# SIX CONJECTURES WHICH GENERALIZE OR ARE RELATED TO ANDRICA'S CONJECTURE 

Florentin Smarandache, Ph D<br>Associate Professor<br>Chair of Department of Math \& Sciences<br>University of New Mexico<br>200 College Road<br>Gallup, NM 87301, USA<br>E-mail: smarand@unm.edu

Six conjectures on pairs of consecutive primes are listed below together with examples in each case.

1) The equation $p_{n+1}^{x}-p_{n}^{x}=1$,
where $p_{n}$ is the $n^{\text {th }}$ prime, has a unique solution in between 0.5 and 1 . Checking the first 168 prime numbers (less than 1000), one obtains that:

- The maximum occurs, of course, for $n=1$, i.e.

$$
3^{x}-2^{x}=1, \text { when } x=1 .
$$

- The minimum occurs for $n=31$, i.e.

$$
\begin{equation*}
127^{x}-113^{x}=1 \text {, when } x=0.567148 \ldots=a_{0} \tag{2}
\end{equation*}
$$

Thus, Andrica's Conjecture

$$
A_{n}=\sqrt{p_{n+1}}-\sqrt{p_{n}}<1
$$

is generalized to:
2) $B_{n}=p_{n+1}^{a}-p_{n}^{a}<1$, where $a<a_{0}$.

It is remarkable that the minimum $x$ doesn't occur for $11^{x}-7^{x}=1$ as in Andrica Conjecture's maximum value, but as in example (2) for $a_{0}=0.567148 \ldots$.

Also, the function $B_{n}$ in (3) is falling asymptotically as $A_{n}$ in (2) i.e. in Andrica's Conjecture.

Looking at the prime exponential equations solved with a TI-92 Graphing Calculator (approximately: the bigger the prime number gap is, the smaller solution $x$ for the equation (1); for the same gap between two consecutive primes, the larger the primes, the bigger $x$ ):
$3^{x}-2^{x}=1, \quad$ has the solution $x=1.000000$.
$5^{x}-3^{x}=1, \quad$ has the solution $x \approx 0.727160$.
$7^{x}-5^{x}=1, \quad$ has the solution $x \approx 0.763203$.
$11^{x}-7^{x}=1, \quad$ has the solution $x \approx 0.599669$.
$13^{x}-11^{x}=1, \quad$ has the solution $x \approx 0.807162$.
$17^{x}-13^{x}=1$, has the solution $x \approx 0.647855$.
$19^{x}-17^{x}=1$, has the solution $x \approx 0.826203$.
$29^{x}-23^{x}=1$, has the solution $x \approx 0.604284$.
$37^{x}-31^{x}=1$, has the solution $x \approx 0.624992$.
$97^{x}-89^{x}=1$, has the solution $x \approx 0.638942$.
$127^{x}-113^{x}=1$, has the solution $x \approx 0.567148$.
$149^{x}-139^{x}=1$, has the solution $x \approx 0.629722$.
$191^{x}-181^{x}=1$, has the solution $x \approx 0.643672$.
$223^{x}-211^{x}=1$, has the solution $x \approx 0.625357$.
$307^{x}-293^{x}=1$, has the solution $x \approx 0.620871$.
$331^{x}-317^{x}=1$, has the solution $x \approx 0.624822$.
$497^{x}-467^{x}=1$, has the solution $x \approx 0.663219$.
$521^{x}-509^{x}=1$, has the solution $x \approx 0.666917$.
$541^{x}-523^{x}=1$, has the solution $x \approx 0.616550$.
$751^{x}-743^{x}=1$, has the solution $x \approx 0.732707$.
$787^{x}-773^{x}=1$, has the solution $x \approx 0.664972$.
$853^{x}-839^{x}=1$, has the solution $x \approx 0.668274$.
$877^{x}-863^{x}=1$, has the solution $x \approx 0.669397$.
$907^{x}-887^{x}=1$, has the solution $x \approx 0.627848$.
$967^{x}-953^{x}=1$, has the solution $x \approx 0.673292$.
$997^{x}-991^{x}=1$, has the solution $x \approx 0.776959$.
If $x>a_{0}$, the difference of x-powers of consecutive primes is normally greater than 1 . Checking more versions:

$$
\begin{aligned}
& 3^{0.99}-2^{0.99} \approx 0.981037 . \\
& 11^{0.99}-7^{0.99} \approx 3.874270 . \\
& 11^{0.60}-7^{0.60} \approx 1.001270 . \\
& 11^{0.59}-7^{0.59} \approx 0.963334 . \\
& 11^{0.55}-7^{0.55} \approx 0.822980 . \\
& 11^{0.50}-7^{0.50} \approx 0.670873 . \\
& 389^{0.99}-383^{0.99} \approx 5.596550 . \\
& 11^{0.599}-7^{0.599} \approx 0.997426 . \\
& 17^{0.599}-13^{0.599} \approx 0.810218 . \\
& 37^{0.599}-31^{0.599} \approx 0.874526 . \\
& 127^{0.599}-113^{0.599} \approx 1.230100 . \\
& \\
& 997^{0.599}-991^{0.599} \approx 0.225749 \\
& 127^{0.5}-113^{0.5} \approx 0.639282
\end{aligned}
$$

3) $C_{n}=p_{n+1}^{1 / k}-p_{n}^{1 / k}<2 / k$, where $p_{n}$ is the n-th prime, and $k \geq 2$ is an integer.
$11^{1 / 2}-7^{1 / 2} \approx 0.670873$.
$11^{1 / 4}-7^{1 / 4} \approx 0.1945837251$.

$$
\begin{align*}
& 11^{1 / 5}-7^{1 / 5} \approx 0.1396211046 \\
& 127^{1 / 5}-113^{1 / 5} \approx 0.060837 \\
& 3^{1 / 2}-2^{1 / 2} \approx 0.317837 \\
& 3^{1 / 3}-2^{1 / 3} \approx 0.1823285204 \\
& 5^{1 / 3}-3^{1 / 3} \approx 0.2677263764 . \\
& 7^{1 / 3}-5^{1 / 3} \approx 0.2029552361 . \\
& 11^{1 / 3}-7^{1 / 3} \approx 0.3110489078 \\
& 13^{1 / 3}-11^{1 / 3} \approx 0.1273545972 . \\
& 17^{1 / 3}-13^{1 / 3} \approx 0.2199469029 . \\
& 37^{1 / 3}-31^{1 / 3} \approx 0.1908411993 \\
& 127^{1 / 3}-113^{1 / 3} \approx 0.191938 \tag{4}
\end{align*}
$$

4) $D_{n}=p_{n+1}^{a}-p_{n}^{a}<1 / n$,
where $a<a_{0}$ and $n$ big enough, $n=n(a)$, holds for infinitely many consecutive primes.
a) Is this still available for $a<1$ ?
b) Is there any rank $n_{0}$ depending on $a$ and $n$ such that (4) is verified for all $n \geq n_{0}$ ?

A few examples:

$$
\begin{align*}
& 5^{0.8}-3^{0.8} \approx 0.21567 \\
& 7^{0.8}-5^{0.8} \approx 1.11938 \\
& 11^{0.8}-7^{0.8} \approx 2.06621 \\
& 127^{0.8}-113^{0.8} \approx 4.29973 . \\
& 307^{0.8}-293^{0.8} \approx 3.57934 \\
& 997^{0.8}-991^{0.8} \approx 1.20716 . \tag{5}
\end{align*}
$$

5) $\mathrm{p}_{\mathrm{n}+1} / \mathrm{p}_{\mathrm{n}} \leq 5 / 3$,
the maximum occurs at $n=2$.
\{The ratio of two consecutive primes is limited, while the difference $\mathrm{p}_{\mathrm{n}+1}-\mathrm{p}_{\mathrm{n}}$ can be as big as we want!\}
6) However, $1 / \mathrm{p}_{\mathrm{n}}-1 / \mathrm{p}_{\mathrm{n}+1} \leq 1 / 6$, and the maximum occurs for $\mathrm{n}=1$.

## REFERENCE

[1] Sloane, N.J.A. - Sequence A001223/M0296 in "An On-Line Version of the Encyclopedia of Integer Sequences".

