infty$ as $\omega \to \infty$. There exist infinitely many primes P_1 such that P_2, \cdots, P_k are primes for arbitrary length k [6].

3. Euclid-Euler-Jiang Prime Theorem

Around 300BC by using the equation

 $(\omega + 1, \omega) = 1$ as $\omega \to \infty$,

Euclid proved that there are infinitely many primes.

In 1748 by using the equation

$$\frac{\omega}{\phi(\omega)} = \prod_{i=1}^{\infty} \left(1 - \frac{1}{P_i} \right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n} \to \infty \text{ as } \omega \to \infty,$$

Euler proved that there are infinitely many primes.

By using the equation [1-10]

 $J_2(\omega) \to \infty \text{ as } \omega \to \infty.$

Jiang has proved that there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes[1-10]. It is a generalization of Euclid-Euler theorem. Therefore Euclid-Euler-Jiang theorem in the distribution of primes is advanced. It is the Book theorem.

From [6] we have

$$\frac{\phi(\omega)}{\omega} = \prod_{2 \le P \le N} \left(1 - \frac{1}{P} \right) \sim \frac{C_1}{\log N} \,.$$

Therefore we have the prime number theorem.

$$\pi(N) \sim \frac{N}{\log N}$$

where $\pi(N)$ denotes the number of primes $\leq N$. From [6] we have

$$\frac{J_2(\omega)}{\omega} \sim B_1 \prod_{k < P \le N} \left(1 - \frac{k}{P}\right) \sim \frac{B_2}{\log^k N}$$

Therefore we have the prime k-tuples theorem

$$\pi_k(N,2) \sim C_k \frac{N}{\log^k N},$$

where $\pi_k(N,2)$ denotes the number of primes $P_1 \leq N$.

If the arithmetic constant $C_k = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} \neq 0$, that is $J_2(\omega) \neq 0$, there exist

infinitely many primes P_1 such that P_2, \dots, P_k are primes. $\pi_k(N,2)$ have the same

form
$$\frac{N}{\log^k N}$$
, but differ in C_k .

REFERENCES

- C. X. Jiang. On the Yu-Goldbach prime theorem. Guangxi Sciences (in Chinese), 3, (1996) 9-12.
- [2] C. X. Jiang. Foundations of Santilli's isonumber theory 1. Algebras, Groups and Geometries 15 (1998) 351-393. MR2000c: 11214.
- [3] C. X. Jiang. Foundations of Santilli's isonumber theory 2. Algebras, Groups and Geometries 15 (1998) 509-544.
- [4] C. X. Jiang. Foundations of Santilli's isonumber theory. In: Foundamental open problems in sciences at the end of the millennium, T. Gill, K. Liu and E. Trell (Eds) Hadronic Press, USA, (1999) 105-139.
- [5] C. X. Jiang. Proof of Schinzel's hypothesis, Algebras Groups and Geometries 18

(2001) 411-420.

- [6] C. X. Jiang. Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. International Academic Press, 2002. www. i-b-r.org
- [7] C. X. Jiang. Disproofs of Riemann hypothesis. Algebras Groups and Geometries 22 (2005)123-136.
- [8] C. X. Jiang. Prime theorem in Santilli's isonumber theory. Algebras Groups and Geometris 19(2002)475-494.
- [9] C. X. Jiang. Prime theorem in Santilli's isonumber theory (II). Algebras Groups and Geometries 20(2003)149-170.

[10] C. X. Jiang, Diophantine equation $P_{n+1}^{\lambda_{n+1}} = \frac{P_{n+2} + \dots + P_{2n+1} + b}{P_1^{\lambda_1} + \dots + P_n^{\lambda_n} + b}$ has infinitely

many prime solution. To appear.