SIX CONJECTURES WHICH GENERALIZE OR ARE RELATED TO ANDRICA'S CONJECTURE

Florentin Smarandache, Ph D Associate Professor Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Six conjectures on pairs of consecutive primes are listed below together with examples in each case.

1) The equation
$$p_{n+1}^x - p_n^x = 1$$
, (1)

where p_n is the n^{th} prime, has a unique solution in between 0.5 and 1. Checking the first 168 prime numbers (less than 1000), one obtains that:

- The maximum occurs, of course, for n = 1, i.e.
 - $3^{x} 2^{x} = 1$, when x = 1.
- The minimum occurs for n = 31, i.e.

 $127^{x} - 113^{x} = 1$, when $x = 0.567148... = a_{0}$ (2)

Thus, Andrica's Conjecture

$$A_n = \sqrt{p_{n+1}} - \sqrt{p_n} < 1$$

is generalized to:

2) $B_n = p_{n+1}^a - p_n^a < 1$, where $a < a_0$. (3)

It is remarkable that the minimum x doesn't occur for $11^x - 7^x = 1$ as in Andrica Conjecture's maximum value, but as in example (2) for $a_0 = 0.567148...$

Also, the function B_n in (3) is falling asymptotically as A_n in (2) i.e. in Andrica's Conjecture.

Looking at the prime exponential equations solved with a TI-92 Graphing Calculator (approximately: the bigger the prime number gap is, the smaller solution x for the equation (1); for the same gap between two consecutive primes, the larger the primes, the bigger x):

$$3^{x} - 2^{x} = 1$$
, has the solution $x = 1.000000$.
 $5^{x} - 3^{x} = 1$, has the solution $x \approx 0.727160$.
 $7^{x} - 5^{x} = 1$, has the solution $x \approx 0.763203$.
 $11^{x} - 7^{x} = 1$, has the solution $x \approx 0.599669$.
 $13^{x} - 11^{x} = 1$, has the solution $x \approx 0.807162$.
 $17^{x} - 13^{x} = 1$, has the solution $x \approx 0.647855$.
 $19^{x} - 17^{x} = 1$, has the solution $x \approx 0.826203$.
 $29^{x} - 23^{x} = 1$, has the solution $x \approx 0.604284$.

 $37^x - 31^x = 1$, has the solution $x \approx 0.624992$. $97^{x} - 89^{x} = 1$, has the solution $x \approx 0.638942$. $127^{x} - 113^{x} = 1$, has the solution $x \approx 0.567148$. $149^{x} - 139^{x} = 1$, has the solution $x \approx 0.629722$. $191^{x} - 181^{x} = 1$, has the solution $x \approx 0.643672$. $223^{x} - 211^{x} = 1$, has the solution $x \approx 0.625357$. $307^{x} - 293^{x} = 1$, has the solution $x \approx 0.620871$. $331^{x} - 317^{x} = 1$, has the solution $x \approx 0.624822$. $497^{x} - 467^{x} = 1$, has the solution $x \approx 0.663219$. $521^{x} - 509^{x} = 1$, has the solution $x \approx 0.666917$. $541^{x} - 523^{x} = 1$, has the solution $x \approx 0.616550$. $751^{x} - 743^{x} = 1$, has the solution $x \approx 0.732707$. $787^{x} - 773^{x} = 1$, has the solution $x \approx 0.664972$. $853^{x} - 839^{x} = 1$, has the solution $x \approx 0.668274$. $877^{x} - 863^{x} = 1$, has the solution $x \approx 0.669397$. $907^{x} - 887^{x} = 1$, has the solution $x \approx 0.627848$. $967^{x} - 953^{x} = 1$, has the solution $x \approx 0.673292$. $997^{x} - 991^{x} = 1$, has the solution $x \approx 0.776959$.

If $x > a_0$, the difference of x-powers of consecutive primes is normally greater than 1. Checking more versions:

 $\begin{array}{l} 3^{0.99}-2^{0.99}\approx 0.981037\,.\\ 11^{0.99}-7^{0.99}\approx 3.874270\,.\\ 11^{0.60}-7^{0.60}\approx 1.001270\,.\\ 11^{0.59}-7^{0.59}\approx 0.963334\,.\\ 11^{0.55}-7^{0.55}\approx 0.822980\,.\\ 11^{0.50}-7^{0.50}\approx 0.670873\,. \end{array}$

 $389^{0.99} - 383^{0.99} \approx 5.596550$.

 $\begin{array}{l} 11^{0.599} - 7^{0.599} \approx 0.997426 \\ . \\ 17^{0.599} - 13^{0.599} \approx 0.810218 \\ . \\ 37^{0.599} - 31^{0.599} \approx 0.874526 \\ . \\ 127^{0.599} - 113^{0.599} \approx 1.230100 \\ . \end{array}$

 $997^{0.599} - 991^{0.599} \approx 0.225749$

$$127^{0.5} - 113^{0.5} \approx 0.639282$$

3) $C_n = p_{n+1}^{1/k} - p_n^{1/k} < 2/k$, where p_n is the n-th prime, and $k \ge 2$ is an integer.

$$11^{1/2} - 7^{1/2} \approx 0.670873$$
.
 $11^{1/4} - 7^{1/4} \approx 0.1945837251$.

$$\begin{split} &11^{1\prime 5}-7^{1\prime 5}\approx 0.1396211046\ .\\ &127^{1\prime 5}-113^{1\prime 5}\approx 0.060837\ .\\ &3^{1\prime 2}-2^{1\prime 2}\approx 0.317837\ .\\ &3^{1\prime 3}-2^{1\prime 3}\approx 0.1823285204\ .\\ &5^{1\prime 3}-3^{1\prime 3}\approx 0.2677263764\ .\\ &7^{1\prime 3}-5^{1\prime 3}\approx 0.2029552361\ .\\ &11^{1\prime 3}-7^{1\prime 3}\approx 0.3110489078\ .\\ &13^{1\prime 3}-11^{1\prime 3}\approx 0.21273545972\ .\\ &17^{1\prime 3}-13^{1\prime 3}\approx 0.2199469029\ .\\ &37^{1\prime 3}-31^{1\prime 3}\approx 0.1908411993\\ &127^{1\prime 3}-113^{1\prime 3}\approx 0.191938\ .\\ \end{split}$$

4)
$$D_n = p_{n+1}^a - p_n^a < 1/n$$
, (4)
where $a < a_0$ and *n* big enough, $n = n(a)$, holds for infinitely many consecutive primes

- a) Is this still available for a < 1?
- b) Is there any rank n_0 depending on *a* and *n* such that (4) is verified for all $n \ge n_0$?

(5)

A few examples:

$$\begin{split} 5^{0.8} &- 3^{0.8} \approx 0.21567 \ . \\ 7^{0.8} &- 5^{0.8} \approx 1.11938 \ . \\ 11^{0.8} &- 7^{0.8} \approx 2.06621 \ . \\ 127^{0.8} &- 113^{0.8} \approx 4.29973 \ . \\ 307^{0.8} &- 293^{0.8} \approx 3.57934 \ . \\ 997^{0.8} &- 991^{0.8} \approx 1.20716 \ . \end{split}$$

5) $p_{n+1} / p_n \le 5/3$, the maximum occurs at n = 2.

 $\{ The \ ratio \ of \ two \ consecutive \ primes \ is \ limited, \\ while \ the \ difference \ p_{n+1} - p_n \ can \ be \ as \ big \ as \ we \ want! \}$

6) However, $1/p_n - 1/p_{n+1} \le 1/6$, and the maximum occurs for n = 1.

REFERENCE

[1] Sloane, N.J.A. – Sequence A001223/M0296 in "An On-Line Version of the Encyclopedia of Integer Sequences".