NEW CLASSES OF CODES FOR CRYPTOLOGISTS AND COMPUTER SCIENTISTS

W. B. Vasantha Kandasamy e-mail: vasanthakandasamy@gmail.com web: http://mat.iitm.ac.in/~wbv www.vasantha.net
Florentin Smarandache
e-mail: smarand@unm.edu

INFOLEARNQUEST

Ann Arbor

2008

This book can be ordered in a paper bound reprint from:

Books on Demand
ProQuest Information \& Learning
(University of Microfilm International)
300 N. Zeeb Road
P.O. Box 1346, Ann Arbor
MI 48106-1346, USA
Tel.: 1-800-521-0600 (Customer Service)
http://wwwlib.umi.com/bod/
Prof. Dr. Adel Helmy Phillips.
Faculty of Engineering, Ain Shams University
1 El-Sarayat st., Abbasia, 11517, Cairo, Egypt.
Professor Paul P. Wang, Ph D
Department of Electrical \& Computer Engineering
Pratt School of Engineering, Duke University
Durham, NC 27708, USA
Professor Diego Lucio Rapoport
Departamento de Ciencias y Tecnologia
Universidad Nacional de Quilmes
Roque Saen Peña 180, Bernal, Buenos Aires, Argentina

Peer reviewers:

Copyright 2008 by InfoLearnQuest and authors
Cover Design and Layout by Kama Kandasamy

Many books can be downloaded from the following
Digital Library of Science:
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

ISBN-10: 1-59973-028-6
ISBN-13: 978-1-59973-028-8
EAN: 9781599730288

Standard Address Number: 297-5092
Printed in the United States of America

CONTENTS

Preface 5
Chapter One
BASC CONCEPTS 7
1.1 Introduction of Linear Code and its basic Properties 7
1.2 Bimatrices and their Generalizations 33
Chapter Two
BICODES AND THEIR
GENERALIZATIONS 45
2.1 Bicodes and n-codes 45
2.2 Error Detection and Error Correction in n -codes ($\mathrm{n} \geq 2$) 103
2.3 False n-matrix and Pseudo
False n-matrix 137
2.4 False n-codes ($\mathrm{n} \geq 2$) 156
Chapter Three
PERIYAR LINEAR CODES 169
3.1 Periyar Linear Codes and their Properties 169
3.2 Application of these New Classes of Codes 193
FURTHER READING 195
INDEX 199
ABOUT THE AUTHORS 206

PREFACE

Historically a code refers to a cryptosystem that deals with linguistic units: words, phrases etc. We do not discuss such codes in this book. Here codes are message carriers or information storages or information transmitters which in time of need should not be decoded or read by an enemy or an intruder. When we use very abstract mathematics in using a specific code, it is difficult for non-mathematicians to make use of it. At the same time, one cannot compromise with the capacity of the codes. So the authors in this book have introduced several classes of codes which are explained very non-technically so that a strong foundation in higher mathematics is not needed. The authors also give an easy method to detect and correct errors that occur during transmission. Further some of the codes are so constructed to mislead the intruder. False n-codes, whole n-codes can serve this purpose.

These codes can be used by computer scientists in networking and safe transmission of identity thus giving least opportunity to the hackers. These codes will be a boon to cryptologists as very less mathematical background is needed.

To honour Periyar on his $125^{\text {th }}$ birth anniversary and to recognize his services to humanity the authors have named a few new classes of codes in his name. This book has three chapters. Chapter one is introductory in nature. The notion of bicodes and their generalization, n-codes are introduced in chapter two. Periyar linear codes are introduced in chapter three.

Many examples are given for the reader to understand these new notions. We mainly use the two methods, viz. pseudo best napproximations and n-coset leader properties to detect and correct errors.

The authors deeply acknowledge the unflinching support of Dr.K.Kandasamy, Meena and Kama.
W.B.VASANTHA KANDASAMY

FLORENTIN SMARANDACHE

Chapter One

BASIC CONCEPTS

In this chapter we introduce the basic concepts about linear codes which forms the first section. Section two recalls the notion of bimatrices and n-matrices (n a positive integer) and some of their properties.

1.1 Introduction of Linear Code and its basic Properties

In this section we just recall the definition of linear code and enumerate a few important properties about them. We begin by describing a simple model of a communication transmission system given by the figure 1.1.

Figure 1.1

Messages go through the system starting from the source (sender). We shall only consider senders with a finite number of discrete signals (eg. Telegraph) in contrast to continuous sources (eg. Radio). In most systems the signals emanating from the source cannot be transmitted directly by the channel. For instance, a binary channel cannot transmit words in the usual Latin alphabet. Therefore an encoder performs the important task of data reduction and suitably transforms the message into usable form. Accordingly one distinguishes between source encoding the channel encoding. The former reduces the message to its essential(recognizable) parts, the latter adds redundant information to enable detection and correction of possible errors in the transmission. Similarly on the receiving end one distinguishes between channel decoding and source decoding, which invert the corresponding channel and source encoding besides detecting and correcting errors.

One of the main aims of coding theory is to design methods for transmitting messages error free cheap and as fast as possible. There is of course the possibility of repeating the message. However this is time consuming, inefficient and crude. We also note that the possibility of errors increases with an increase in the length of messages. We want to find efficient algebraic methods (codes) to improve the reliability of the transmission of messages. There are many types of algebraic codes; here we give a few of them.

Throughout this book we assume that only finite fields represent the underlying alphabet for coding. Coding consists of transforming a block of k message symbols $a_{1}, a_{2}, \ldots, a_{k} ; a_{i} \in F_{q}$ into a code word $\mathrm{x}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}} ; \mathrm{x}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{q}}$, where $\mathrm{n} \geq \mathrm{k}$. Here the first k_{i} symbols are the message symbols i.e., $\mathrm{x}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{k}$; the remaining $n-k$ elements $x_{k+1}, x_{k+2}, \ldots, x_{n}$ are check symbols or control symbols. Code words will be written in one of the forms $x^{\prime} x_{1}, x_{2}, \ldots, x_{n}$ or ($x_{1} x_{2} \ldots x_{n}$) or $x_{1} x_{2} \ldots x_{n}$. The check symbols can be obtained from the message symbols in such a way that the code words x satisfy a system of linear equations; $H x^{T}=(0)$ where H is the given $(n-k) \times n$ matrix with elements in $F_{q}=Z_{p}{ }^{n}\left(q=p^{n}\right)$. A standard form for H is (A, I_{n-k}) with $n-k$ $\times k$ matrix and I_{n-k}, the $n-k \times n-k$ identity matrix.

We illustrate this by the following example.
Example 1.1.1: Let us consider $\mathrm{Z}_{2}=\{0,1\}$. Take $\mathrm{n}=7, \mathrm{k}=3$. The message $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}$ is encoded as the code word $x=\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \mathrm{x}_{4}$ $\mathrm{X}_{5} \mathrm{X}_{6} \mathrm{X}_{7}$. Here the check symbols $\mathrm{X}_{4} \mathrm{X}_{5} \mathrm{X}_{6} \mathrm{X}_{7}$ are such that for this given matrix

$$
H=\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left(A ; I_{4}\right)
$$

we have $\mathrm{Hx}^{\mathrm{T}}=(0)$ where
$x=a_{1} a_{2} a_{3} X_{4} X_{5} X_{6} X_{7}$.

$$
\begin{gathered}
a_{2}+x_{4}=0 \\
a_{1}+a_{3}+x_{5}=0 \\
a_{3}+x_{6}=0 \\
a_{3}+x_{7}=0
\end{gathered}
$$

Thus the check symbols $x_{4} X_{5} x_{6} x_{7}$ are determined by $a_{1} a_{2} a_{3}$. The equation $\mathrm{Hx}^{\mathrm{T}}=(0)$ are also called check equations. If the message $\mathrm{a}=100$ then, $\mathrm{x}_{4}=0, \mathrm{x}_{5}=1, \mathrm{x}_{6}=0$ and $\mathrm{x}_{7}=0$. The code word x is 1000100 . If the message $a=110$ then $x_{4}=1$, $x_{5}=1, x_{6}=1=x_{7}$. Thus the code word $x=1101100$.

We will have altogether 2^{3} code words given by

0000000	1101100
1000100	1010011
0101100	0111111
0010111	1111011

DEFINITION 1.1.1: Let H be an $n-k \times n$ matrix with elements in Z_{q}. The set of all n-dimensional vectors satisfying $H x^{T}=(0)$ over Z_{q} is called a linear code(block code) C over Z_{q} of block
length n. The matrix H is called the parity check matrix of the code C. C is also called a linear (n, k) code.

If H is of the form $\left(A, I_{n-k}\right)$ then the k-symbols of the code word x is called massage(or information) symbols and the last $n-k$ symbols in x are the check symbols. C is then also called a systematic linear(n, k) code. If $q=2$, then C is a binary code. k / n is called transmission (or information) rate.

The set C of solutions of x of $H x^{T}=(0)$. i.e., the solution space of this system of equations, forms a subspace of this system of equations, forms a subspace of Z_{q}^{n} of dimension k. Since the code words form an additive group, C is also called a group code. C can also be regarded as the null space of the matrix H.

Example 1.1.2: (Repetition Code) If each codeword of a code consists of only one message symbol $\mathrm{a}_{1} \in \mathrm{Z}_{2}$ and ($\mathrm{n}-1$) check symbols $x_{2}=x_{3}=\ldots=x_{n}$ are all equal to $a_{1}\left(a_{1}\right.$ is repeated $n-1$ times) then we obtain a binary ($n, 1$) code with parity check matrix

$$
\mathrm{H}=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 1 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & 0 & 0 & 0 & \ldots & 1
\end{array}\right] .
$$

There are only two code words in this code namely $00 \ldots 0$ and 11 ... 1 .

If is often impracticable, impossible or too expensive to send the original message more than once. Especially in the transmission of information from satellite or other spacecraft, it is impossible to repeat such messages owing to severe time limitations. One such cases is the photograph from spacecraft as it is moving it may not be in a position to retrace its path. In such cases it is impossible to send the original message more than once. In
repetition codes we can of course also consider code words with more than one message symbol.

Example 1.1.3: (Parity-Check Code): This is a binary (n, n - 1) code with parity-check matrix to be $\mathrm{H}=(11 \ldots 1)$. Each code word has one check symbol and all code words are given by all binary vectors of length n with an even number of ones. Thus if sum of the ones of a code word which is received is odd then atleast one error must have occurred in the transmission.

Such codes find its use in banking. The last digit of the account number usually is a control digit.

DEFINITION 1.1.2: The matrix $G=\left(I_{k},-A^{T}\right)$ is called a canonical generator matrix (or canonical basic matrix or encoding matrix) of a linear (n, k) code with parity check matrix $H=\left(A, I_{n-k}\right)$. In this case we have $G H^{T}=(0)$.

Example 1.1.4: Let

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

be the canonical generator matrix of the code given in example 1.1.1. The 2^{3} code words x of the binary code can be obtained from $\mathrm{x}=\mathrm{aG}$ with $\mathrm{a}=\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2}, 1 \leq \mathrm{i} \leq 3$. We have the set of $a=a_{1} a_{2} a_{3}$ which correspond to the message symbols which is as follows:

$$
\begin{aligned}
& \text { [0 } \left.00 \text { 0], [1 } 00 \text { 0], [} \begin{array}{lll}
0 & 1 & 0
\end{array}\right] \text {, }\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] \text {, } \\
& \text { [1 } \left.110 \text {], [1 } \begin{array}{lll}
0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \text {. } \\
& \mathrm{x}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
x & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{x}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathrm{x}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
\mathrm{x}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
\mathrm{x}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\mathrm{x}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{x} & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

The set of codes words generated by this G are
(0 00000 0), (1000100), (0101000), (0010111), (1 101100), (1010011), (0111111) and (1111011).

The corresponding parity check matrix H obtained from this G is given by

$$
\mathrm{H}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Now

$$
\begin{aligned}
\mathrm{GH}^{\mathrm{T}}= & {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

We recall just the definition of Hamming distance and Hamming weight between two vectors. This notion is applied to codes to find errors between the sent message and the received
message. As finding error in the received message happens to be one of the difficult problems more so is the correction of errors and retrieving the correct message from the received message.

Definition 1.1.3: The Hamming distance $d(x, y)$ between two vectors $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$ in F_{q}^{n} is the number of coordinates in which x and y differ. The Hamming weight $\omega(x)$ of a vector $x=x_{1} x_{2} \ldots x_{n}$ in F_{q}^{n} is the number of non zero co ordinates in x_{i}. In short $\omega(x)=d(x, 0)$.

We just illustrate this by a simple example.
Suppose $x=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 0\end{array}\right]$ and $y \in\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right]$ belong to F_{2}^{7} then $\mathrm{D}(\mathrm{x}, \mathrm{y})=(\mathrm{x} \sim \mathrm{y})=\left(\begin{array}{l}1 \\ 0\end{array} 11110\right) \sim(0111101)=$ $(1 \sim 0,0 \sim 1,1 \sim 1,1 \sim 1,1 \sim 1,1 \sim 0,0 \sim 1)=(1100011)=4$. Now Hamming weight ω of x is $\omega(\mathrm{x})=\mathrm{d}(\mathrm{x}, 0)=5$ and $\omega(\mathrm{y})=\mathrm{d}(\mathrm{y}, 0)$ $=5$.

Definition 1.1.4: Let C be any linear code then the minimum distance $d_{\text {min }}$ of a linear code C is given as

$$
d_{\min }=\min _{\substack{u, v \in \mathrm{C} \\ u \neq v}} d(u, v) .
$$

For linear codes we have

$$
d(u, v)=d(u-v, 0)=\omega(u-v) .
$$

Thus it is easily seen minimum distance of C is equal to the least weight of all non zero code words. A general code C of length n with k message symbols is denoted by $C(n, k)$ or by a binary (n, k) code. Thus a parity check code is a binary (n, $n-1$) code and a repetition code is a binary ($n, 1$) code.

If $H=\left(A, I_{n-k}\right)$ be a parity check matrix in the standard form then $\mathrm{G}=\left(\mathrm{I}_{\mathrm{k}},-\mathrm{A}^{\mathrm{T}}\right)$ is the canonical generator matrix of the linear (n, k) code.

The check equations $\left(A, I_{n-k}\right) x^{T}=(0)$ yield

$$
\left[\begin{array}{c}
x_{k+1} \\
x_{k+2} \\
\vdots \\
x_{n}
\end{array}\right]=-A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]=-A\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right] .
$$

Thus we obtain

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
I_{k} \\
-A
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right] .
$$

We transpose and denote this equation as

$$
\begin{gathered}
\left(x_{1} x_{2} \ldots x_{n}\right)=\left(a_{1} a_{2} \ldots a_{k}\right)\left(I_{k},-A^{7}\right) \\
=\left(a_{1} a_{2} \ldots a_{k}\right) G .
\end{gathered}
$$

We have just seen that minimum distance

$$
d_{\text {min }}=\min _{\substack{u, v \in \mathrm{C} \\ u \neq v}} d(u, v) .
$$

If d is the minimum distance of a linear code C then the linear code of length n , dimension k and minimum distance d is called an ($\mathrm{n}, \mathrm{k}, \mathrm{d}$) code.

Now having sent a message or vector x and if y is the received message or vector a simple decoding rule is to find the code word closest to x with respect to Hamming distance, i.e., one chooses an error vector e with the least weight. The decoding method is called "nearest neighbour decoding" and amounts to comparing y with all q^{k} code words and choosing the closest among them. The nearest neighbour decoding is the maximum likelihood decoding if the probability p for correct transmission is $>1 / 2$.

Obviously before, this procedure is impossible for large k but with the advent of computers one can easily run a program in few seconds and arrive at the result.
We recall the definition of sphere of radius r. The set $S_{r}(x)=\{y$ $\left.\in \mathrm{F}_{\mathrm{q}}^{\mathrm{n}} / \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{r}\right\}$ is called the sphere of radius r about $\mathrm{x} \in \mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$.

In decoding we distinguish between the detection and the correction of error. We can say a code can correct t errors and can detect $\mathrm{t}+\mathrm{s}, \mathrm{s} \geq 0$ errors, if the structure of the code makes it possible to correct up to t errors and to detect $\mathrm{t}+\mathrm{j}, 0<\mathrm{j} \leq \mathrm{s}$ errors which occurred during transmission over a channel.

A mathematical criteria for this, given in the linear code is ; A linear code C with minimum distance $\mathrm{d}_{\text {min }}$ can correct upto t errors and can detect $\mathrm{t}+\mathrm{j}, 0<\mathrm{j} \leq \mathrm{s}$, errors if and only if $\mathrm{zt}+\mathrm{s} \leq$ $\mathrm{d}_{\text {min }}$ or equivalently we can say "A linear code C with minimum distance d can correct t errors if and only if $t=\left[\frac{(d-1)}{2}\right]$. The real problem of coding theory is not merely to minimize errors but to do so without reducing the transmission rate unnecessarily. Errors can be corrected by lengthening the code blocks, but this reduces the number of message symbols that can be sent per second. To maximize the transmission rate we want code blocks which are numerous enough to encode a given message alphabet, but at the same time no longer than is necessary to achieve a given Hamming distance. One of the main problems of coding theory is "Given block length n and Hamming distance d, find the maximum number, A(n, d) of binary blocks of length n which are at distances $\geq \mathrm{d}$ from each other".

Let $\mathrm{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ and $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$ be vectors in $\mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$ and let $\mathrm{u} . \mathrm{v}=\mathrm{u}_{1} \mathrm{v}_{1}+\mathrm{u}_{2} \mathrm{v}_{2}+\ldots+\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ denote the dot product of u and v over F_{q}^{n}. If $u . v=0$ then u and v are called orthogonal.

Definition 1.1.5: Let C be a linear (n, k) code over F_{q}. The dual(or orthogonal)code $C^{\perp}=\{u \mid u . v=0$ for all $v \in C\}, u \in$ $F_{q}{ }^{n}$. If C is a k-dimensional subspace of the n-dimensional vector space F_{q}^{n} the orthogonal complement is of dimension n k and an ($n, n-k$) code. It can be shown that if the code C has a generator matrix G and parity check matrix H then C^{\perp} has generator matrix H and parity check matrix G.

Orthogonality of two codes can be expressed by $\mathrm{GH}^{\mathrm{T}}=(0)$.
Example 1.1 .5: Let us consider the parity check matrix H of a $(7,3)$ code where

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The code words got using H are as follows

$$
\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & & & & & & &
\end{array}
$$

Now for the orthogonal code the parity check matrix H of the code happens to be generator matrix,

$$
\begin{gathered}
\mathrm{G}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] . \\
\mathrm{x}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

$$
\left.\begin{array}{l}
\mathrm{x}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] . \\
x=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right] \\
x=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array} 0\right.
\end{array}\right]
$$

$$
\begin{aligned}
& x=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& X=\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right] \\
& x=\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
& x=\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right] \\
& x=\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right] \\
& x=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
x=\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \\
x=\left[\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \\
x=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array} 1\right.
\end{array}\right] .
$$

The code words of $C(7,4)$ i.e., the orthogonal code of $C(7,3)$ are
\{(0000000), (1001000), (0 010100), (1100010), (1010001), (1011100), (0101010), (0011001), (1 110110), (1000101), (0110011), (0111110), (00 01101), (1111011), (0100111), (1101111)\}

Thus we have found the orthogonal code for the given code. Now we just recall the definition of the cosets of a code C.

DEFINITION 1.1.6: For $a \in F_{q}^{n}$ we have $a+C=\{a+x / x \in$ C\}. Clearly each coset contains q^{k} vectors. There is a partition of F_{q}^{n} of the form $F_{q}^{n}=C \cup\left\{a^{(1)}+C\right\} \cup\left\{a^{(2)}+C\right\} \cup \ldots \cup\left\{a^{t}\right.$ $+C\}$ for $t=q^{n-k}-1$. If y is a received vector then y must be an element of one of these cosets say $a^{i}+C$. If the code word $x^{(1)}$ has been transmitted then the error vector
$e=y-x^{(1)} \in a^{(i)}+C-x^{(1)}=a^{(i)}+C$.

Now we give the decoding rule which is as follows.
If a vector y is received then the possible error vectors e are the vectors in the coset containing y. The most likely error is the vector \bar{e} with minimum weight in the coset of y. Thus y is decoded as $\bar{x}=y-\bar{e} .[23,4]$

Now we show how to find the coset of y and describe the above method. The vector of minimum weight in a coset is called the coset leader.

If there are several such vectors then we arbitrarily choose one of them as coset leader. Let $a^{(1)}, a^{(2)}, \ldots, a^{(t)}$ be the coset leaders. We first establish the following table
\(\left.\begin{array}{c|c|c|c}x^{(1)}=0 \& x^{(2)}=0 \& ··· \& x^{\left(q^{k}\right)}

\hline a^{(1)}+x^{(1)} \& a^{(1)}+x^{(2)} \& ··· \& \left.a^{(1)}+x^{\left(q^{(}\right)}\right)

\vdots \& \vdots \& \& \vdots

a^{(t)}+x^{(1)} \& a^{(t)}+x^{(2)} \& ··· \& a^{(t)}+x^{\left(q^{k}\right)}\end{array}\right\}\) other cosets | coserdsin C |
| :--- |
| leaders |

If a vector y is received then we have to find y in the table. Let $y=a^{(i)}+x^{(i)}$; then the decoder decides that the error \bar{e} is the coset leader $a^{(i)}$. Thus y is decoded as the code word $\bar{x}=y-\bar{e}=x^{(j)}$. The code word \bar{x} occurs as the first element in the column of y. The coset of y can be found by evaluating the so called syndrome.

Let H be parity check matrix of a linear (n, k) code. Then the vector $S(y)=H y^{T}$ of length $n-k$ is called syndrome of y. Clearly $S(y)=(0)$ if and only if $y \in C$.
$S\left(y^{(1)}\right)=S\left(y^{(2)}\right)$ if and only if $y^{(1)}+C=y^{(2)}+C$.
We have the decoding algorithm as follows:
If $y \in F_{q}^{n}$ is a received vector find $S(y)$, and the coset leader \bar{e} with syndrome $S(y)$. Then the most likely transmitted code word is $\bar{x}=y-\bar{e}$ we have $d(\bar{x}, y) .=\min \{d(x, y) / x \in C\}$.

We illustrate this by the following example.

Example 1.1.6: Let C be a $(5,3)$ code where the parity check matrix H is given by

$$
\mathrm{H}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] .
$$

The code words of C are
\{(00000), (10011), (01001), (0 0110), (11010), (10 10 1), (0 111 1), (1 1100) \}.

The corresponding coset table is

Message	000	100	010	001	110	101	011	111
code words	00000	10011	01001	00110	11010	10101	01111	11100
other cosets	10000	00011	11001	10110	01010	00101	11111	01100
	01000	11011	00001	01110	10010	11101	00111	10100
	00100	10111	01101	00010	11110	10001	01011	11000
coset								
leaders								

If $\mathrm{y}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 0\right)$ is received, then y is found in the coset with the coset leader (0 0100)
$y+(00100)=\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)+(00100)=\left(\begin{array}{lll}1 & 1 & 0\end{array} 10\right)$ is the corresponding message.

Now with the advent of computers it is easy to find the real message or the sent word by using this decoding algorithm.

A binary code C_{m} of length $n=2^{m}-1, m \geq 2$ with $m \times 2^{m}-1$ parity check matrix H whose columns consists of all non zero binary vectors of length m is called a binary Hamming code.

We give example of them.

Example 1.1.7: Let

$$
\mathrm{H}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

which gives a $C_{4}(15,11,4)$ Hamming code.

Cyclic codes are codes which have been studied extensively.
Let us consider the vector space $\mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$ over F_{q}. The mapping

$$
\mathrm{Z}: \mathrm{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}}
$$

where Z is a linear mapping called a "cyclic shift" if $Z\left(a_{0}, a_{1}\right.$, $\left.\ldots, a_{n-1}\right)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right)$
$A=\left(F_{q}[x],+, .,.\right)$ is a linear algebra in a vector space over F_{q}. We define a subspace V_{n} of this vector space by

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =\left\{\mathrm{v} \in \mathrm{~F}_{\mathrm{q}}[\mathrm{x}] / \text { degree } \mathrm{v}<\mathrm{n}\right\} \\
& =\left\{\mathrm{v}_{0}+\mathrm{v}_{1} \mathrm{x}+\mathrm{v}_{2} \mathrm{x}^{2}+\ldots+\mathrm{v}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1} / \mathrm{v}_{\mathrm{i}} \in \mathrm{~F}_{\mathrm{q}} ; 0 \leq \mathrm{i} \leq \mathrm{n}-1\right\}
\end{aligned}
$$

We see that $\mathrm{V}_{\mathrm{n}} \cong \mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$ as both are vector spaces defined over the same field F_{q}. Let Γ be an isomorphism
$\Gamma\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right) \rightarrow\left\{\mathrm{v}_{0}+\mathrm{v}_{1} \mathrm{x}+\mathrm{v}_{2} \mathrm{x}^{2}+\ldots+\mathrm{v}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1}\right\}$. $\mathrm{w}: \mathrm{F}_{\mathrm{q}}^{\mathrm{n}} \hookrightarrow \mathrm{F}_{\mathrm{q}}[\mathrm{x}] / \mathrm{x}^{\mathrm{n}}-1$ i.e., $w\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)=v_{0}+v_{1} x+\ldots+v_{n-1} x^{n-1}$.

Now we proceed onto define the notion of a cyclic code.

DEFINITION 1.1.7: A k-dimensional subspace C of F_{q}^{n} is called a cyclic code if $Z(v) \in C$ for all $v \in C$ that is $v=v_{0}, v_{1}, \ldots, v_{n-1}$ $\in C$ implies $\left(v_{n-1}, v_{0}, \ldots, v_{n-2}\right) \in C$ for $v \in F_{q}^{n}$.

We just give an example of a cyclic code.

Example 1.1.8: Let $\mathrm{C} \subseteq \mathrm{F}_{2}^{7}$ be defined by the generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
g^{(1)} \\
g^{(2)} \\
g^{(3)}
\end{array}\right]
$$

The code words generated by G are $\{(0000000)$, (1 11010 0), (0 111010), (0 01110 1), (1001110), (1 10100 1), (0100111), (1010011) \}.

Clearly one can check the collection of all code words in C satisfies the rule if $\left(a_{0} \ldots a_{5}\right) \in C$ then $\left(a_{5} a_{0} \ldots a_{4}\right) \in C$ i.e., the codes are cyclic. Thus we get a cyclic code.

Now we see how the code words of the Hamming codes looks like.

Example 1.1.9: Let

$$
\mathrm{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

be the parity check matrix of the Hamming $(7,4)$ code.
Now we can obtain the elements of a Hamming(7,4) code.
We proceed on to define parity check matrix of a cyclic code given by a polynomial matrix equation given by defining the generator polynomial and the parity check polynomial.

Definition 1.1.8: A linear code C in $V_{n}=\left\{v_{0}+v_{1} x+\ldots+\right.$ $\left.v_{n-1} x^{n-1} \mid v_{i} \in F_{q}, 0 \leq i \leq n-1\right\}$ is cyclic if and only if C is a principal ideal generated by $g \in C$.

The polynomial g in C can be assumed to be monic. Suppose in addition that $g / x^{n}-1$ then g is uniquely determined and is called the generator polynomial of C. The elements of C are called code words, code polynomials or code vectors.

Let $g=g_{0}+g_{1} x+\ldots+g_{m} x^{m} \in V_{n}, g / x^{n}-1$ and deg $g=m<n$. Let C be a linear (n, k) code, with $k=n-m$ defined by the generator matrix,

$$
G=\left[\begin{array}{ccccccc}
g_{0} & g_{1} & \ldots & g_{m} & 0 & \ldots & 0 \\
0 & g_{0} & \ldots & g_{m-1} & g_{m} & \ldots & 0 \\
\vdots & \vdots & & & & & \\
0 & 0 & & g_{0} & g_{1} & & g_{m}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{g} \\
\mathrm{xg} \\
\\
\mathrm{x}^{\mathrm{k}-1} \mathrm{~g}
\end{array}\right] .
$$

Then C is cyclic. The rows of G are linearly independent and rank $G=k$, the dimension of C.

Example 1.1.10: Let $\mathrm{g}=\mathrm{x}^{3}+\mathrm{x}^{2}+1$ be the generator polynomial having a generator matrix of the cyclic $(7,4)$ code with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

The codes words associated with the generator matrix is
0000000, 1011000, 0101100, 0010110, 0001011, 1110100, 1001110, 1010011, 0111010, 0100111, 0011101, 1100010, 1111111, 1000101, 0110001, 1101001.

The parity check polynomial is defined to be

$$
\begin{gathered}
h=\frac{x^{7}-1}{g} \\
h=\frac{x^{7}-1}{x^{3}+x^{2}+1}=x^{4}+x^{3}+x^{2}+1 . \\
\text { If } \frac{x^{n}-1}{g}=h_{0}+h_{1} x+\ldots+h_{k} x^{k} .
\end{gathered}
$$

the parity check matrix H related with the generator polynomial g is given by

$$
\mathrm{H}=\left[\begin{array}{ccccccc}
0 & \ldots & 0 & \mathrm{~h}_{\mathrm{k}} & \ldots & \mathrm{~h}_{1} & \mathrm{~h}_{0} \\
0 & \ldots & \mathrm{~h}_{\mathrm{k}} & \mathrm{~h}_{\mathrm{k}-1} & & \mathrm{~h}_{0} & 0 \\
\vdots & \vdots & \vdots & \vdots & & & \vdots \\
\mathrm{~h}_{\mathrm{k}} & \ldots & \mathrm{~h}_{1} & \mathrm{~h}_{0} & & \ldots & 0
\end{array}\right] .
$$

For the generator polynomial $\mathrm{g}=\mathrm{x}^{3}+\mathrm{x}^{2}+1$ the parity check matrix

$$
\mathrm{H}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

where the parity check polynomial is given by $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+1=$ $\frac{x^{7}-1}{x^{3}+x^{2}+1}$. It is left for the reader to verify that the parity check matrix gives the same set of cyclic codes.

We now proceed on to give yet another new method of decoding procedure using the method of best approximations.

We just recall this definition given by [4, 23, 39]. We just give the basic concepts needed to define this notion. We know that $\mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$ is a finite dimensional vector space over F_{q}. If we take $Z_{2}=(0,1)$ the finite field of characteristic two. $Z_{2}^{5}=Z_{2} \times Z_{2} \times$ $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ is a 5 dimensional vector space over Z_{2}. Infact $\{(1$ 0000), (01000), (00100), (00010), (00001) \} is a basis of Z_{2}^{5}. Z_{2}^{5} has only $2^{5}=32$ elements in it. Let F be a field of real numbers and V a vector space over F . An inner product on V is a function which assigns to each ordered pair of vectors α, β in V a scalar $\langle\alpha / \beta\rangle$ in F in such a way that for all α, β, γ in V and for all scalars c in F .
(a) $\langle\alpha+\beta / \gamma\rangle=\langle\alpha / \gamma\rangle+\langle\beta / \gamma\rangle$
(b) $\langle\mathrm{c} \alpha / \beta\rangle=\mathrm{c}\langle\alpha / \beta\rangle$
(c) $\langle\beta / \alpha\rangle=\langle\alpha / \beta\rangle$
(d) $\langle\alpha / \alpha\rangle>0$ if $\alpha \neq 0$.

On V there is an inner product which we call the standard inner product. Let $\alpha=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $\beta=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$

$$
\langle\alpha / \beta\rangle=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}
$$

This is called as the standard inner product. $\langle\alpha / \alpha\rangle$ is defined as norm and it is denoted by $\|\alpha\|$. We have the Gram-Schmidt orthogonalization process which states that if V is a vector space endowed with an inner product and if $\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{n}}$ be any set of linearly independent vectors in V ; then one may construct a set of orthogonal vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in V such that for each $\mathrm{k}=1,2, \ldots, \mathrm{n}$ the set $\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right\}$ is a basis for the subspace spanned by $\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{k}}$ where $\alpha_{1}=\beta_{1}$.

$$
\begin{aligned}
& \alpha_{2}=\beta_{2}-\frac{\left\langle\beta_{1} / \alpha_{1}\right\rangle}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1} \\
& \alpha_{3}=\beta_{3}-\frac{\left\langle\beta_{3} / \alpha_{1}\right\rangle}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1}-\frac{\left\langle\beta_{3} / \alpha_{2}\right\rangle}{\left\|\alpha_{2}\right\|^{2}} \alpha_{2}
\end{aligned}
$$

and so on.
Further it is left as an exercise for the reader to verify that if a vector β is a linear combination of an orthogonal sequence of non-zero vectors $\alpha_{1}, \ldots, \alpha_{\mathrm{m}}$, then β is the particular linear combination, i.e.,

$$
\beta=\sum_{\mathrm{k}=1}^{\mathrm{m}} \frac{\left\langle\beta / \alpha_{\mathrm{k}}\right\rangle}{\left\|\alpha_{\mathrm{k}}\right\|^{2}} \alpha_{\mathrm{k}}
$$

In fact this property that will be made use of in the best approximations.

We just proceed on to give an example.

Example 1.1.11: Let us consider the set of vectors $\beta_{1}=(2,0,3)$, $\beta_{2}=(-1,0,5)$ and $\beta_{3}=(1,9,2)$ in the space R^{3} equipped with the standard inner product.
Define $\alpha_{1}=(2,0,3)$

$$
\begin{aligned}
\alpha_{2}= & (-1,0,5)-\frac{\langle(-1,0,5) /(2,0,3)\rangle}{13}(2,0,3) \\
= & (-1,0,5)-\frac{13}{13}(2,0,3)=(-3,0,2) \\
\alpha_{3}= & (1,9,2)-\frac{\langle(-1,9,2) /(2,0,3)\rangle}{13}(2,0,3) \\
& -\frac{\langle(1,9,2) /(-3,0,2)\rangle}{13}(-3,0,2) \\
= & (1,9,2)-\frac{8}{13}(2,0,3)-\frac{1}{13}(-3,0,2) \\
= & (1,9,2)-\left(\frac{16}{13}, 0, \frac{24}{13}\right)-\left(\frac{3}{13}, 0, \frac{2}{13}\right) \\
= & (1,9,2)-\left\{\left(\frac{16-3}{13}, 0, \frac{24+2}{13}\right)\right\} \\
= & (1,9,2)-(1,0,2) \\
& =(0,9,0) .
\end{aligned}
$$

Clearly the set $\{(2,0,3),(-3,0,2),(0,9,0)\}$ is an orthogonal set of vectors.

Now we proceed on to define the notion of a best approximation to a vector β in V by vectors of a subspace W where $\beta \notin \mathrm{W}$. Suppose W is a subspace of an inner product space V and let β be an arbitrary vector in V . The problem is to find a best possible approximation to β by vectors in W . This means we want to find a vector α for which $\|\beta-\alpha\|$ is as small as possible subject to the restriction that α should belong to W . To be precisely in mathematical terms: A best approximation to β by vectors in W is a vector α in W such that $\|\beta-\alpha\| \leq\|\beta-\gamma\|$ for every vector γ in W ; W a subspace of V .

By looking at this problem in R^{2} or in R^{3} one sees intuitively that a best approximation to β by vectors in W ought
to be a vector α in W such that $\beta-\alpha$ is perpendicular (orthogonal) to W and that there ought to be exactly one such α. These intuitive ideas are correct for some finite dimensional subspaces, but not for all infinite dimensional subspaces.

We just enumerate some of the properties related with best approximation.

Let W be a subspace of an inner product space V and let β be a vector in V .
(i) The vector α in W is a best approximation to β by vectors in W if and only if $\beta-\alpha$ is orthogonal to every vector in W.
(ii) If a best approximation to β by vectors in W exists, it is unique.
(iii) If W is finite-dimensional and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is any orthonormal basis for W , then the vector
$\alpha=\sum_{\mathrm{k}} \frac{\left\langle\beta / \alpha_{\mathrm{k}}\right\rangle}{\left\|\alpha_{\mathrm{k}}\right\|^{2}} \alpha_{\mathrm{k}}$, where α is the (unique)best approximation to β by vectors in W .
Now this notion of best approximation for the first time is used in coding theory to find the best approximated sent code after receiving a message which is not in the set of codes used. Further we use for coding theory only finite fields F_{q}. i.e., $\left|\mathrm{F}_{\mathrm{q}}\right|<$ ∞. If C is a code of length n; C is a vector space over F_{q} and C $\cong \mathrm{F}_{\mathrm{q}}^{\mathrm{k}} \subseteq \mathrm{F}_{\mathrm{q}}^{\mathrm{n}}$, k the number of message symbols in the code, i.e., C is a $\mathrm{C}(\mathrm{n}, \mathrm{k})$ code. While defining the notion of inner product on vector spaces over finite fields we see all axiom of inner product defined over fields as reals or complex in general is not true. The main property which is not true is if $0 \neq x \in V$; the inner product of x with itself i.e., $\langle x / x\rangle=\langle x, x\rangle \neq 0$ if $x \neq 0$ is not true i.e., $\langle x / x\rangle=0$ does not imply $x=0$.

To overcome this problem we define for the first time the new notion of pseudo inner product in case of vector spaces defined over finite characteristic fields [4, 23].

Definition 1.1.9: Let V be a vector space over a finite field F_{p} of characteristic p, p a prime. Then the pseudo inner product on
V is a map $\langle,\rangle_{p}: V \times V \rightarrow F_{p}$ satisfying the following conditions.

1. $\langle x, x\rangle_{p} \geq 0$ for all $x \in V$ and $\{x, x\rangle_{p}=0$ does not in general imply $x=0$.
2. $\langle x, y\rangle_{p}=\langle y, x\rangle_{p}$ for all $x, y \in V$.
3. $\{x+y, z\rangle_{p}=\langle x, z\rangle_{p}+\langle y, z\rangle_{p}$ for all $x, y, z \in V$.
4. $\langle x, y+z\rangle_{p}=\langle x, y\rangle_{p}+\langle x, z\rangle_{p}$ for all $x, y, z \in V$.
5. $\langle\alpha, x, y\rangle_{p}=\alpha\langle x, y\rangle_{p}$ and
6. $\langle x, \beta \cdot y\rangle_{p}=\beta(x, y\rangle_{p}$ for all $x, y, \in V$ and $\alpha, \beta \in F_{p}$.

Let V be a vector space over a field F_{p} of characteristic p, p is a prime; then V is said to be a pseudo inner product space if there is a pseudo inner product \langle,\rangle_{p} defined on V. We denote the pseudo inner product space by (V,\langle,\rangle_{p}).

Now using this pseudo inner product space ($\mathrm{V},\langle,\rangle_{\mathrm{p}}$) we proceed on to define pseudo-best approximation.

Definition 1.1.10: Let V be a vector space defined over the finite field $F_{p}\left(\right.$ or $\left.Z_{p}\right)$. Let W be a subspace of V. For $\beta \in V$ and for a set of basis $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of the subspace W the pseudo best approximation to β, if it exists is given by $\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}\right\rangle_{p} \alpha_{i}$. If $\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}\right\rangle_{p} \alpha_{i}=0$, then we say the pseudo best approximation does not exist for this set of basis $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. In this case we choose another set of basis for W say $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ and calculate $\sum_{i=1}^{k}\left\langle\beta, \gamma_{i}\right\rangle_{p} \gamma_{i}$ and $\sum_{i=1}^{k}\left\langle\beta, \gamma_{i}\right\rangle_{p} \gamma_{i}$ is called a pseudo best approximation to β.

Note: We need to see the difference even in defining our pseudo best approximation with the definition of the best approximation. Secondly as we aim to use it in coding theory and most of our linear codes take only their values from the field of characteristic two we do not need $\langle x, x\rangle$ or the norm to
be divided by the pseudo inner product in the summation of finding the pseudo best approximation.

Now first we illustrate the pseudo inner product by an example.
Example 1.1.12: Let $\mathrm{V}=\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ be a vector space over Z_{2}. Define $\langle,\rangle_{\mathrm{p}}$ to be the standard pseudo inner product on V ; so if $\mathrm{x}=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$ and $\mathrm{y}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$ are in V then the pseudo inner product of

$$
\langle\mathrm{x}, \mathrm{y}\rangle_{\mathrm{p}}=\left\langle\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\right\rangle_{\mathrm{p}}=1+0+1+1=1 \text {. }
$$

Now consider

$$
\langle\mathrm{x}, \mathrm{x}\rangle_{\mathrm{p}}=\left\langle\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right)\right\rangle_{\mathrm{p}}=1+0+1+1 \neq 0
$$

but

$$
\langle\mathrm{y}, \mathrm{y}\rangle_{\mathrm{p}}=\left\langle\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\right\rangle_{\mathrm{p}}=1+1+1+1=0 .
$$

We see clearly y $\neq 0$, yet the pseudo inner product is zero.
Now having seen an example of the pseudo inner product we proceed on to illustrate by an example the notion of pseudo best approximation.

Example 1.1.13: Let

$$
\mathrm{V}=\mathrm{Z}_{2}^{8}=\underbrace{\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \ldots \times \mathrm{Z}_{2}}_{8 \text { times }}
$$

be a vector space over Z_{2}. Now
$\mathrm{W}=\{0000000$), (10001011), (01001100), (0010 011), (0 001110 1), (11000010), (01101110), (0 $0111010)$, (01010100), (10101100), (1001011 0), (11100101), (0 111001 1), (11011111), (1011 000 1), (11111000)\}
be a subspace of V. Choose a basis of W as $B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ where

$$
\left.\begin{array}{rl}
\alpha_{1} & =\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right), \\
\alpha_{2} & =\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array} 0\right.
\end{array}\right)
$$

and

$$
\alpha_{4}=(1111111000) .
$$

Suppose $\beta=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 111111\right)$ is a vector in V using pseudo best approximations find a vector in W close to β. This is given by α relative to the basis B of W where

$$
\alpha=\sum_{\mathrm{k}=-1}^{4}\left\langle\beta, \alpha_{\mathrm{k}}\right\rangle_{\mathrm{p}} \alpha_{\mathrm{k}}
$$

$$
\left.\begin{array}{rl}
= & \left\langle\left(\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\right\rangle_{\mathrm{p}} \alpha_{1}+ \\
& \left\langle\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array} 1\right.\right.
\end{array}\right)
$$

Now having illustrated how the pseudo best approximation of a vector β in V relative to a subspace W of V is determined, now we illustrate how the approximately the nearest code word is obtained.

Example 1.1.14: Let $\mathrm{C}=\mathrm{C}(4,2)$ be a code obtained from the parity check matrix

$$
\mathrm{H}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

The message symbols associated with the code C are $\{(0,0)$, (1 , $0),(1,0),(1,1)\}$. The code words associated with H are $\mathrm{C}=\{(0$ 000), (1 011), (0101), (1 1110) \}. The chosen basis for C is $B=\left\{\alpha_{1}, \alpha_{2}\right\}$ where $\alpha_{1}=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$ and $\alpha_{2}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$. Suppose the received message is $\beta=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$), consider $\mathrm{H} \beta^{\mathrm{T}}=\left(\begin{array}{ll}0 & 1\end{array}\right) \neq(0)$ so $\beta \notin \mathrm{C}$. Let α be the pseudo best approximation to β relative to the basis B given as

$$
\begin{aligned}
\alpha=\sum_{\mathrm{k}=1}^{2}\left\langle\beta, \alpha_{\mathrm{k}}\right\rangle_{\mathrm{p}} \alpha_{\mathrm{k}} & =\left\langle\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{lllll}
0 & 1 & 0 & 1
\end{array}\right)\right\rangle_{\mathrm{p}} \alpha_{1} \\
& +\left\langle\left(\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{llllll}
1 & 0 & 1 & 1
\end{array}\right)\right\rangle_{\mathrm{p}} \alpha_{2} . \\
& =\left(\begin{array}{lllll}
1 & 0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Thus the approximated code word is (1011).
This method could be implemented in case of algebraic linear bicodes and in general to algebraic linear n -codes; $\mathrm{n} \geq 3$.

Now having seen some simple properties of codes we now proceed on to recall some very basic properties about bimatrices and their generalization, n-matrices ($n \geq 3$).

1.2 Bimatrices and their Generalizations

In this section we recall some of the basic properties of bimatrices and their generalizations which will be useful for us in the definition of linear bicodes and linear n-codes respectively.

In this section we recall the notion of bimatrix and illustrate them with examples and define some of basic operations on them.

DEFINITION 1.2.1: A bimatrix A_{B} is defined as the union of two rectangular array of numbers A_{1} and A_{2} arranged into rows and columns. It is written as follows $A_{B}=A_{1} \cup A_{2}$ where $A_{1} \neq A_{2}$ with

$$
A_{1}=\left[\begin{array}{cccc}
a_{11}^{1} & a_{12}^{1} & \cdots & a_{1 n}^{1} \\
a_{21}^{1} & a_{22}^{1} & \cdots & a_{2 n}^{1} \\
\vdots & & & \\
a_{m 1}^{1} & a_{m 2}^{1} & \cdots & a_{m n}^{1}
\end{array}\right]
$$

and

$$
A_{2}=\left[\begin{array}{cccc}
a_{11}^{2} & a_{12}^{2} & \cdots & a_{1 n}^{2} \\
a_{21}^{2} & a_{22}^{2} & \cdots & a_{2 n}^{2} \\
\vdots & & & \\
a_{m 1}^{2} & a_{m 2}^{2} & \cdots & a_{m n}^{2}
\end{array}\right]
$$

' \checkmark ' is just the notational convenience (symbol) only.
The above array is called a m by n bimatrix (written as $B(m \times n)$ since each of $A_{i}(i=1,2)$ has m rows and n columns $)$. It is to be noted a bimatrix has no numerical value associated with it. It is only a convenient way of representing a pair of array of numbers.

Note: If $A_{1}=A_{2}$ then $A_{B}=A_{1} \cup A_{2}$ is not a bimatrix. A bimatrix A_{B} is denoted by $\left(a_{i j}^{1}\right) \cup\left(a_{i j}^{2}\right)$. If both A_{1} and A_{2} are m $\times \mathrm{n}$ matrices then the bimatrix A_{B} is called the $\mathrm{m} \times \mathrm{n}$ rectangular bimatrix.

But we make an assumption the zero bimatrix is a union of two zero matrices even if A_{1} and A_{2} are one and the same; i.e., $\mathrm{A}_{1}=\mathrm{A}_{2}=(0)$.

Example 1.2.1: The following are bimatrices
i. $\quad \mathrm{A}_{\mathrm{B}}=\left[\begin{array}{ccc}3 & 0 & 1 \\ -1 & 2 & 1\end{array}\right] \cup\left[\begin{array}{ccc}0 & 2 & -1 \\ 1 & 1 & 0\end{array}\right]$
is a rectangular 2×3 bimatrix.
ii. $\quad \mathrm{A}_{\mathrm{B}}^{\prime}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \cup\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]$
is a column bimatrix.
iii. $\quad \mathrm{A}_{\mathrm{B}}=(3,-2,0,1,1) \cup(1,1,-1,1,2)$
is a row bimatrix.
In a bimatrix $A_{B}=A_{1} \cup A_{2}$ if both A_{1} and A_{2} are $m \times n$ rectangular matrices then the bimatrix A_{B} is called the rectangular $\mathrm{m} \times \mathrm{n}$ bimatrix.

DEFINITION 1.2.2: Let $A_{B}=A_{1} \cup A_{2}$ be a bimatrix. If both A_{1} and A_{2} are square matrices then A_{B} is called the square bimatrix.

If one of the matrices in the bimatrix $A_{B}=A_{1} \cup A_{2}$ is a square matrix and other is a rectangular matrix or if both A_{1} and A_{2} are rectangular matrices say $m_{1} \times n_{1}$ and $m_{2} \times n_{2}$ with m_{1} $\neq m_{2}$ or $n_{1} \neq n_{2}$ then we say A_{B} is a mixed bimatrix.

The following are examples of a square bimatrix and the mixed bimatrix.

Example 1.2.2: Given

$$
A_{B}=\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right] \cup\left[\begin{array}{lll}
4 & 1 & 1 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is a 3×3 square bimatrix.

$$
\mathrm{A}_{\mathrm{B}}^{\prime}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 \\
1 & 0 & 1 & 2
\end{array}\right] \cup\left[\begin{array}{cccc}
2 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 3 \\
-3 & -2 & 0 & 0
\end{array}\right]
$$

is a 4×4 square bimatrix.

Example 1.2.3: Let

$$
A_{B}=\left[\begin{array}{llll}
3 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 \\
2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \cup\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

then A_{B} is a mixed square bimatrix.
Let

$$
\mathrm{A}_{\mathrm{B}}^{\prime}=\left[\begin{array}{cccc}
2 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
-1 & 0 & 2 & 1
\end{array}\right] \cup\left[\begin{array}{cc}
2 & 0 \\
4 & -3
\end{array}\right]
$$

$\mathrm{A}_{\mathrm{B}}^{\prime}$ is a mixed bimatrix.
Now we proceed on to give the operations on bimatrices.
Let $A_{B}=A_{1} \cup A_{2}$ and $C_{B}=C_{1} \cup C_{2}$ be two bimatrices we say A_{B} and C_{B} are equal written as $A_{B}=C_{B}$ if and only if A_{1} and C_{1} are identical and A_{2} and C_{2} are identical i.e., $\mathrm{A}_{1}=\mathrm{C}_{1}$ and A_{2} $=\mathrm{C}_{2}$.

If $A_{B}=A_{1} \cup A_{2}$ and $C_{B}=C_{1} \cup C_{2}$, we say A_{B} is not equal to C_{B}, we write $A_{B} \neq C_{B}$ if and only if $A_{1} \neq C_{1}$ or $A_{2} \neq C_{2}$.

Example 1.2.4: Let

$$
A_{B}=\left[\begin{array}{lll}
3 & 2 & 0 \\
2 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{ccc}
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
C_{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

clearly $A_{B} \neq C_{B}$. Let

$$
\begin{gathered}
A_{B}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 2
\end{array}\right] \cup\left[\begin{array}{ccc}
0 & 4 & -2 \\
-3 & 0 & 0
\end{array}\right] \\
C_{B}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 2
\end{array}\right] \cup\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

clearly $\mathrm{A}_{\mathrm{B}} \neq \mathrm{C}_{\mathrm{B}}$.
If $A_{B}=C_{B}$ then we have $C_{B}=A_{B}$.
We now proceed on to define multiplication by a scalar. Given a bimatrix $A_{B}=A_{1} \cup B_{1}$ and a scalar λ, the product of λ and A_{B} written λA_{B} is defined to be

$$
\lambda \mathrm{A}_{\mathrm{B}}=\left[\begin{array}{ccc}
\lambda \mathrm{a}_{11} & \cdots & \lambda \mathrm{a}_{1 \mathrm{n}} \\
\vdots & & \vdots \\
\lambda \mathrm{a}_{\mathrm{m} 1} & \cdots & \lambda \mathrm{a}_{\mathrm{mn}}
\end{array}\right] \cup\left[\begin{array}{ccc}
\lambda \mathrm{b}_{11} & \cdots & \lambda \mathrm{~b}_{1 \mathrm{n}} \\
\vdots & & \vdots \\
\lambda \mathrm{~b}_{\mathrm{m} 1} & \cdots & \lambda \mathrm{~b}_{\mathrm{mn}}
\end{array}\right]
$$

each element of A_{1} and B_{1} are multiplied by λ. The product λ A_{B} is then another bimatrix having m rows and n columns if A_{B} has m rows and n columns.

We write

$$
\begin{aligned}
\lambda \mathrm{A}_{\mathrm{B}} & =\left[\lambda \mathrm{a}_{\mathrm{ij}}\right] \cup\left[\lambda \mathrm{b}_{\mathrm{ij}}\right] \\
& =\left[\mathrm{a}_{\mathrm{ij}} \lambda\right] \cup\left[\mathrm{b}_{\mathrm{ij}} \lambda\right] \\
& =\mathrm{A}_{\mathrm{B}} \lambda .
\end{aligned}
$$

Example 1.2.5: Let

$$
A_{B}=\left[\begin{array}{ccc}
2 & 0 & 1 \\
3 & 3 & -1
\end{array}\right] \cup\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & 1 & 0
\end{array}\right]
$$

and $\lambda=3$ then

$$
3 A_{B}=\left[\begin{array}{ccc}
6 & 0 & 3 \\
9 & 9 & -3
\end{array}\right] \cup\left[\begin{array}{ccc}
0 & 3 & -3 \\
6 & 3 & 0
\end{array}\right]
$$

If $\lambda=-2$ for

$$
\left.\begin{array}{ll}
\mathrm{A}_{\mathrm{B}} & =\left[\begin{array}{lll}
& 1 & 2
\end{array}-4\right] \cup\left[\begin{array}{lll}
1 & 1 & -1
\end{array} 0\right] \\
\lambda \mathrm{A}_{B} & =[-6-2-48] \cup[0-2
\end{array}\right) .
$$

Let $A_{B}=A_{1} \cup B_{1}$ and $C_{B}=A_{2} \cup B_{2}$ be any two $m \times n$ bimatrices. The sum D_{B} of the bimatrices A_{B} and C_{B} is defined as $D_{B}=A_{B}+C_{B}=\left[A_{1} \cup B_{1}\right]+\left[A_{2} \cup B_{2}\right]=\left(A_{1}+A_{2}\right) \cup\left[B_{2}+\right.$ $\left.B_{2}\right]$; where $A_{1}+A_{2}$ and $B_{1}+B_{2}$ are the usual addition of matrices i.e., if

$$
A_{B}=\left(a_{\mathrm{ij}}^{1}\right) \cup\left(b_{\mathrm{ij}}^{1}\right)
$$

and

$$
\mathrm{C}_{\mathrm{B}}=\left(\mathrm{a}_{\mathrm{ij}}^{2}\right) \cup\left(\mathrm{b}_{\mathrm{ij}}^{2}\right)
$$

then

$$
\mathrm{A}_{\mathrm{B}}+\mathrm{C}_{\mathrm{B}}=\mathrm{D}_{\mathrm{B}}=\left(\mathrm{a}_{\mathrm{ij}}^{1}+\mathrm{a}_{\mathrm{ij}}^{2}\right) \cup\left(\mathrm{b}_{\mathrm{ij}}^{1}+\mathrm{b}_{\mathrm{ij}}^{2}\right)(\forall \mathrm{ij}) .
$$

If we write in detail

$$
\begin{aligned}
& A_{B}=\left[\begin{array}{ccc}
a_{11}^{1} & \cdots & a_{1 \mathrm{n}}^{1} \\
\vdots & & \vdots \\
a_{\mathrm{m} 1}^{1} & \cdots & a_{\mathrm{mn}}^{1}
\end{array}\right] \cup\left[\begin{array}{ccc}
\mathrm{b}_{11}^{1} & \cdots & \mathrm{~b}_{1 \mathrm{n}}^{1} \\
\vdots & & \vdots \\
\mathrm{~b}_{\mathrm{m} 1}^{1} & \cdots & \mathrm{~b}_{\mathrm{mn}}^{1}
\end{array}\right] \\
& C_{B}=\left[\begin{array}{ccc}
a_{11}^{2} & \cdots & a_{1 n}^{2} \\
\vdots & & \vdots \\
a_{m 1}^{2} & \cdots & a_{m n}^{2}
\end{array}\right] \cup\left[\begin{array}{ccc}
b_{11}^{2} & \cdots & b_{1 n}^{2} \\
\vdots & & \vdots \\
b_{m 1}^{2} & \cdots & b_{m n}^{2}
\end{array}\right] \\
& \mathrm{A}_{\mathrm{B}}+\mathrm{C}_{\mathrm{B}}= \\
& {\left[\begin{array}{ccc}
a_{11}^{1}+a_{11}^{2} & \ldots & a_{1 n}^{1}+a_{1 n}^{2} \\
\vdots & & \vdots \\
a_{m 1}^{1}+a_{m 1}^{2} & \ldots & a_{m n}^{1}+a_{m n}^{2}
\end{array}\right] \cup\left[\begin{array}{ccc}
b_{11}^{1}+b_{11}^{2} & \ldots & b_{1 n}^{1}+b_{1 n}^{2} \\
\vdots & & \vdots \\
b_{m 1}^{1}+b_{m 1}^{2} & \ldots & b_{m n}^{1}+b_{m n}^{2}
\end{array}\right] .}
\end{aligned}
$$

The expression is abbreviated to

$$
\begin{aligned}
D_{B} & =A_{B}+C_{B} \\
& =\left(A_{1} \cup B_{1}\right)+\left(A_{2} \cup B_{2}\right) \\
& =\left(A_{1}+A_{2}\right) \cup\left(B_{1}+B_{2}\right) .
\end{aligned}
$$

Thus two bimatrices are added by adding the corresponding elements only when compatibility of usual matrix addition exists.

Note: If $A_{B}=A^{1} \cup A^{2}$ be a bimatrix we call A^{1} and A^{2} as the components of A_{B} or component matrices of the bimatrix A_{B}.

Example 1.2.6:
(i) Let

$$
A_{B}=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 0 & 2
\end{array}\right] \cup\left[\begin{array}{ccc}
4 & 0 & -1 \\
0 & 1 & -2
\end{array}\right]
$$

and

$$
C_{B}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 2 & -1
\end{array}\right] \cup\left[\begin{array}{ccc}
3 & 3 & 1 \\
0 & 2 & -1
\end{array}\right]
$$

then,

$$
\begin{aligned}
D_{B} & =A_{B}+C_{B} \\
= & {\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 0 & 2
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 2 & -1
\end{array}\right] \cup } \\
& {\left[\begin{array}{ccc}
4 & 0 & -1 \\
0 & 1 & -2
\end{array}\right]+\left[\begin{array}{ccc}
3 & 3 & 1 \\
0 & 2 & -1
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right] \cup\left[\begin{array}{ccc}
7 & 3 & 0 \\
0 & 3 & -3
\end{array}\right] . }
\end{aligned}
$$

(ii) Let

$$
\begin{aligned}
& \text { and } \begin{array}{l}
A_{B}=\left(\begin{array}{lllll}
3 & 2 & -1 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & -1
\end{array}\right) \\
\quad C_{B}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{llllll}
5 & -1 & 2 & 0 & 3
\end{array}\right), \\
A_{B}+C_{B}=\left(\begin{array}{lllll}
4 & 3 & 0 & 1 & 2
\end{array}\right) \cup\left(\begin{array}{lllll}
5 & 0 & 3 & 0
\end{array}\right) .
\end{array}
\end{aligned}
$$

Example 1.2.7: Let

$$
A_{B}=\left[\begin{array}{cc}
6 & -1 \\
2 & 2 \\
1 & -1
\end{array}\right] \cup\left[\begin{array}{cc}
3 & 1 \\
0 & 2 \\
-1 & 3
\end{array}\right]
$$

and

$$
\begin{gathered}
C_{B}=\left[\begin{array}{cc}
2 & -4 \\
4 & -1 \\
3 & 0
\end{array}\right] \cup\left[\begin{array}{cc}
1 & 4 \\
2 & 1 \\
3 & 1
\end{array}\right] . \\
A_{B}+A_{B}=\left[\begin{array}{cc}
12 & -2 \\
4 & 4 \\
2 & -2
\end{array}\right] \cup\left[\begin{array}{cc}
6 & 2 \\
0 & 4 \\
-2 & 6
\end{array}\right]=2 A_{B} \\
C_{B}+C_{B}=\left[\begin{array}{cc}
4 & -8 \\
8 & -2 \\
6 & 0
\end{array}\right] \cup\left[\begin{array}{ll}
2 & 8 \\
4 & 2 \\
6 & 2
\end{array}\right]=2 C_{B} .
\end{gathered}
$$

Similarly we can add

$$
A_{B}+A_{B}+A_{B}=3 A_{B}=\left[\begin{array}{cc}
18 & -3 \\
6 & 6 \\
3 & -3
\end{array}\right] \cup\left[\begin{array}{cc}
9 & 3 \\
0 & 6 \\
-3 & 9
\end{array}\right]
$$

Note: Addition of bimatrices are defined if and only if both the bimatrices are $\mathrm{m} \times \mathrm{n}$ bimatrices.

Let

$$
A_{B}=\left[\begin{array}{lll}
3 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] \cup\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & -1
\end{array}\right]
$$

and

$$
\mathrm{C}_{\mathrm{B}}=\left[\begin{array}{ll}
3 & 1 \\
2 & 1 \\
0 & 0
\end{array}\right] \cup\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
3 & 0
\end{array}\right] .
$$

The addition of A_{B} with C_{B} is not defined for A_{B} is a 2×3 bimatrix where as C_{B} is a 3×2 bimatrix.

Clearly $A_{B}+C_{B}=C_{B}+A_{B}$ when both A_{B} and C_{B} are $m \times n$ matrices.

Also if A_{B}, C_{B}, D_{B} be any three $m \times n$ bimatrices then $A_{B}+$ $\left(C_{B}+D_{B}\right)=\left(A_{B}+C_{B}\right)+D_{B}$.

Subtraction is defined in terms of operations already considered for if

$$
\mathrm{A}_{\mathrm{B}}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}
$$

and

$$
\mathrm{B}_{\mathrm{B}}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}
$$

then

$$
\begin{aligned}
\mathrm{A}_{\mathrm{B}}-\mathrm{B}_{\mathrm{B}} & =\mathrm{A}_{\mathrm{B}}+\left(-\mathrm{B}_{\mathrm{B}}\right) \\
& =\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right)+\left(-\mathrm{B}_{1} \cup-\mathrm{B}_{2}\right) \\
& =\left(\mathrm{A}_{1}-\mathrm{B}_{1}\right) \cup\left(\mathrm{A}_{2}-\mathrm{B}_{2}\right) \\
& =\left[\mathrm{A}_{1}+\left(-\mathrm{B}_{1}\right)\right] \cup\left[\mathrm{A}_{2}+\left(-\mathrm{B}_{2}\right)\right] .
\end{aligned}
$$

Example 1.2.8:

i. Let

$$
A_{B}=\left[\begin{array}{cc}
3 & 1 \\
-1 & 2 \\
0 & 3
\end{array}\right] \cup\left[\begin{array}{cc}
5 & -2 \\
1 & 1 \\
3 & -2
\end{array}\right]
$$

and

$$
\begin{gathered}
\mathrm{B}_{\mathrm{B}}=\left[\begin{array}{cc}
8 & -1 \\
4 & 2 \\
-1 & 3
\end{array}\right] \cup\left[\begin{array}{cc}
9 & 2 \\
2 & 9 \\
-1 & 1
\end{array}\right] \\
\mathrm{A}_{\mathrm{B}}-\mathrm{B}_{\mathrm{B}}=\mathrm{A}_{\mathrm{B}}+\left(-\mathrm{B}_{\mathrm{B}}\right) .
\end{gathered}
$$

$$
\begin{gathered}
=\left\{\left[\begin{array}{cc}
3 & 1 \\
-1 & 2 \\
0 & 3
\end{array}\right] \cup\left[\begin{array}{cc}
5 & -2 \\
1 & 1 \\
3 & -2
\end{array}\right]\right\}+-\left\{\left[\begin{array}{cc}
8 & -1 \\
4 & 2 \\
-1 & 3
\end{array}\right] \cup\left[\begin{array}{cc}
9 & 2 \\
2 & 9 \\
-1 & 1
\end{array}\right]\right\} \\
=\left\{\left[\begin{array}{cc}
3 & 1 \\
-1 & 2 \\
0 & 3
\end{array}\right]-\left[\begin{array}{cc}
8 & -1 \\
4 & 2 \\
-1 & 3
\end{array}\right]\right\} \cup\left\{\left[\begin{array}{cc}
5 & -2 \\
1 & 1 \\
3 & -2
\end{array}\right]-\left[\begin{array}{cc}
9 & 2 \\
2 & 9 \\
-1 & 1
\end{array}\right]\right\} \\
=\left[\begin{array}{cc}
-5 & 2 \\
-5 & 0 \\
1 & 0
\end{array}\right] \cup\left[\begin{array}{cc}
4 & -4 \\
-1 & -8 \\
4 & -3
\end{array}\right] .
\end{gathered}
$$

ii. Let

$$
A_{B}=(1,2,3,-1,2,1) \cup(3,-1,2,0,3,1)
$$

and

$$
\mathrm{B}_{\mathrm{B}}=(-1,1,1,1,1,0) \cup(2,0,-2,0,3,0)
$$

then

$$
\mathrm{A}_{\mathrm{B}}+\left(-\mathrm{B}_{\mathrm{B}}\right)=(2,1,2,-2,1,1) \cup(1,-1,4,0,0,1) .
$$

Now we have defined addition and subtraction of bimatrices. Unlike in matrices we cannot say if we add two bimatrices the sum will be a bimatrix.

Now we proceed onto define the notion of n-matrices.
Definition 1.2.3: A n matrix A is defined to be the union of n rectangular array of numbers A_{1}, \ldots, A_{n} arranged into rows and columns. It is written as $A=A_{1} \cup \ldots \cup A_{n}$ where $A_{i} \neq A_{j}$ with

$$
A_{i}=\left[\begin{array}{cccc}
a_{11}^{i} & a_{12}^{i} & \ldots & a_{1 p}^{i} \\
a_{21}^{i} & a_{22}^{i} & \ldots & a_{2 p}^{i} \\
\vdots & \vdots & & \vdots \\
a_{m 1}^{i} & a_{m 2}^{i} & \ldots & a_{m p}^{i}
\end{array}\right]
$$

$i=1,2, \ldots, n$.
' \cup ' is just the notional convenience (symbol) only ($\mathrm{n} \geq 3$).
Note: If $\mathrm{n}=2$ we get the bimatrix.
Example 1.2.9: Let

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
3 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \cup \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
5 & 1 & 0 & 2 \\
7 & -1 & 0 & 3
\end{array}\right] }
\end{aligned}
$$

A is a 4-matrix.
Example 1.2.10: Let

$$
\begin{gathered}
\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{4} \cup \mathrm{~A}_{5} \\
=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0 \\
0
\end{array}\right] \cup\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 1 & 1 \\
9 & 7 & -8
\end{array}\right] \\
\cup\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \\
0 & 1 & 0 & 2
\end{array}\right] \cup\left[\begin{array}{ccccc}
7 & 9 & 8 & 11 & 0 \\
1 & -2 & 0 & 9 & 7 \\
0 & 5 & 7 & -1 & 8 \\
-4 & -6 & 6 & 0 & 1
\end{array}\right] ;
\end{gathered}
$$

A is a 5 -matrix. Infact A is a mixed 5 -matrix.

Example 1.2.11: Consider the 7-matrix

$$
A=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right] \cup\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \cup\left[\begin{array}{cc}
1 & -1 \\
0 & 4
\end{array}\right] \cup
$$

$$
\left[\begin{array}{ll}
3 & 1 \\
1 & 0 \\
0 & 1 \\
2 & 1
\end{array}\right] \cup\left[\begin{array}{c}
5 \\
6 \\
7 \\
8 \\
-1 \\
3 \\
2
\end{array}\right] \cup\left[\begin{array}{llll}
3 & 7 & 8 & 1
\end{array}\right] \cup\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & 0 & 2 & -1 \\
-1 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right]
$$

$=A_{1} \cup A_{2} \cup \ldots \cup A_{7} . A$ is a mixed 7-matrix.

Chapter Two

Bicodes and their Generalizations

This chapter has four sections. We introduce in this chapter four classes of new codes. Section 1 contains bicodes and the new class of n-codes ($n \geq 3$) and their properties. Section two deals with error correction using n-coset leaders and pseudo best n approximations. The notion of false n-matrix and pseudo false n-matrix are introduced in section three. Section four introduces 4 new classes of codes viz false n-codes, m-pseudo false ncodes, (t, t) pseudo false n -codes and (t, m) pseudo false n -codes which has lot of applications.

2.1 Bicodes and n-codes

In this section we introduce the notion of bicodes and n-codes and describe some of their basic properties. Now for the first time we give the use of bimatrices in the field of coding theory. Very recently we have defined the notion of bicodes [43, 44].

A bicode is a pair of sets of markers or labels built up from a finite "alphabet" which can be attached to some or all of the entities of a system of study. A mathematical bicode is a bicode with some mathematical structure. In many cases as in case of codes the mathematical structure of a bicodes refers to the fact that it forms a bivector space over finite field and in this case
the bicode is linear. Let $\mathrm{Z}_{\mathrm{q}}(\mathrm{m})=\mathrm{Z}_{\mathrm{q}_{1}}\left(\mathrm{~m}_{2}\right) \cup \mathrm{Z}_{\mathrm{q}_{2}}\left(\mathrm{~m}_{2}\right)$. Denote the m-dimensional linear bicode in the bivector space $V=V_{1} \cup$ V_{2} where V_{1} is a m_{1} dimensional vector space over Z_{p} where q_{1} is a power of the prime p and V_{2} is a m_{2}-dimensional vector space over Z_{p} where q_{2} is a power of the prime p, then $Z_{q}(m)=$ $\mathrm{Z}_{\mathrm{q}_{1}}\left(\mathrm{~m}_{1}\right) \cup \mathrm{Z}_{\mathrm{q}_{2}}\left(\mathrm{~m}_{2}\right)$ is a bicode over Z_{p}.

Thus a bicode can also be defined as a 'union' of two codes C_{1} and C_{2} where union is just the symbol.

For example we can have a bicode over Z_{2}.

Example 2.1.1: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ be a bicode over Z_{2} given by
$\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$
$=\{(000000),(011011),(110110),(001110),(100$
$011),(111000),(010101),(101101)\} \cup\{(0000),(1$
$110),\left(\begin{array}{lll}1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0\end{array}\right.$

1) \} over Z_{2}.

These codes are subbispaces of the bivector space over Z_{2} of dimension $(6,4)$. Now the bicodes are generated by bimatrices and we have parity check bimatrices to play a role in finding the check symbols. Thus we see we have the applications of linear bialgebra / bivector spaces in the study of bicodes.

$$
\mathrm{C}\left(\mathrm{n}_{1} \cup \mathrm{n}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)=\mathrm{C}_{1}\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \mathrm{C}_{2}\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right)
$$

is a linear bicode if and only if both $C_{1}\left(n_{1}, k_{1}\right)$ and $C_{2}\left(n_{2}, k_{2}\right)$ are linear codes of length n_{1} and n_{2} with k_{1} and k_{2} message symbols respectively with entries from the same field Z_{q}. The check symbols can be obtained from the k_{1} and k_{2} messages in such a way that the bicode words $x=x^{1} \cup x^{2}$ satisfy the system of linear biequations.
i.e.

$$
\mathrm{Hx}^{\mathrm{T}}=(0)
$$

i.e. $\quad\left(H_{1} \cup H_{2}\right)\left(x^{1} \cup x^{2}\right)^{T}=(0) \cup(0)$
i.e. $\quad H_{1}\left(x^{1}\right)^{T} \cup H_{2}\left(x^{2}\right)^{T}=(0) \cup(0)$
where $H=H_{1} \cup H_{2}$ is a given mixed bimatrix of order $\left(n_{1}-k_{1} \times\right.$ $\mathrm{n}_{1}, \mathrm{n}_{2}-\mathrm{k}_{2} \times \mathrm{n}_{2}$) with entries from the same field $\mathrm{Z}_{\mathrm{q}}, \mathrm{H}=\mathrm{H}_{1} \cup$ H_{2} is the parity check bimatrix of the bicode C.

The standard form of H is $\left(A_{1}, I_{n_{1}-k_{1}}\right) \cup\left(A_{2}, I_{n_{2}-k_{2}}\right)$ with A_{1} a $n_{1}-k_{1} \times k_{1}$ matrix and A_{2} a $n_{2}-k_{2} \times k_{2}$ matrix. $\mathrm{I}_{\mathrm{n}_{1}-\mathrm{k}_{1}}$ and $\mathrm{I}_{\mathrm{n}_{2}-\mathrm{k}_{2}}$ are $\mathrm{n}_{1}-\mathrm{k}_{1} \times \mathrm{n}_{1}-\mathrm{k}_{1}$ and $\mathrm{n}_{2}-\mathrm{k}_{2} \times \mathrm{n}_{2}-\mathrm{k}_{2}$ identity matrices respectively. The bimatrix H is called the parity check bimatrix of the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$. C is also called the linear $(\mathrm{n}, \mathrm{k})=\left(\mathrm{n}_{1} \cup \mathrm{n}_{2}, \mathrm{k}_{1} \cup \mathrm{k}_{2}\right)=\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right)$ bicode.

Example 2.1.2: Let $\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{C}(6 \cup 7,3 \cup 4)=\mathrm{C}_{1}(6,3) \cup \mathrm{C}_{2}$ $(7,4)$ be a bicode got by the parity check bimatrix, $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ where

$$
\mathrm{H}=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

The bicodes are obtained by solving the equations.

$$
\mathrm{Hx}^{\mathrm{T}}=\mathrm{H}_{1} \mathrm{x}_{1}^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{x}_{2}^{\mathrm{T}}=(0) \cup(0) .
$$

There are $2^{3} \cup 2^{4}$ bicode words given by
\{(000000), (0 1101), (11 0110), (0 011110), (1 00 01 1), (111000), (010101), (101101)\} $\cup\{(000000$ 0), (1000101), (0 10011), (0010110), (000101 1), (1100010), (1010011), (1001111), (0110001), (0 101100), (0 01110 1), (1110100), (1101001), (10 11000), (0111010), (1111111)\}.

Clearly this is a bicode over Z_{2}. Now the main advantage of a bicode is that at a time two codes of same length or of different length are sent simultaneously and the resultant can be got.

As in case of codes if $x=x_{1} \cup x_{2}$ is a sent message and $y=$ $y_{1} \cup y_{2}$ is a received message using the parity check bimatrix H $=H_{1} \cup H_{2}$ one can easily verify whether the received message is a correct one or not.

For if we consider $\mathrm{Hx}^{\mathrm{T}}=\mathrm{H}_{1} \mathrm{x}_{1}^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{x}_{2}^{\mathrm{T}}$ then $\mathrm{Hx}^{\mathrm{T}}=(0) \cup$ (0) for $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2}$ is the bicode word which was sent. Let $\mathrm{y}=\mathrm{y}_{1}$
$\cup \mathrm{y}_{2}$ be the received word. Consider $\mathrm{Hy}^{\mathrm{T}}=\mathrm{H}_{1} \mathrm{y}_{1}^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}^{\mathrm{T}}$, if $\mathrm{Hy}^{\mathrm{T}}=(0) \cup(0)$ then the received bicode word is a correct bicode if $\mathrm{Hy}^{\mathrm{T}} \neq(0)$, then we say there is error in the received bicode word. So we define bisyndrome $S^{B}(y)=\mathrm{Hy}^{\mathrm{T}}$ for any bicode $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2}$.

Thus the bisyndrome

$$
\mathrm{S}^{\mathrm{B}}(\mathrm{y})=\mathrm{S}_{1}\left(\mathrm{y}_{1}\right) \cup \mathrm{S}_{2}\left(\mathrm{y}_{2}\right)=\mathrm{H}_{1} \mathrm{y}_{1}^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}^{\mathrm{T}} .
$$

If the bisyndrome $S^{B}(y)=(0)$ then we say y is the bicode word. If $S^{B}(y) \neq(0)$ then the word y is not a bicode word. This is the fastest and the very simple means to check whether the received bicode word is a bicode word or not.

Now we proceed on to define the notion of bigenerator bimatrix or just the generator bimatrix of a bicode $\mathrm{C}(\mathrm{n}, \mathrm{k})=$ $\mathrm{C}_{1}\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \mathrm{C}_{2}\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right)$.

DEFINITION 2.1.1: The generator bimatrix $G=\left(I_{k},-A^{T}\right)=G_{1}$ $\cup G_{2}=\left(I_{k_{1}}^{1}-A_{1}^{T}\right) \cup\left(I_{k_{2}}^{2}-A_{2}^{T}\right)$ is called the canonical generator bimatrix or canonical basic bimatrix or encoding bimatrix of a linear bicode, $C(n, k)=C\left(n_{1} \cup n_{2}, k_{1} \cup k_{2}\right)$ with parity check bimatrix; $H=H_{1} \cup H_{2}=\left(A_{1}\right.$, $\left.I_{n_{1}-k_{1}}^{1}\right) \cup\left(A_{2}, I_{n_{2}-k_{2}}^{2}\right)$. We have $G H^{T}=(0)$ i.e. $G_{1} H_{1}^{T} \cup G_{2} H_{2}^{T}$ $=(0) \cup(0)$.

We now illustrate by an example how a generator bimatrix of a bicode functions.

Example 2.1.3: Consider C $(\mathrm{n}, \mathrm{k})=\mathrm{C}_{1}\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \mathrm{C}_{2}\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right)$ a bicode over Z_{2} where $C_{1}\left(n_{1}, k_{1}\right)$ is a $(7,4)$ code and $C_{2}\left(n_{2}, k_{2}\right)$ is a $(9,3)$ code given by the generator bimatrix
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=$

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

One can obtain the bicode words by using the rule $x_{1}=a G$ where a is the message symbol of the bicode. $x_{1} \cup x_{2}=$ $a^{1} G_{1} \cup a^{2} G_{2}$ with $a=a^{1} \cup a^{2} ;$
where

$$
a^{1}=a_{1}^{1} a_{2}^{1} a_{3}^{1}
$$

and

$$
\mathrm{a}^{2}=\mathrm{a}_{1}^{2} \mathrm{a}_{2}^{2} \mathrm{a}_{3}^{2} \mathrm{a}_{4}^{2} \mathrm{a}_{5}^{2} \mathrm{a}_{6}^{2} .
$$

We give another example in which we calculate the bicode words.

Example 2.1.4: Consider a $C(n, k)=C_{1}(6,3) \cup C_{2}(4,2)$ bicode over Z_{2}.

The $2^{3} \cup 2^{2}$ code words x^{1} and x^{2} of the binary bicode can be found using the generator bimatrix $G=G_{1} \cup G_{2}$.

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

$x=a G$ i.e., $x^{1} \cup x^{2}=a^{1} G_{1} \cup a^{2} G_{2}$ where $a^{1}=$ $a_{1}^{1} a_{2}^{1} a_{3}^{1}$ and $a^{2}=a_{1}^{2} a_{2}^{2}$ where the message symbols are

$$
\left\{\begin{array}{cccc}
000 & 001 & 100 & 010 \\
110 & 011 & 101 & 111
\end{array}\right\} \cup\left\{\begin{array}{ccc}
0 & 1 & 10 \\
0 & 0 & 11
\end{array}\right\} .
$$

Thus $x=x^{1} \cup x^{2}=a^{1} G_{1} \cup a^{2} G_{2}$.
We get the bicodes as follows:

$$
\left\{\begin{array}{cccc}
000000 & 011011 & 110110 & 001110 \\
100011 & 111000 & 010101 & 101101
\end{array}\right\} \cup\left\{\begin{array}{ll}
0000 & 1010 \\
0101 & 1110
\end{array}\right\}
$$

Now we proceed on to define the notion of repetition bicode and parity check bicode.

DEFINITION 2.1.2: If each bicode word of a bicode consists of only one message symbol $a=a_{1} \cup a_{2} \in F_{2}$ and the $\left(n_{1}-1\right) \cup$ $\left(n_{2}-1\right)$ check symbols and $x_{2}^{1}=x_{3}^{1}=\ldots=x_{n_{1}}^{1}=a_{1}$ and $x_{2}^{2}=x_{3}^{2}=\ldots=x_{n_{2}}^{2}=a_{2}, a_{1}$ repeated $n_{1}-1$ times and a_{2} is repeated $n_{2}-1$ times. We obtain the binary $(n, 1)=\left(n_{1}, 1\right) \cup$ $\left(n_{2}, 1\right)$ repetition bicode with parity check bimatrix, $H=H_{1} \cup$ H_{2};

$$
\text { i.e., } H=\left[\begin{array}{ccc}
110 & \cdots & 0 \\
101 & \cdots & 0 \\
\vdots & & \vdots \\
100 & & 1
\end{array}\right]_{\mathrm{n}_{1}-1 \times \mathrm{n}_{1}} \cup\left[\begin{array}{ccc}
110 & \cdots & 0 \\
101 & & 0 \\
\vdots & \cdots & \vdots \\
100 & & 1
\end{array}\right]_{\mathrm{n}_{2}-1 \times \mathrm{n}_{2}}
$$

There are only 4 bicode words in a repetition bicode.
$\left\{\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} \ldots 1\right),(000 \ldots 0)\right\} \cup\left\{\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right.\right.$... $\left.),(00 \ldots 0)\right\}$.
Example 2.1.5: Consider the Repetition bicode $(\mathrm{n}, \mathrm{k})=(5,1) \cup$ $(4,1)$. The parity check bimatrix is given by

$$
\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]_{4 \times 5} \cup\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]_{3 \times 4} .
$$

The bicode words are
$\{(1111111),(00000)\} \cup\left\{\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right),(0000)\right.$.
We now proceed on to define Parity-check bicode.

DEFINITION 2.1.3: Parity check bicode is a $(n, n-1)=\left(n_{1}, n_{1}-1\right)$ $\cup\left(n_{2}, n_{2}-1\right)$ bicode with parity check bimatrix $H=$ $(11 \ldots 1)_{1 \times n_{1}} \cup(11 \ldots 1)_{1 \times n_{2}}$.

Each bicode word has one check symbol and all bicode words are given by all binary bivectors of length $n=n_{1} \cup n_{2}$ with an even number of ones. Thus if the sum of ones of a received bicode word is 1 at least an error must have occurred at the transmission.

Example 2.1.6: Let $(\mathrm{n}, \mathrm{k})=(4,3) \cup(5,4)$ be a bicode with parity check bimatrix.

$$
\begin{aligned}
\mathrm{H} & = \\
& =\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \mathrm{H}_{1} \cup \mathrm{H}_{2}
\end{aligned}
$$

The bicodes related with the parity check bimatrix H is given by

Now the concept of linear bialgebra i.e. bimatrices are used when we define cyclic bicodes. So we define a cyclic bicode as the union of two cyclic codes for we know if $C(n, k)$ is a cyclic code then if $\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{C}(\mathrm{n}, \mathrm{k})$ it implies $\left(\mathrm{X}_{\mathrm{n}} \mathrm{X}_{1} \ldots \mathrm{x}_{\mathrm{n}-1}\right)$ belongs to C (n, k).

We just give an example of a cyclic bicode using both generator bimatrix and the parity check bimatrix or to be more precise using a generator bipolynomial and a parity check bipolynomial.

Suppose C(n, k) = $C_{1}\left(n_{1}, k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right)$ be a cyclic bicode then we need generator polynomials $g_{1}(x) \mid x^{n_{1}}-1$ and $\mathrm{g}_{2}(\mathrm{x}) \mid \mathrm{x}^{\mathrm{n}_{2}}-1$ where $\mathrm{g}(\mathrm{x})=\mathrm{g}_{1}(\mathrm{x}) \cup \mathrm{g}_{2}(\mathrm{x})$ is a generator bipolynomial with degree of $g(x)=\left(m_{1}, m_{2}\right)$ i.e. degree of $g_{1}(x)$ $=m_{1}$ and degree of $\mathrm{g}_{2}(\mathrm{x})=\mathrm{m}_{2}$. The $\mathrm{C}(\mathrm{n}, \mathrm{k})$ linear cyclic bicode is generated by the bimatrix; $G=G_{1} \cup \mathrm{G}_{2}$ which is given below

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\mathrm{g}_{0}^{1} & \mathrm{~g}_{1}^{1} & \mathrm{~g}_{\mathrm{m}_{1}}^{1} & 0 & 0 \\
0 & \mathrm{~g}_{0}^{1} & \mathrm{~g}_{\mathrm{m}_{1}-1}^{1} & \mathrm{~g}_{\mathrm{m}_{1}}^{1} & 0 \\
\vdots & & & & \\
0 & 0 & \mathrm{~g}_{0}^{1} \mathrm{~g}_{1}^{1} & \cdots & \mathrm{~g}_{\mathrm{m}_{1}}^{1}
\end{array}\right]} \\
& \cup\left[\begin{array}{ccccc}
\mathrm{g}_{0}^{2} & \mathrm{~g}_{1}^{2} & \mathrm{~g}_{\mathrm{m}_{2}}^{2} & 0 & 0 \\
0 & \mathrm{~g}_{0}^{2} & \mathrm{~g}_{\mathrm{m}_{2}-1}^{2} & \mathrm{~g}_{\mathrm{m}_{2}}^{2} & 0 \\
\vdots & & \\
0 & 0 & \mathrm{~g}_{0}^{2} & \cdots & \mathrm{~g}_{\mathrm{m}_{2}}^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{g}_{1} \\
\mathrm{xg}_{1} \\
\vdots \\
\mathrm{x}^{\mathrm{k}_{1}-1} \mathrm{~g}_{1}
\end{array}\right] \cup\left[\begin{array}{c}
\mathrm{g}_{2} \\
\mathrm{xg}_{2} \\
\vdots \\
\mathrm{x}_{2}^{\mathrm{k}_{2}-1} \mathrm{~g}_{2}
\end{array}\right] .
\end{aligned}
$$

Then C (n, k) is cyclic bicode.
Example 2.1.7: Suppose $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}=1+\mathrm{x}^{3} \cup 1+\mathrm{x}^{2}+\mathrm{x}^{3}$ be the generator bipolynomial of a $C(n, k)\left(=C_{1}(6,3) \cup C_{2}(7,3)\right)$ bicode. The related generator bimatrix is given by

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}
$$

$$
\text { i.e., }\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] .
$$

Clearly the cyclic bicode is given by
$\left\{\begin{array}{ll}000000 & 100100 \\ 001001 & 101101 \\ 010010 & 110110 \\ 011011 & 111111\end{array}\right\} \cup$

$$
\left\{\begin{array}{llll}
0000000 & 0001011 & 0110001 & 1101001 \\
1000101 & 1100010 & 0101100 & 1011000 \\
0100111 & 1010000 & 0011101 & 0111010 \\
0010110 & 1001110 & 1110100 & 1111111
\end{array}\right\}
$$

It is easily verified that the bicode is a cyclic bicode. Now we define how a cyclic bicode is generated by a generator bipolynomial. Now we proceed on to give how the check bipolynomial helps in getting the parity check bimatrix. Let $g=$ $\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ be the generator bipolynomial of a bicode $\mathrm{C}(\mathrm{n}, \mathrm{k})=$ $C_{1}\left(n_{1}, k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right)$.

Then $h_{1}=\frac{x^{n_{1}-1}}{g_{1}}$ and $h_{2}=\frac{x^{n_{2}-1}}{g_{2}} ; h=h_{1} \cup h_{2}$ is called the check bipolynomial of the bicode $\mathrm{C}(\mathrm{n}, \mathrm{k})$. The parity check bimatrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$

$$
=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \mathrm{~h}_{\mathrm{k}_{1}}^{1} & \cdots & \mathrm{~h}_{1}^{1} & \mathrm{~h}_{0}^{1} \\
0 & 0 & \mathrm{~h}_{\mathrm{k}_{1}}^{1} & \mathrm{~h}_{\mathrm{k}_{1}-1}^{1} & \ldots & \mathrm{~h}_{0}^{1} & 0 \\
\vdots & & & & \vdots & & \vdots \\
\mathrm{~h}_{\mathrm{k}_{1}}^{1} & & \ldots & & \mathrm{~h}_{0}^{1} & \ldots & 0
\end{array}\right] \cup
$$

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & \mathrm{~h}_{\mathrm{k}_{2}}^{2} & \cdots & \mathrm{~h}_{1}^{2} & \mathrm{~h}_{0}^{2} \\
0 & 0 & \mathrm{~h}_{\mathrm{k}_{2}}^{2} & \mathrm{~h}_{\mathrm{k}_{2}-1}^{2} & \cdots & \mathrm{~h}_{0}^{2} & 0 \\
\vdots & & & & \vdots & & \vdots \\
\mathrm{~h}_{\mathrm{k}_{2}}^{2} & & \cdots & & \mathrm{~h}_{0}^{2} & \ldots & 0
\end{array}\right] .
$$

From the above example the parity check bipolynomial $\mathrm{h}=$ $h_{1} \cup h_{2}$ is given by

$$
\left(x^{3}+1\right) \cup\left(x^{4}+x^{3}+x^{2}+1\right) .
$$

The parity check bimatrix associated with this bipolynomial is given by $G=G_{1} \cup G_{2}$ where,

$$
G=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] .
$$

The linear bialgebra concept is used for defining biorthogonal bicodes or dual bicodes.

Let $C(n, k)=C_{1}\left(n_{1}, k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right)$ be a linear bicode over Z_{2}. The dual (or orthogonal) bicode C^{\perp} of C is defined by

$$
\begin{aligned}
C^{\perp} & =\{u \mid u \cdot v=0, \forall v \in C\} \\
& =\left\{\mathrm{u}_{1} \mid \mathrm{u}_{1} \cdot \mathrm{v}_{1}=0, \forall \mathrm{v}_{1} \in \mathrm{C}_{1}\right\} \cup\left\{\mathrm{u}_{2} \mid \mathrm{u}_{2} \cdot \mathrm{v}_{2}=0, \forall \mathrm{v}_{2} \in \mathrm{C}_{2}\right\} .
\end{aligned}
$$

Thus in case of dual bicodes we have if for the bicode $C(n, k)$, where $G=G_{1} \cup G_{2}$ is the generator bimatrix and if its parity check bimatrix is $H=H_{1} \cup H_{2}$ then for the orthogonal bicode or dual bicode, the generator bimatrix is $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ and the parity check bimatrix is $G=G_{1} \cup \mathrm{G}_{2}$.

Thus we have $\mathrm{HG}^{\mathrm{T}}=\mathrm{GH}^{\mathrm{T}}$.

In this section we define the notion of best biapproximation and pseudo inner biproduct. Here we give their applications to bicodes.

The applications of pseudo best approximation have been carried out in (2005) [39] to coding theory. We have recalled this notion in chapter I of this book.

Now we apply this pseudo best approximation, to get the most likely transmitted code word. Let C be code over $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$. Clearly C is a subspace of $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}} \cdot \mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$ is a vector space over Z_{p} where $\mathrm{q}=\mathrm{p}^{\mathrm{t}}$, (p - a prime, $\mathrm{t}>1$).

We take $\mathrm{C}=\mathrm{W}$ in the definition and apply the best biapproximation to β where β is the received code word for some transmitted word from C but $\beta \notin \mathrm{W}=\mathrm{C}$, for if $\beta \in \mathrm{W}=\mathrm{C}$ we accept it as the correct message. If $\beta \notin \mathrm{C}$ then we apply the notion of pseudo best approximation to β related to the subspace C in $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$.

Let $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$ be chosen as the basis of C then

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}}
$$

gives the best approximation to β clearly

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}}
$$

belongs to C provided

$$
\sum_{i=1}^{k}\left\langle\beta, c_{i}\right\rangle_{p} c_{i} \neq 0 .
$$

It is easily seen that this is the most likely received message. If

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}}=0,
$$

we can choose another basis for C so that

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}} \neq 0 .
$$

Now we just adopt this argument in case of bicodes.
DEFINITION 2.1.4: Let $V=V_{1} \cup V_{2}$ be a bivector space over the finite field Z_{p}, with some pseudo inner biproduct \langle,\rangle_{p} defined on V. Let $W=W_{1} \cup W_{2}$ be the subbispace of $V=V_{1} \cup V_{2}$. Let $\beta \in$ $V_{1} \cup V_{2}$ i.e. $\beta=\beta_{1} \cup \beta_{2}$ related to $W=W_{1} \cup W_{2}$ is defined as follows: Let

$$
\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}=\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}
$$

be the chosen basis of the bisubspace $W=W_{1} \cup W_{2}$. The pseudo best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$ if it exists is given by

$$
\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}\right\rangle_{p} \alpha_{i}=\sum_{i=1}^{k_{1}}\left\langle\beta_{1}, \alpha_{i}^{1}\right\rangle_{p_{1}} \alpha_{i}^{1} \cup \sum_{i=1}^{k_{2}}\left\langle\beta_{2}, \alpha_{i}^{2}\right\rangle_{p_{2}} \alpha_{i}^{2}
$$

If $\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \alpha_{\mathrm{i}}\right\rangle_{\mathrm{p}} \alpha_{\mathrm{i}}=0$ then we say that the pseudo best biapproximation does not exist for the set of basis

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\} .
$$

In this case we choose another set of basis $\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{k_{1}}\right\}$ and find $\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}^{\prime}\right\rangle_{p} \alpha_{1}^{\prime}$ which is taken as the pseudo best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$.

Now we apply it in case of bicodes in the following way to find the most likely bicode word. Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ be a bicode in $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$. Clearly C is a bivector subspace of $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$. Take in the definition $\mathrm{C}=\mathrm{W}$ and apply the pseudo best biapproximation. If some bicode word $x=x_{1} \cup x_{2}$ in $C=C_{1} \cup C_{2}$ is transmitted and $\beta=\beta_{1} \cup \beta_{2}$ is received bicode word then if $\beta \in C=C_{1} \cup C_{2}$
then it is accepted as the correct message if $\beta \notin C=C_{1} \cup C_{2}$ then we apply pseudo best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$ related to the subbispace $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ in $\mathrm{Z}_{\mathrm{q}}^{\mathrm{n}}$.

Here three cases occur if $\beta=\beta_{1} \cup \beta_{2} \notin \mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$.

1) $\quad \beta_{1} \in C_{1}$ and $\beta_{2} \notin C_{2}$ so that $\beta_{1} \cup \beta_{2} \notin C$
2) $\quad \beta_{1} \notin C_{1}$ and $\beta_{2} \in C_{2}$ so that $\beta_{1} \cup \beta_{2} \notin C$
3) $\quad \beta_{1} \notin C_{1}$ and $\beta_{2} \notin C_{2}$ so that $\beta_{1} \cup \beta_{2} \notin C$.

We first deal with (3) then indicate the working method in case of (1) and (2).

Given $\beta=\beta_{1} \cup \beta_{2}$, with $\beta \notin \mathrm{C} ; \beta_{1} \notin \mathrm{C}_{1}$ and $\beta_{2} \notin$ C_{2};choose a basis

$$
\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\left\{c_{1}^{1}, c_{2}^{1}, \ldots, c_{k_{1}}^{1}\right\} \cup\left\{c_{1}^{2}, c_{2}^{2}, \ldots, c_{k_{2}}^{2}\right\}
$$

of the subbispace C . To find the pseudo best biapproximation to β in C find

$$
\sum_{i=1}^{k}\left\langle\beta / c_{i}\right\rangle_{p} c_{i}=\sum_{i=1}^{k_{1}}\left\langle\beta_{1} / c_{i}^{1}\right\rangle_{1} c_{i}^{1} \cup \sum_{i=1}^{k_{2}}\left\langle\beta_{2} / c_{i}^{2}\right\rangle_{2} c_{i}^{2} .
$$

If both

$$
\sum_{\mathrm{i}=1}^{\mathrm{k}_{1}}\left\langle\beta^{1} / \mathrm{c}_{\mathrm{i}}^{1}\right\rangle_{1} \mathrm{c}_{\mathrm{i}}^{1} \neq 0
$$

and

$$
\sum_{i=1}^{k_{2}}\left\langle\beta_{2} / c_{i}^{2}\right\rangle_{2} c_{i}^{2} \neq 0
$$

then

$$
\sum_{i=1}^{\mathrm{k}}\left\langle\beta / \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}} \neq 0
$$

is taken as the pseudo best biapproximation to β. If one of

$$
\sum_{i=1}^{k_{i}}\left\langle\beta_{t} c_{i}^{t}\right\rangle_{t} c_{i}^{t}=0(t=1,2)
$$

say

$$
\sum_{i=1}^{k_{1}}\left\langle\beta_{i} c_{i}^{1}\right\rangle c_{i}^{1}=0
$$

then choose a new basis, say $\left\{\mathrm{C}_{1}^{\prime} \ldots \mathrm{C}_{\mathrm{k}_{\mathrm{t}}}\right\}$ and calculate

$$
\sum_{i=1}^{k_{t}}\left\langle\beta_{t} c_{i}^{\prime}\right\rangle_{t} c_{i}^{\prime}
$$

that is

$$
\sum_{i=1}^{k_{1}}\left\langle\beta_{1} c_{i}^{\prime}\right\rangle_{1} c_{i}^{\prime} \cup \sum_{i=1}^{k_{2}}\left\langle\beta_{2} c_{i}^{2}\right\rangle_{2} c_{i}^{2}
$$

will be the pseudo best biapproximation to β in C . If both

$$
\sum_{i=1}^{k_{1}}\left\langle\beta_{1} c_{i}^{1}\right\rangle_{1} c_{i}^{1}=0 \text { and } \sum_{i=1}^{k_{2}}\left\langle\beta_{2} c_{i}^{2}\right\rangle_{2} c_{i}^{2}=0
$$

then choose a new basis for C.

$$
\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}\right\}=\left\{\mathrm{b}_{1}^{1}, \ldots, \mathrm{~b}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{b}_{1}^{2}, \ldots, \mathrm{~b}_{\mathrm{k}_{2}}^{2}\right\}
$$

and find

$$
\sum_{i=1}^{k}\left\langle\beta, b_{i}\right\rangle_{p} b_{i}=\sum_{i=1}^{k_{1}}\left\langle\beta_{1}, b_{i}^{1}\right\rangle_{1} b_{i}^{1} \cup \sum_{i=1}^{k_{2}}\left\langle\beta_{2}, b_{i}^{2}\right\rangle_{2} b_{i}^{2}
$$

If this is not zero it will be the pseudo best biapproximation to β in C.

Now we proceed on to work for cases (1) and (2) if we work for one of (1) or (2) it is sufficient. Suppose we assume

$$
\sum_{i=1}^{k}\left\langle\beta c_{i}\right\rangle_{p} c_{i}=\sum_{i=1}^{k_{1}}\left\langle\beta_{1} c_{i}^{1}\right\rangle_{1} c_{i}^{1} \cup \sum_{i=1}^{k_{2}}\left\langle\beta_{2} c_{i}^{2}\right\rangle_{2} c_{i}^{2}
$$

and say

$$
\sum_{i=1}^{k_{2}}\left\langle\beta_{2} c_{i}^{2}\right\rangle_{2} c_{i}^{2}=0
$$

and

$$
\sum_{i=1}^{k_{1}}\left\langle\beta_{1} c_{i}^{1}\right\rangle_{1} c_{i}^{1} \neq 0
$$

then we choose only a new basis for C_{2} and calculate the pseudo best approximation for β_{2} relative to the new basis of C_{2}.

Now we illustrate this by the following example:
Example 2.1.8: Let $\mathrm{C}=\mathrm{C}_{1}(6,3) \cup \mathrm{C}_{2}(8,4)$ be a bicode over Z_{2} generated by the parity check bimatrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ given by

$$
\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The bicode is given by $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$
$=\left\{\begin{array}{llll}(000000) & (011011) & (110110) & (001110) \\ (100011) & (111000) & (100101) & (101101)\end{array}\right\} \cup$
\{(00000000), (10001011), (01001001), (001001 1 1), (00011101), (11000010), (01101110), (001 11010), (0 1010100), (10101100), (10010110), (11100101), (01110011), (11011111), (101100 0 1), (11111000)\}.

Choose a basis $B=B_{1} \cup B_{2}=\{(001110)$, (111000), (010101) \} $\cup\{(0100100$ 1), (11000010), (111001 0 1), (11111000) . Let $\beta=(111111) \cup(11111111)$ be the received bicode. Clearly $\beta \notin \mathrm{C}_{1} \cup \mathrm{C}_{2}=\mathrm{C}$. Now we find the best pseudo biapproximation to β in C relative to the basis B $=B_{1} \cup B_{2}$ under the pseudo inner biproduct.

Let $\alpha=\alpha_{1} \cup \alpha_{2}=\left\{\langle(11111111) /(001110)\rangle_{1}(0011110)+\right.$ $\langle(111111) /(111000)\rangle_{1}(111000)+\langle(111111) /(01$ $\left.0101)\rangle_{1}(010101)\right\} \cup\{\langle(11111111) /(0100100$ 1) $\rangle_{2}(01001001)+\langle(11111111),(11000010)\rangle_{p}(11$ $000010)+\langle(11111111) /(11100101)\rangle_{2}(111001$ $\left.01)+\langle(11111111) /(11111000)\rangle_{2}(11111000)\right\}$
$=\{(001110)+(111000)+(010101)\} \cup\{(0100100$

1) $+(11000010)+(11100101)+(11111000)\}$
$=(100011) \cup(10010110) \in C_{1} \cup C_{2}=C$.
Thus this is the pseudo best biapproximation to the received bicode word $\{(111111) \cup(11111111)\}$.

Thus the method of pseudo best biapproximation to a received bicode word which is not a bicode word is always guaranteed. If one wants to get best of the best pseudo biapproximations one can vary the basis and find the resultant pseudo biapproximated bicodes, compare it with the received message, the bicode which gives the least Hamming bidistance from the received word is taken as the best of pseudo best biapproximated bicode.

Note: We just define the Hamming bidistance of two bicodes x $=x_{1} \cup x_{2}$ and $y=y_{1} \cup y_{2}$, which is given by $d^{B}(x, y)=d\left(x_{1} y_{1}\right)$ $\cup \mathrm{d}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)$ where $\mathrm{d}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)$ and $\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are the Hamming distance. The least of Hamming bidistances is taken as minimum of the sum of $d\left(x_{1} y_{1}\right)+d\left(x_{2} y_{2}\right)$.

In this section we introduce the notion of tricodes and describe a few of its properties.

DEFINITION 2.1.5: Let $C=C_{1} \cup C_{2} \cup C_{3}$ where $C_{1} C_{2}$ and C_{3} are distinct codes ' u ' just a symbol. C is then defined to be a tricode.

Note: It is very important to know that each of the C_{i} ' s must be distinct for $1 \leq \mathrm{i} \leq 3$.

Example 2.1.9: Consider the tricode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ where C_{1} is a $(7,4)$ code, C_{2} is a $(6,3)$ code and C_{3} is a $(5,4)$ code with the associated generator trimatrix

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}
$$

$$
=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup,\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] . .
$$

The tricode generated by G is given as follows. $\left\{\left(\begin{array}{ll}0 & 000000)\end{array}\right.\right.$ $\cup(000000) \cup(00000),(1101000) \cup(100100) \cup(1$ $1000),(0110100) \cup(010010) \cup(00000),(11010$ $00) \cup(100100) \cup(10001),(0110100) \cup(100100)$ $\cup(10001),(0110100) \cup(100100) \cup(10001)\}$ and so on\}.

Example 2.1.10: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a tricode where C is generated by the trimatrix $G=G_{1} \cup G_{2} \cup G_{3}$ with $G=$

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

The elements of the tricode C generated by G is as follows:
$\left\{(0000) \cup(00000) \cup(000000),\left(\begin{array}{lll}1 & 0 & 1\end{array}\right) \cup(00000)\right.$ (0 00000), (0100) $\cup(00000) \cup(000000),(1111) \cup$ $(00000) \cup(000000),(0000) \cup(10011) \cup(00000$ 0), (0 000) $\cup(01101) \cup(000000),(0000) \cup(11110)$ $\cup(000000),(0000) \cup(00000) \cup(100001),(0000)$ $\cup(00000) \cup(010100),(0000) \cup(100000) \cup(0101$ 0 1), $(0000) \cup(11110) \cup(100001),(0000) \cup(1111$ 0) $\cup(010101),(0000) \cup(11110) \cup(010100),(000$ 0) $\cup(01101) \cup(100001),(0000) \cup(01101) \cup(010$ $100),(0000) \cup(01101) \cup(010101)$ and so on $\}$.

Now having defined a tricode we proceed on to define the notion of n-code.

DEFINITION 2.1.6: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}(n \geq 4)$ is said to be n-code if each of the C_{i} is a $\left(n_{i}, k_{i}\right)$ code, $1 \leq i \leq n$. Clearly C is generated by the n-matrix $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ where each G_{i} generates a $\left(n_{i}, k_{i}\right)$ code. The parity check n-matrix of the n code C is given by $H=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ with each H_{i} in the standard form $1 \leq i \leq n$ where H is a n-matrix. Clearly $G H^{T}=$ (0) $\cup(0) \cup(0) \cup \ldots \cup(0)$; i.e.,

$$
\begin{aligned}
G H^{T} & =\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right)\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)^{T} \\
& =\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right) \times\left(\mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{H}_{2}^{\mathrm{T}} \cup \ldots \cup \mathrm{H}_{\mathrm{n}}^{\mathrm{T}}\right) \\
& =G_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup G_{2} \mathrm{H}_{2}^{\mathrm{T}} \cup \ldots \cup G_{n} \mathrm{H}_{\mathrm{n}}^{\mathrm{T}} \\
& =(0) \cup(0) \cup \ldots \cup(0)
\end{aligned}
$$

is the zero n-matrix. Here each C_{i} is a distinct code i.e., $C_{i} \neq C_{j}$ if $i \neq j$.

Now we proceed give examples of n -codes.
Example 2.1.11: Consider a 6-code C given by C $=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup$ $\ldots \cup \mathrm{C}_{6}$ where C is a 6 -code generated by the 6 -matrix given by
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{6}$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \\
& \cup\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

The 6 codes generated by the generator 6-matrix is as follows:

$$
\begin{aligned}
& \{(0000) \cup(00000) \cup(00000) \cup(0000) \cup(000000) \\
& \cup(000000),(1001) \cup(00000) \cup(00000) \cup(0000) \\
& \cup(000000) \cup(000000),\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \cup(10011) \cup \\
& (10001) \cup(0100) \cup(100111) \cup(100101),(1001) \\
& \cup\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{llll}
0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array} 11\right) \cup \\
& (010011),(1001) \cup(10011) \cup(10001) \cup(0100) \cup \\
& (100111) \cup(001111) \text { and so on }\} \text {. }
\end{aligned}
$$

Example 2.1.12: Let us consider the 5 -code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ $\cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ where the generator of the 5 -code is given by the generator 5-matrix

$$
\begin{gathered}
c=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5} \\
=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \cup \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .}
\end{gathered}
$$

The 5 -code given by the G is as follows :
$\left\{\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup\right.$ $\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}\right) \cup$ $\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}\right) \cup\left(\begin{array}{lll}1 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup$ $\left(\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right) \cup$ $\left(\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 1\end{array}\right)$,
 $\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 0\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup$ $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\right) \cup$
$\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}\right) \cup$ $(001111) \cup(010101) \cup(00000) \cup(0000)$ and so on $\}$.

We now illustrate and define the notion of repetition bicode and repetition n-code ($n \geq 3$).

We can just non mathematically but technically define repetition bicode as ;

Let us consider the bimatrix $H=H_{1} \cup H_{2}$ where

$$
H_{1}=\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

be a $n-1 \times n$ matrix with the first column in which all entries are 1 and the rest $n-1 \times n-1$ matrix is the identity matrix. H_{2} is $a m-1 \times m$ matrix $m \neq n$ with the first column in which all entries are 1 and the rest $m-1 \times m-1$ matrix is the identity matrix. The bicode $C=C_{1} \cup C_{2}$ given by using this parity check bimatrix H is a repetition bicode.
There are only 4 bicode words namely $\underbrace{\left(\begin{array}{llll}0 & 0 & 0\end{array}\right)}_{n \text {-times }} \cup \underbrace{\left(\begin{array}{lll}111 \cdots\end{array}\right)}_{m \text {-times }},(00 \ldots 0) \cup(00 \ldots 0),\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)$ $\cup(00 \ldots 0)$ and $(11 \ldots 1) \cup(111 \ldots 1)$.

Now we illustrate this by the following example.
Example 2.1.13: Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ where

$$
\mathrm{H}_{1}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
\mathrm{H}_{2}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The repetition bicode words given by H are (00000) $00(000$ $000),(11111) \cup(000000),(00000) \cup(111111),(1$ $1111) \cup(111111)$.

Now we give yet another example.
Example 2.1.14: Let us consider the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ given by the parity check bimatrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$

$$
=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The repetition bicode words given by H are $\left\{\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array} 111\right) \cup\right.$ (111111), (11111111) $\cup(000000),(00000000)$ $\cup(111111),(00000000) \cup(000000)\}$.

Clearly in the definition of repetition bicode we demand $\mathrm{m} \neq \mathrm{n}$.
We now proceed on to define the notion of repetition tricode.
DEFINITION 2.1.7: Let H be parity check trimatrix i.e. $H=H_{1}$ $\cup H_{2} \cup H_{3}$ where each H_{i} is a $m_{i}-1 \times m_{i}$ matrix with $i=1,2,3$ and $m_{i} \neq m_{j}$ if $i \neq j, j=1,2,3, H$ is defined to be the repetition tricode parity check trimatrix of the tricode $C=C_{1} \cup C_{2} \cup C_{3}$.

The tricodes obtained by using this parity check trimatrix will be known as the repetition tricode.

We demand $\mathrm{H}_{\mathrm{i}} \neq \mathrm{H}_{\mathrm{j}}$ if $\mathrm{i} \neq \mathrm{j}, \mathrm{i} \leq \mathrm{i}, \mathrm{j} \leq 3$.
We illustrate this by the following example.
Example 2.1.15: Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$ be a partly check trimatrix of a repetition tricode, $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ where

$$
\begin{aligned}
\mathrm{H}_{1} & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right], \\
\mathrm{H}_{2} & =\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\mathrm{H}_{3}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The repetition tricodes obtained by $H=H_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$ is
$\{(00000) \cup(0000000) \cup(00000000)$, $(00000) \cup(0000000) \cup(11111111)$,

$$
\left.\begin{array}{l}
\left(\begin{array}{llllll}
0 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right), \\
(0
\end{array}\right)
$$

Thus for the repetition tricode we have 8 choices to be operated upon by the sender and the receiver.

Now we proceed on to define the notion of repetition n-code using a n-matrix.

DEFINITION 2.1.7: Let $H=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ be a n-matrix where each H_{i} is a $m_{i}-1 \times m_{i}$ parity check matrix related with a repetition code $1 \leq i \leq n$. i.e. each H_{i} will have the first column to be ones and the remaining $m_{i}-1 \times m_{i}-1$ matrix will be a identity matrix with ones along the main diagonal and rest zeros. Clearly the n-matrix gives way to 2^{n} codes and H is called the n-parity check matrix and the codes are called repetition n-codes and has 2^{n} code words; when $n=1$ we get the usual repetition code. When $n=2$ we get the repetition bicode; when $n=3$ the repetition 3 -code or repetition tricode. When $n \geq 4$ we obtain the repetition n code which has 2^{n} code words.

Example 2.1.16: Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}$ be a n parity check matrix ($\mathrm{n}=5$); with values from $\mathrm{Z}_{2}=\{0,1\}$. Here

$$
\mathrm{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
\mathrm{H}_{2}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\mathrm{H}_{3}
\end{gathered}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right], ~\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], ~ ?
$$

and

$$
H_{5}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

H is the n-parity check matrix for the repetition 5 -code. The code words related with H are $\left\{\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup(00\right.$ $000) \cup(0000000) \cup(000),(0000) \cup(000000) \cup(0$ $0000) \cup(0000000) \cup(111),(0000) \cup(000000) \cup$ $(00000) \cup(1111111$) $\cup(000),(0000) \cup(000000)$ $\cup(00000) \cup(1111111) \cup(111), \ldots,(1111) \cup(1111$ 11) $\cup(11111) \cup(1111111) \cup(111)\}$.

We have 2^{5} i.e. 32 code words related with any repetition 5code.

Now we proceed on to define parity check bicode differently to make one understand it better.

DEFINITION 2.1.8: Let $H=H_{1} \cup H_{2}$ where $H_{1}=\underbrace{\left(\begin{array}{ll}11 \cdots 1\end{array}\right)}_{n \text {-times }}$ and $H_{2}=\underbrace{(111 \cdots 1)}_{m \text {-times }}(m \neq n) . C=C_{1} \cup C_{2}$ is a parity check bicode related with the parity check bimatrix $H=H_{1} \cup H_{2}$. This is a binary $(n, n-1) \cup(m, m-1)$ bicode with parity check bimatrix $H=H_{1} \cup H_{2}$. Each of the bicode words are binary bivectors of length (n, m) with an even number of ones in both the vectors of the bivector. Thus if the sum of the ones in the bivectors is odd atmost two errors must have occurred during the transmission. The last digit is the control symbol or the control digit.

Example 2.1.17: Let $\mathrm{H}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)$ be the parity check bimatrix of the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$. The code words given by H are $\left\{\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup(00000),\left(\begin{array}{lll}1 & 0 & 0\end{array}\right) \cup(00000)\right.$, $(01011) \cup(00000),\left(\begin{array}{lll}0 & 0 & 1\end{array}\right) \cup\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$, (11100) $10(000$ 0 0), (1 010$) \cup(00000),\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) \cup(00000),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup$ (0 0000), (0000) $\cup(10001),(0000) \cup(11000),(000$ 0) $\cup(00011),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup(01100),(0000) \cup(10100)$, $(0000) \cup(10010),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup(01100),(0000) \cup(010$ $10,(0000) \cup(01001)$ so on $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup(01111)$, (1 111 1) $\cup(10111),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)(11111) \cup(11101)$, $(1111) \cup(11110)\}$.

We see the sum of the ones in each of the vector of the bivector adds to an even number.

Now we give yet another simple example of a parity check bicode.

Example 2.1.18: Let $\mathrm{H}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array} 1\right)$ be the parity check bimatrix of the parity check bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$. The bicodes related with H are $\left\{\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lll}0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 1\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right.\right.$ 1) $\cup(0000),\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) \cup(0000),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup$ $(1001),(000) \cup(1010),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lll}0 & 1 & 1\end{array}\right),(000) \cup(00$

1 1), (0 00) (0 10 1), so on $(110) \cup(1111),(101) \cup(111$ 1), $\left.(011) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)\right\}$.

The reader is given the work of finding the number of parity check bicodes when $H=H_{1} \cup H_{2}$ with H_{1} having m coordinate and H_{2} having n coordinates $(\mathrm{m} \neq \mathrm{n})$.

Now we proceed on to define the notion of parity check tricodes.

DEFINITION 2.1.9: Let $H=H_{1} \cup H_{2} \cup H_{3}$ be a parity check trimatrix where H is a row trivector, i.e. each H_{i} is a row vector of different lengths with all its entries as ones, $1 \leq i \leq 3$.

The code $C=C_{1} \cup C_{2} \cup C_{3}$ related with H is a parity check tricode. Each code word in the row trivector $C=C_{1} \cup C_{2} \cup C_{3}$ is such that the sum of the elements in each of the row vector of the row trivector is always even.

We denote this by the following example.
Example 2.1.19: Let $\mathrm{H}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)=$ $\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$ be the parity check trimatrix of the parity check tricode. Now the code words related with H are given by $\mathrm{C}=$ $\left\{(0000) \cup(000) \cup(000000),\left(\begin{array}{llll}0 & 0 & 0\end{array}\right) \cup(000) \cup(110\right.$ $000),(0000) \cup(000) \cup(101000),(0000) \cup(000) \cup$ (100100), (0000) $\cup(000) \cup(100010),(0000) \cup(00$ 0) $\cup(100001),(0000) \cup(000) \cup(111100),(0000)$ $\cup(000) \cup(111010),\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) \cup(000) \cup(111001),(0$ $000) \cup(000) \cup(110011),(0000) \cup(000) \cup(11010$ 1), $(0000) \cup(000) \cup(101110),(0000) \cup(000) \cup(10$ 1101), (0 000) $\cup(000) \cup(100111),(0000) \cup(000)$ $\cup(101011),(0000) \cup(000) \cup(011110),(0000) \cup$ $(000) \cup(011101),(0000) \cup(000) \cup(011011),(000$ 0) $\cup(000) \cup(010111),(0000) \cup(000) \cup(111111)$, $(0000) \cup(000) \cup(010001),(0000) \cup(000) \cup(0101$ 00), (0000) $\cup(000) \cup(010010),(0000) \cup(000) \cup(0$ $11000)$, (0 000) $\cup(000) \cup(001100),(0000) \cup(000)$ $\cup(001010),(0000) \cup(000) \cup(001001),(0000) \cup$ $(000) \cup(000$ 110), $(0000) \cup(000) \cup(000101),(000$
0) $\cup(000) \cup(000011),(0000) \cup(000) \cup(110110)$, $(1100) \cup(000) \cup(0000)$ and so on $\}$.

As a simple exercise the reader is requested to find the number of elements in the parity check code given in the example 2.

Now we proceed on to define the notion of parity check n-code ($\mathrm{n} \geq 4$).

DEFINITION 2.1.10: Let us consider the parity check n-matrix $(n \geq 4) H_{p}=\left(\begin{array}{lll}1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right) \cup \ldots \cup(111111$ $111)=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ where each H_{i} 's are distinct i.e. H_{i} $\neq H_{j}$, if $i \neq j$. The n-code obtained by H_{p} the parity check n matrix is a parity check n-code, $n \geq 4$.

We just illustrate this by the following example.
Example 2.1.20: Let us consider a parity check n-matrix ($\mathrm{n}=5$) given by $H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4} \cup H_{5}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$ $\cup\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 11\right)$. We see H is associated with a parity check 5 -code where $\mathrm{C}=\left\{\left(\begin{array}{ll}0 & 0\end{array}\right) \cup(0\right.$ $0000) \cup(000000) \cup(0000) \cup(0000000),(000) \cup$ $(00000) \cup \ldots \cup(1100) \cup(0001001),(110) \cup(1100$ $0) \cup \ldots \cup(1001) \cup(1100000)$ and so on $\}$. We see C is a parity check five code.

Interested reader can find the number of elements in C.
We just define the notion of binary Hamming bicode.
Definition 2.1.11: A binary Hamming bicode is a bicode C given by $C=C_{m_{1}} \cup C_{m_{2}}\left(m_{1} \neq m_{2}\right)$ of length $n_{1}=2^{m_{1}}-1$ and $n_{2}=2^{m_{2}}-1$ with parity check bimatrix $H=H_{1} \cup H_{2}$ where H_{i} have all of its columns to consist of all non zero binary vectors of length m_{i}; $i=1,2$ (If $m_{1}=m_{2}$ then it is important H_{1} and H_{2} generate different set of code words).

Now we illustrate a binary Hamming bicode which is as follows.

Example 2.1.21: Let $\mathrm{C}=\mathrm{C}_{7} \cup \mathrm{C}_{15}$, be a Hamming binary bicode $\mathrm{C}=\mathrm{C}_{7} \cup \mathrm{C}_{15}$ which has the following parity check bimatrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$. C_{7} has the following parity check matrix

$$
\mathrm{H}_{1}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

and

$$
\mathrm{H}_{2}=\left[\begin{array}{lllllllllllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right] ;
$$

is the parity check matrix of $\mathrm{C}_{15} . \mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ is the parity check bimatrix associated with the Hamming binary bicode (Here C_{7} is a $\mathrm{C}(7,4)$ Hamming code and C_{15} is a $\mathrm{C}(15,11)$ Hamming code).

Now having seen an example of a binary Hamming bicode we proceed on to see some more properties of bicodes and various types of bicodes.

Example 2.1.22: Now we can have also a Hamming bicode $\mathrm{H}=$ $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ where both are $\mathrm{C}(7,4)$ codes but the parity check matrices are different; $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ where

$$
\mathrm{H}_{1}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

and

$$
\mathrm{H}_{2}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

The set of bicodes are as follows: $\{(0000000) \cup(000000$ 0), (0000000) $\cup(100011$), (1000111) $\cup(000000$ 0), (0100101) $\cup(0000000),(0000000) \cup(01001$ 11), (1110001) $\cup(1110001),(1111111) \cup(1111$ 11 1), $\ldots,(1100010) \cup(1100011)$ and so on.

Next we proceed on to define the notion of binary Hamming tricode.

DEFINITION 2.1.12: Let us consider a binary Hamming tricode given by a tricode $C=C_{m_{1}} \cup C_{m_{2}} \cup C_{m_{3}}$ where $2^{m_{i}}-1=n_{i}$; i $=1,2,3 m_{i} \geq 2$. The parity check trimatrix $H=H_{1} \cup H_{2} \cup H_{3}$, is such that we have each H_{i} to have all of its columns to be non zero vectors of length $m_{i} ; i=1,2,3$.

Note: Even if $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$ still we can have a binary Hamming tricode, if each of the parity check matrices give way to a set of distinct codes. We can have a binary Hamming tricode provided $\mathrm{C}_{\mathrm{m}_{1}} \neq \mathrm{C}_{\mathrm{m}_{2}}, \mathrm{C}_{\mathrm{m}_{1}} \neq \mathrm{C}_{\mathrm{m}_{3}}$ and $\mathrm{C}_{\mathrm{m}_{2}} \neq \mathrm{C}_{\mathrm{m}_{3}}$. We illustrate this by a simple example.

Example 2.1.23: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{7} \cup \mathrm{C}_{7}$ be a binary Hamming tricode where $H=H_{1} \cup H_{2} \cup H_{3}$ is the associated parity check trimatrix of C which gives distinct sets of codes.

$$
\mathrm{H}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

We see the parity check matrices associated with the trimatrix are distinct. Thus this gives a set of codes which are of same length and have the same collection of message symbols. Hence if one wishes to make use of the same set up to first 4 coordinates but with different elements in the 3 end coordinates in such cases we can make use of these Hamming trimatrix.

Next we proceed on to give yet another new Hamming trimatrix of different lengths.

Example 2.1.24: Let us consider the associated Hamming trimatrix of a binary Hamming tricode C of different lengths; say $C=C_{7} \cup C_{15} \cup C_{7}$ where C is given by the parity check Hamming trimatrix $H=H_{1} \cup H_{2} \cup H_{3}$ where

$$
\begin{gathered}
\mathrm{H}_{1}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right], \\
\mathrm{H}_{2}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

and

$$
\mathrm{H}_{3}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

We see this binary Hamming tricode is of different lengths.
It is left as an exercise for the interested reader to work with these Hamming tricodes.

Now we proceed on to define a binary Hamming n-code $n \geq 4$.

DEFINITION 2.1.13: Let us consider a code $C=C_{m_{1}} \cup C_{m_{2}} \cup$ $\ldots \cup C_{m_{n}}$ where $m_{i} \geq 2$, with parity check n-matrix $H=H_{1} \cup$ $H_{2} \cup \ldots \cup H_{n}$; we call this code C to be a binary Hamming ncode; $n \geq 4$, it may so happen $m_{i}=m_{j}(i \neq j)$ but H_{i} and H_{j} must be distinct matrices which generate distinct set of codes.

Now we illustrate by an example a Hamming n-code, $n=5$.
Example 2.1.25: Let us consider the Hamming 5-code given by $\mathrm{C}=\mathrm{C}_{7} \cup \mathrm{C}_{7} \cup \mathrm{C}_{15} \cup \mathrm{C}_{7} \cup \mathrm{C}_{15}$ generated by the parity check 5matrix $H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4} \cup H_{5}$ where

$$
\begin{aligned}
& \mathrm{H}_{1}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], \\
& \mathrm{H}_{2}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right], \\
& \mathrm{H}_{3}=\left[\begin{array}{lllllllllllllll}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{H}_{4}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\mathrm{H}_{5}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}\right] .
$$

Now we proceed on to define the notion of cyclic bicodes.
Definition 2.1.14: Let $C=C_{1} \cup C_{2}$ be a linear $\left(n_{1}, k_{1}\right) \cup\left(n_{2}\right.$, k_{2}) bicode over $F_{q}\left(\right.$ or $\left.Z_{2}\right)$. If each of C_{1} and C_{2} are cyclic linear codes then we call the bicode C to be a linear cyclic bicode.

We illustrate a cyclic bicode by an example. We can also say a cyclic bicode will be generated by a bimatrix or a cyclic bicode can be associated with a parity check bimatrix. Before we give the definition of cyclic bicode using a bipolynomial we will give an example.

Example 2.1.26: Let us consider the bicode generated by the generator bimatrix

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}
$$

$$
=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] .
$$

The message symbols associated with this cyclic bicode are (00 0) $\cup(000),(000) \cup(100),(000) \cup(010),(000) \cup(00$ 1), (0 00) $\cup\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0\end{array}\right) \cup(011),(000) \cup(101),(000)$ $\cup(111),(100) \cup(000),(100) \cup(100), \ldots(111) \cup(11$ 1). The cyclic bicodes generated by $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$, is given by C $=\{(000000) \cup(0000000),(000000) \cup(1110100)$, $(000000) \cup(0111010),(000000) \cup(0011101)$, ..., (111111) $\cup(1010011)$ and so on $\}$.

Now one can define a cyclic bicode to be a code following a cyclic bishift.

The mapping $\eta: \mathrm{F}_{\mathrm{q}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{2}} \rightarrow \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{2}}$ such that $\left(\mathrm{a}_{0}, \ldots\right.$, $\left.a_{n_{1}-1}\right) \cup\left(b_{0}, \ldots, b_{n_{2}-1}\right) \rightarrow\left(a_{n_{1}-1}, a_{0}, \ldots, a_{n_{1}-2}\right) \cup\left(b_{n_{2}-1}, b_{0}, \ldots\right.$, $\mathrm{b}_{\mathrm{n}_{2}-2}$) is a linear mapping called a cyclic bishift.

Now we proceed on to say a bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ to be a cyclic bicode if and only if for all $v=v_{1} \cup v_{2}$ in C such that if for all $v=\left(a_{0}, \ldots, a_{n_{1}-1}\right) \cup\left(b_{0}, b_{1}, \ldots b_{n_{2}-1}\right)$ in $C=C_{1} \cup C_{2}$ we have $v \in C$ implies $\left(a_{n_{1}-1}, a_{0}, \ldots, a_{n_{1}-2}\right) \cup\left(b_{n_{2}-1}, b_{0}, \ldots, b_{n_{2}-2}\right)$ is in $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$.

We now define the generator and parity check bimatrices of a cyclic bicode using generator bipolynomial.

Let us define $\mathrm{V}=\mathrm{V}_{\mathrm{n}_{1}} \cup \mathrm{~V}_{\mathrm{n}_{2}}$ to be a linear bispace where V $=\left\{\mathrm{v} \in \mathrm{F}_{\mathrm{q}}[\mathrm{x}] /\right.$ degree $\left.\mathrm{v}<\mathrm{n}_{1}\right\} \cup\left\{\mathrm{u} \in \mathrm{F}_{\mathrm{q}}[\mathrm{x}] /\right.$ degree $\left.\mathrm{u}<\mathrm{n}_{2}\right\}=$ $\left\{\mathrm{v}_{0}+\mathrm{v}_{1} \mathrm{x}+\ldots+\mathrm{v}_{\mathrm{n}_{1}-1} \mathrm{x}^{\mathrm{n}_{1}-1} / \mathrm{v}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{q}}, 0 \leq \mathrm{i} \leq \mathrm{n}_{1}-1\right\} \cup\left\{\mathrm{u}_{0}+\mathrm{u}_{1} \mathrm{x}+\right.$ $\left.\ldots+\mathrm{u}_{\mathrm{n}_{2}-1} \mathrm{x}^{\mathrm{n}_{2}-1} / \mathrm{u}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{q}}, 0 \leq \mathrm{i} \leq \mathrm{n}_{2}-1\right\}$.

We can define a biisomorphism of the two bispaces as
$\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{F}_{\mathrm{q}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{2}} \rightarrow \mathrm{~V}_{\mathrm{n}_{1}} \cup \mathrm{~V}_{\mathrm{n}_{2}} ;$
$\mathrm{T}:\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}_{1}-1}\right) \cup\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}_{2}-1}\right) \rightarrow\left(\mathrm{v}_{0}+\mathrm{v}_{1} \mathrm{X}+\ldots+\right.$
$\left.v_{n_{1}-1} x^{n_{1}-1}\right) \cup\left(u_{0}+u_{1} x+\ldots+u_{n_{2}-1} x^{n_{2}-1}\right)$.
If $\mathrm{R}=\left(\mathrm{F}_{\mathrm{q}}(\mathrm{x}),+,.\right)$ is any polynomial ring with coefficients from F_{q} then we can form $R /\left\langle x^{n_{i}-1}\right\rangle$ modulo the principal ideal generated by $\mathrm{x}^{\mathrm{n}_{\mathrm{i}}-1}$ in $\mathrm{R} ; \mathrm{i}=1,2$.

The bimapping $\mathrm{w}=\mathrm{w}_{1} \cup \mathrm{w}_{2}: \mathrm{F}_{\mathrm{q}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{2}} \rightarrow \mathrm{R} /\left\langle\mathrm{x}^{\mathrm{n}_{1}-1}\right\rangle \cup$ $\mathrm{R} /\left\langle\mathrm{x}^{\mathrm{n}_{2}-1}\right\rangle$ where $\mathrm{w}(\mathrm{v}, \mathrm{u})=\left(\mathrm{w}_{1} \cup \mathrm{w}_{2}\right)(\mathrm{v}, \mathrm{u})$
$=\mathrm{w}_{1}(\mathrm{v}) \cup \mathrm{w}_{2}(\mathrm{u})$
$=\mathrm{w}_{1}\left(\mathrm{v}_{0} \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}_{1}-1}\right)$
$\cup W_{2}\left(u_{0}, u_{1}, \ldots, u_{n_{2}-1}\right)$
$=\left(v_{0}+v_{1} x+\ldots+v_{n_{1}-1} x^{n_{1}-1}\right) \cup$ $\left(u_{0}+u_{1} x+\ldots+u_{n_{2}-1} x^{\mathrm{n}_{2}-1}\right)$.
w can be checked to be a biisomorphism of the additive bigroup $\mathrm{F}_{\mathrm{q}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}}^{\mathrm{n}_{2}}$ onto the factor bigroup of all bipolynomials of
bidegree $<\mathrm{n}_{\mathrm{i}}$ over $\mathrm{F}_{\mathrm{q}}, \mathrm{i}=1$, 2 denoted by $\mathrm{V}_{\mathrm{n}_{\mathrm{i}}}$; $\mathrm{i}=1,2 . \mathrm{V}_{\mathrm{n}_{\mathrm{i}}}$ is also an algebra and $V_{n_{1}} \cup V_{n_{2}}$ is a bialgebra over F_{q}.

Let us define linear cyclic bicodes using generating bipolynomials. A polynomial is a bipolynomial of the form $p(x)$ $\cup \mathrm{q}(\mathrm{x})$ where $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}) \in \mathrm{F}_{\mathrm{q}}[\mathrm{x}]$. ' \cup ' is just a symbol and nothing more. The only criteria that too in case of cyclic bicodes generated by bipolynomials is that we need them to be distinct i.e. $\mathrm{p}(\mathrm{x}) \neq \mathrm{q}(\mathrm{x})$ for we need different sets of polynomials.

Using this concept of bipolynomial we generate a bicode which is cyclic.

DEFINITION 2.1.15: Let $g(x)=g_{1}(x) \cup g_{2}(x)$ be a bipolynomial such that $g_{i}(x) \in V_{n_{i}} ; i=1,2$ and $g_{i}(x) /\left(x^{n_{i}}-1\right) ; i=1,2$ with degree $g_{i}(x)=m_{i}<n_{i} ; i=1$, 2. Let $C=C_{1} \cup C_{2}$ be a bicode with C_{i} a $\left(n_{i}, k_{i}\right)$ code i.e. $k_{i}=n_{i}-m_{i}$ defined by the generator bimatrix $G=G_{1} \cup G_{2}$; where

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{ccccccc}
g_{0}^{1} & g_{1}^{1} & \cdots & g_{m_{1}}^{1} & 0 & \cdots & 0 \\
0 & g_{0}^{1} & \cdots & g_{m_{1}-1}^{1} & g_{m_{1}}^{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
0 & 0 & & g_{0}^{1} & g_{1}^{1} & \cdots & g_{m_{1}}^{1}
\end{array}\right] \\
&=\left[\begin{array}{c}
g_{1} \\
x g_{1} \\
\vdots \\
x^{k_{1}-1} g_{1}
\end{array}\right]
\end{aligned}
$$

with $g_{1}(x)=g_{0}^{1}+g_{0}^{1} x+\ldots+g_{m_{1}}^{1} x^{m_{1}} \in F_{q_{1}}[x]$.
Now

$$
\begin{aligned}
& G_{2}=\left[\begin{array}{ccccccc}
g_{0}^{2} & g_{1}^{2} & \cdots & g_{m 2}^{2} & 0 & \cdots & 0 \\
0 & g_{0}^{2} & \cdots & g_{m_{2}-1}^{2} & g_{m_{2}}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & g_{0}^{2} & g_{1}^{2} & \cdots & g_{m_{2}}^{2}
\end{array}\right] \\
&=\left[\begin{array}{c}
g_{2} \\
x g_{2} \\
\vdots \\
x^{k_{2}-1} g_{2}
\end{array}\right]
\end{aligned}
$$

with $g_{2}(x)=g_{0}^{2}+g_{0}^{2} x+\ldots+g_{m_{2}}^{2} x^{m_{2}} \in F_{q_{2}}[x]$.
It is easily verified that the bimatrix $G=G_{1} \cup G_{2}$ generates a cyclic bicode.

Now we know if we have a generator matrix of a code we can obtain a parity check matrix; like wise a natural question would be can we find for a generator bimatrix obtained by bipolynomials a parity check bimatrix which also gives the same cyclic bicode.

The answer is yes and just we give a parity check bimatrix associated with the cyclic bicode whose generator matrix $\mathrm{G}=$ $\mathrm{G}_{1} \cup \mathrm{G}_{2}$.
We see $h_{i}(x)=\frac{x^{n_{i}}-1}{g_{i}(x)}, i=1,2$.
Let $h_{i}(x)=h_{k_{i}}^{i} x^{k_{i}}+h_{k_{i}-1}^{i} x^{k_{i}-1}+\cdots+h_{1}^{i} x+h_{0}^{i} ; i=1$, 2. Now we obtain the parity check bimatrix $H=H_{1} \cup \mathrm{H}_{2}$ associated with the bipolynomial $\mathrm{h}_{1}(\mathrm{x}) \cup \mathrm{h}_{2}(\mathrm{x})$.

$$
\begin{gathered}
\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left[\begin{array}{cccccccc}
0 & \cdots & & 0 & h_{k_{1}}^{1} & \cdots & h_{1}^{1} & h_{0}^{1} \\
0 & \cdots & 0 & h_{k_{1}}^{1} & h_{k_{1}-1}^{1} & \cdots & h_{0}^{1} & 0 \\
\cdots & \cdots \\
h_{k_{1}}^{1} & \cdots & \cdots & \cdots & h_{0}^{1} & \cdots & 0 & 0
\end{array}\right] \cup \\
{\left[\begin{array}{cccccccc}
0 & \cdots & \cdots & 0 & h_{k_{2}}^{2} & \cdots & h_{1}^{2} & h_{0}^{2} \\
0 & \cdots & 0 & h_{k_{2}}^{2} & h_{k_{2}-1}^{2} & \cdots & h_{0}^{2} & 0 \\
& \cdots & & \cdots & \cdots & \cdots & \cdots & \cdots \\
h_{k_{2}}^{2} & \cdots & \cdots & \cdots & h_{0}^{2} & \cdots & 0 & 0
\end{array}\right]}
\end{gathered}
$$

It is easily verified the parity check bimatrix for the cyclic bicode generated by $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ is $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$.

Now we illustrate this by the following example.
Example 2.1.27: Let us consider the cyclic bicode generated by the bipolynomial $\left(x^{3}+x+1\right) \cup\left(x^{3}+x^{2}+1\right)=g_{1}(x) \cup g_{2}(x)$ with $g_{1}(x) / x^{7}-1$ and $g_{2}(x) / x^{7}-1$. The generator bimatrix associated with this bipolynomial is given by

$$
\begin{gathered}
c \\
=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

The parity check bipolynomial associated with the generator bipolynomial is given by $(x-1)\left(x^{3}+\mathrm{x}^{2}+1\right) \cup(x-1)\left(x^{3}+x+1\right)$ $=\left(x^{4}+x^{2}+x+1\right) \cup\left(x^{4}+x^{3}+x+1\right)$.

The associated parity check bimatrix with the parity check bipolynomial is given by $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=$

$$
\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

The bicode is given by $\left\{\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \cup(0000000),(110\right.$ $1000) \cup(1000101),(1001011) \cup(1111111),(00$ $00000) \cup(1111111),(1011100) \cup(1100010)$ and so on $\}$.

We can also have cyclic bicodes of different lengths which is seen by the following example.

Example 2.1.28: Let us consider a cyclic bicode generated by the bipolynomial

$$
g=g_{1}(x) \cup g_{2}(x)=\left(x^{3}+1\right) \cup\left(x^{4}+x^{3}+x^{2}+1\right)
$$

The generator bimatrix associated with the generator bipolynomial of the cyclic bicode $C=C_{1} \cup C_{2}$ is given by $G=$ $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ where

$$
G_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

i.e. $G=\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \cup\left[\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$.

The associated parity check bipolynomial of the given generator polynomial is $\left(x^{3}+1\right) \cup\left(x^{3}+x^{2}+1\right)$. The corresponding parity check bimatrix is given by

$$
\begin{gathered}
\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}= \\
{\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \cup\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

The bicode which is cyclic is given by $\left\{\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{ll}0 & 0 \\ 0\end{array} 0\right.\right.$ 0000), (1 00100$) \cup(10111000),(110110) \cup(101$ $11000),(100100) \cup(11100100),(111111) \cup(11$ 011101) and so on $\}$, we see the lengths of the codes of the cyclic bicodes are 6 and 8 . Thus we can also have cyclic bicodes of different lengths.

Now we proceed on to define the notion of cyclic tricodes before which we will just recall the new notion of tripolynomial.

DEFINITION 2.1.16: Let $R[x]$ be a polynomial ring. A tripolynomial $p(x)=p_{1}(x) \cup p_{2}(x) \cup p_{3}(x)$; where $p_{i}(x) \in R[x]$; i $=1,2,3$. ' \cup ' is only a symbol to denote a tripolynomial.

For example $x^{2}-1 \cup\left(x^{2}+3\right)(x-4) \cup x^{7}+x^{3}-2 x^{2}+1$ is a tripolynomial. If $p(x)=(x-1) \cup\left(x^{7}-1\right) \cup\left(x^{2}+2 x-1\right)$ and $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}-1 \cup \mathrm{x}^{2}+1 \cup \mathrm{x}^{8}-3$ be two tripolynomials then

$$
\begin{aligned}
\mathrm{p}(\mathrm{x})+\mathrm{q}(\mathrm{x})= & \left\{(\mathrm{x}-1) \cup\left(\mathrm{x}^{7}-1\right) \cup\left(\mathrm{x}^{2}+2 \mathrm{x}-1\right)\right\}+\left\{\mathrm{x}^{2}-1 \cup\right. \\
& \left.\mathrm{x}^{2}+1 \cup \mathrm{x}^{8}-3\right\} \\
= & \left\{(\mathrm{x}-1)+\left(\mathrm{x}^{2}-1\right)\right\} \cup\left\{\left(\mathrm{x}^{7}-1\right)+\mathrm{x}^{2}+1\right\} \cup \\
& \left\{\mathrm{x}^{8}-3+\mathrm{x}^{2}+2 \mathrm{x}-1\right\} \\
= & \left(\mathrm{x}^{2}+\mathrm{x}-2\right) \cup\left(\mathrm{x}^{7}+\mathrm{x}^{2}\right) \cup\left(\mathrm{x}^{8}+\mathrm{x}^{2}+2 \mathrm{x}-4\right)
\end{aligned}
$$

is again a tripolynomial.
Likewise we can define the product

$$
\begin{aligned}
\mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x})= & \left\{(\mathrm{x}-1) \cup\left(\mathrm{x}^{7}-1\right) \cup\left(\mathrm{x}^{2}+2 \mathrm{x}-1\right)\right\} \times\left\{\mathrm{x}^{2}-1 \cup\right. \\
& \left.\mathrm{x}^{2}+1 \cup \mathrm{x}^{8}-1\right\} \\
= & (\mathrm{x}-1)\left(\mathrm{x}^{2}-1\right) \cup\left(\mathrm{x}^{7}-1\right)\left(\mathrm{x}^{2}+1\right) \cup\left(\mathrm{x}^{2}+2 \mathrm{x}-\right. \\
& 1) \times\left(\mathrm{x}^{8}-1\right) \\
= & \left(\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}+1\right) \cup\left(\mathrm{x}^{9}-\mathrm{x}^{7}+\mathrm{x}^{2}-1\right) \cup\left(\mathrm{x}^{10}+\right. \\
& \left.2 \mathrm{x}^{9}-\mathrm{x}^{8}-\mathrm{x}^{2}-2 \mathrm{x}+1\right)
\end{aligned}
$$

is again a tripolynomial.
Thus we can say $R_{1}[x] \cup R_{2}[x] \cup R_{3}[x]$ is a tripolynomial ring under polynomial addition and polynomial multiplication.

Now we define a cyclic tricode.

DEFINITION 2.1.17: A tricode $C=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup$ $C\left(n_{3}, k_{3}\right)$ where each $C\left(n_{i}, k_{i}\right)$ is a code $i=1,2$, 3. The only thing we demand is that each $C\left(n_{i}, k_{i}\right)$ is distinct i.e., the code $C\left(n_{i}, k_{i}\right) \neq C\left(n_{j}, k_{j}\right) ; i \neq j ; 1 \leq i, j \leq 3$.

We illustrate this by the following example.

Example 2.1.29: $C=C(5,3) \cup C(7,3) \cup C(6,2)$ is a tricode.
DEFINITION 2.1.18: Let $C=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup C\left(n_{3}, k_{3}\right)$ be a tricode. If each of $C\left(n_{i}, k_{i}\right)$ is a cyclic code; $i=1,2,3$, then we call C to be a cyclic tricode.

We illustrate with examples and define the generator and parity check trimatrices.

Example 2.1.30: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a cyclic tricode where C_{i} is generated by the generator matrix, $G_{i}, i=1,2,3$; i.e., $G=G_{1} \cup G_{2} \cup G_{3}$ is the generator trimatrix given by

$$
\begin{gathered}
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right], \\
\mathrm{G}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

and

$$
\mathrm{G}_{3}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] .
$$

The cyclic tricode given by G is as follows $\{(0000000) \cup(0$ $00000) \cup(0000000),(1110100) \cup(100100) \cup(1$ $101000),(1001110) \cup(100100) \cup(1011100),(1$ $010011) \cup(111111) \cup(1001011)$ and so on\}.

Note the codes C_{1} and C_{3} are codes of same length 7 but are distinct. Thus C is a cyclic tricode generated by the generator trimatrix $G=G_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}$.

Now we define the cyclic tricode in terms of the generator tripolynomial.

DEFINITION 2.1.19: Let $g(x)=g^{1}(x) \cup g^{2}(x) \cup g^{3}(x)$ be a tripolynomial which generates a cyclic tricode, here each $g^{i}(x)$ divides $x^{n_{i}}-1, i=1,2,3$. Each C_{i} is a cyclic (n_{i}, k_{i}) code $i=1$, 2, 3 where $C=C_{1} \cup C_{2} \cup C_{3} . h^{i}(x)=\frac{x^{n_{i}}-1}{g^{i}(x)}$ is the parity check polynomial of the cyclic code $C_{i}, i=1,2,3$.

$$
h(x)=h^{1}(x) \cup h^{2}(x) \cup h^{3}(x) \text { is the parity check }
$$ tripolynomial related with the generator tripolynomial $g(x)=$ $g^{1}(x) \cup g^{2}(x) \cup g^{3}(x)$.

Now we illustrate a cyclic tricode together with its generator trimatrix and parity check trimatrix.

Example 2.1.31: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a cyclic tricode generated by the tripolynomial $g(x)=g_{1}(x) \cup g_{2}(x) \cup g_{3}(x)=$ $\left(x^{3}+1\right) \cup\left(x^{3}+x^{2}+1\right) \cup\left(x^{4}+x^{3}+x^{2}+1\right)$.

The related parity check tripolynomial $h(x)=x^{3}+1 \cup x^{4}+x^{3}+$ $x^{2}+1 \cup\left(x^{3}+x^{2}+1\right)$. The generator trimatrix
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}$

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

generates the cyclic tricode. The related parity check trimatrix H $=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}=$

$$
\begin{gathered}
{\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

is the associated parity check trimatrix of the cyclic tricode $\mathrm{C}=$ $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$. The cyclic tricode words are as follows: $\left\{\left(\begin{array}{l}0 \\ 0\end{array} 00\right.\right.$ $00) \cup(0000000) \cup(0000000),(000000) \cup(1011$ $000) \cup(0000000),(000000) \cup(0000000) \cup(101$ $1100),(100100) \cup(110100) \cup(1100101)$, (1111 11) $\cup(1101001) \cup(1100101),(111111) \cup(1100$ $010) \cup(1110010)$ and so on\}.
Thus we have shown how a cyclic tricode is generated.
It is left as an exercise for the reader to determine the number of code words in the cyclic tricode given in the above example. If $C=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup C\left(n_{3}, k_{3}\right)$ is a cyclic tricode find the number of tricode words in C.

Now we show how many tricodes does the cyclic tricode C $=C(4,2) \cup C(5,2) \cup C(6,2)$, given the generator tripolynomial $g(x)=x^{2}+1 \cup x^{4}+x^{3}+x+1 \cup x^{4}+x^{2}+1$. The related generator trimatrix
$G=G_{1} \cup G_{2} \cup G_{3}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] \cup$

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

The cyclic tricode is given by

$$
\begin{aligned}
& \left\{\left(\begin{array}{llll}
0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllll}
0 & 0 & 0 & 0
\end{array}\right) \cup(000000), ~\right. \\
& (0000) \cup(000000) \cup(101010) \text {, } \\
& (0000) \cup(000000) \cup(010101) \text {, } \\
& (0000) \cup(000000) \cup(111111) \text {, } \\
& (0000) \cup(110110) \cup(000000) \text {, } \\
& (0000) \cup(110110) \cup(101010) \text {, } \\
& (0000) \cup(110110) \cup(010101) \text {, } \\
& (0000) \cup(110110) \cup(111111) \text {, } \\
& (0000) \cup(011011) \cup(000000) \text {, } \\
& (0000) \cup(011011) \cup(101010) \text {, } \\
& (0000) \cup(011011) \cup(101010) \text {, } \\
& (0000) \cup(011011) \cup(111111) \text {, } \\
& (0000) \cup(101101) \cup(000000), \\
& (0000) \cup(101101) \cup(101010), \\
& (0000) \cup(101101) \cup(010101) \text {, } \\
& (0000) \cup(101101) \cup(111111) \text {, } \\
& (1010) \cup(000000) \cup(000000) \text {, } \\
& (1010) \cup(000000) \cup(101010) \text {, } \\
& (1010) \cup(000000) \cup(010101) \text {, } \\
& (1010) \cup(000000) \cup(111111) \text {, } \\
& (1010) \cup(110110) \cup(000000) \text {, } \\
& (1010) \cup(110110) \cup(101010) \text {, } \\
& (1010) \cup(110110) \cup(010101) \text {, } \\
& (1010) \cup(110110) \cup(111111) \text {, } \\
& (1010) \cup(011011) \cup(000000) \text {, } \\
& (1010) \cup(011011) \cup(101010) \text {, } \\
& (1010) \cup(011011) \cup(010101) \text {, } \\
& (1010) \cup(011011) \cup(111111) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& (1010) \cup(101101) \cup(000000) \text {, } \\
& (1010) \cup(101101) \cup(101010) \text {, } \\
& (1010) \cup(101101) \cup(010101) \text {, } \\
& (1010) \cup(101101) \cup(111111) \text {, } \\
& (0101) \cup(000000) \cup(000000) \text {, } \\
& (0101) \cup(000000) \cup(101010) \text {, } \\
& (0101) \cup(000000) \cup(010101) \text {, } \\
& (0101) \cup(000000) \cup\left(\begin{array}{lll}
1 & 1 & 1
\end{array} 1\right. \text { 1), } \\
& (0101) \cup(110110) \cup(000000) \text {, } \\
& (0101) \cup(110110) \cup(101010) \text {, } \\
& (0101) \cup(110110) \cup(010101) \text {, } \\
& (0101) \cup(110110) \cup(111111) \text {, } \\
& (0101) \cup(011011) \cup(000000) \text {, } \\
& (0101) \cup(011011) \cup(101010) \text {, } \\
& (0101) \cup(011011) \cup(010101) \text {, } \\
& (0101) \cup(011011) \cup(111111) \text {, } \\
& (0101) \cup(101101) \cup(000000) \text {, } \\
& (0101) \cup(101101) \cup(101010) \text {, } \\
& (0101) \cup(101101) \cup(010101) \text {, } \\
& (0101) \cup(101101) \cup(111111) \text {, } \\
& (1111) \cup(000000) \cup(000000) \text {, } \\
& (1111) \cup(000000) \cup(111111) \text {, } \\
& (1111) \cup(000000) \cup(101010) \text {, } \\
& (11111) \cup(000000) \cup(010101) \text {, } \\
& (1111) \cup(110110) \cup(000000) \text {, } \\
& (1111) \cup(110110) \cup(111111) \text {, } \\
& (1111) \cup(110110) \cup(010101) \text {, } \\
& (1111) \cup(110110) \cup(101010) \text {, } \\
& (1111) \cup(011011) \cup(000000) \text {, } \\
& (1111) \cup(011011) \cup(111111) \text {, } \\
& (1111) \cup(011011) \cup(010101) \text {, } \\
& (1111) \cup(011011) \cup(101010) \text {, } \\
& (1111) \cup(101101) \cup(000000) \text {, } \\
& (1111) \cup(101101) \cup(010101) \text {, } \\
& (1111) \cup(101101) \cup(101010) \text {, } \\
& \text { and }(1111) \cup(101101) \cup(111111)\} \text {, }
\end{aligned}
$$

The number of tricode words in this cyclic tricode is 64 .
Thus if we have a cyclic tricode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ with $\left|\mathrm{C}_{1}\right|=$ $2^{m_{1}},\left|\mathrm{C}_{2}\right|=2^{m_{2}}$ and $\left|\mathrm{C}_{3}\right|=2^{m_{3}}$, then C has $2^{m_{1}+m_{2}+m_{3}}$ number of tricode words.

We now proceed on to define a cyclic n-code, $\mathrm{n} \geq 4$.
DEFINITION 2.1.20: A cyclic n-code $C=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup$ $\ldots \cup C\left(n_{n}, k_{n}\right)$ is such that each $C\left(n_{i}, k_{i}\right)$ is a distinct cyclic (n_{i}, k_{i}) code of length n_{i} with k_{i} message symbols, $i=1,2, \ldots, n$. Thus every code word of the cyclic n code will be a n-tuple each tuple will be of length $n_{i} ; i=1,2, \ldots, n$.

The only demand made in this definition is that each of the cyclic codes $C\left(n_{i}, k_{i}\right)$ should be distinct, they can be of same length we do not bother about it but what we need is, $C\left(n_{i}, k_{i}\right)$ is a cyclic code different from every $C\left(n_{j}, k_{j}\right)$ if $i \neq j ; i=1,2, \ldots, n$ and $1 \leq j, i \leq n$.

Now having defined a cyclic n-code we give the definition of npolynomials in a n-polynomial ring, $\mathrm{n} \geq 4$.

DEFINITION 2.1.21: Let $R[x]$ be a polynomial ring. A polynomial $p(x)=p_{1}(x) \cup p_{2}(x) \cup \ldots \cup p_{n}(x)$ where $p_{i}(x) \in$ $R[x], i=1,2, \ldots, n$ is defined to be a n-polynomial. When $n=1$ we just get the polynomial, $n=2$ gives us the bipolynomial and $n=3$ is the tripolynomial. When $n \geq 4$ we get the n-polynomial.

Example 2.1.32: Let $\mathrm{p}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x})+\mathrm{p}_{2}(\mathrm{x})+\mathrm{p}_{3}(\mathrm{x})+\mathrm{p}_{4}(\mathrm{x})+\mathrm{p}_{5}(\mathrm{x})$ be a 5-polynomial where $\mathrm{p}(\mathrm{x})=\left(\mathrm{x}^{3}-1\right) \cup\left(3 \mathrm{x}^{2}+7 \mathrm{x}+1\right) \cup\left(8 \mathrm{x}^{5}\right.$ $\left.+3 x^{3}+2 x+1\right) \cup\left(7 x^{8}+4 x+4\right) \cup\left(x^{5}-1\right)$ is in $R[x]$.

Note: Even if the polynomial $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ in the n-polynomial are not distinct still we call them only as n-polynomials.

For instance $p(x)=x^{7} \cup\left(x^{8}-1\right) \cup x^{2}+5 x-1 \cup\left(x^{8}-1\right) \cup$ $\mathrm{x}^{7}+5 \mathrm{x}+1$ is a 5 polynomial. We see the polynomials $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ need not be distinct.

Now we define the notion of generator n-polynomial of a cyclic n-code.

Definition 2.1.22: Let us consider a cyclic n-code $C=C\left(n_{1}\right.$, $\left.k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \ldots \cup C\left(n_{n}, k_{n}\right)$ where each of the $C\left(n_{i}, k_{i}\right)$ are cyclic codes generated by the polynomial $g_{i}(x), i=1,2, \ldots, n$. Clearly each of the cyclic codes $C\left(n_{i}, k_{i}\right)$ must be distinct for otherwise the code C cannot be defined as the cyclic n-code. If each of the cyclic codes is to be distinct then we have the associated polynomials with them must also be distinct.

Let the n-polynomial which generates the cyclic n-code be denoted by $g(x)=g_{1}(x) \cup g_{2}(x) \cup \ldots \cup g_{n}(x)$. Each $g_{i}(x)$ is distinct, directly implies each of the generator matrices associated with the generator polynomial $g_{i}(x)$ are distinct. Thus let G denote the generator n-matrix, then $G=G_{1} \cup G_{2} \cup$ $\ldots \cup G_{n}$ where each of the matrices G_{i} are distinct i.e. $G_{i}=G_{k}$ if and only if $i=k$.

Now using each of the generator polynomials $g_{i}(x)$ we can obtain the parity check polynomial $h_{i}(x)$ given by $h_{i}(x)=\frac{x^{n_{i}}-1}{g_{i}(x)} ; i=1,2, \ldots, n$. Thus the parity check n polynomial $h(x)$ is given by $h(x)=h_{1}(x) \cup h_{2}(x) \cup \ldots \cup h_{n}(x)$. Now the parity check n-matrix H associated with each of these parity check polynomial $h_{i}(x)$ i.e. with the parity check $n-$ polynomial $h(x)=h_{1}(x) \cup h_{2}(x) \cup \ldots \cup h_{n}(x)$ is given by $H=H_{1}$ $\cup H_{2} \cup \ldots \cup H_{n}$ where each matrix H_{i} is the parity check matrix associated with the parity check polynomial $h_{i}(x) ; i=1$, 2, 3, ..., n.

We illustrate this definition by an example, when $n=4$ i.e. the cyclic 4-code.

Example 2.1.33: Let us consider a cyclic 4-code C $=\mathrm{C}(8,4) \cup$ $C(3,3) \cup C(7,3) \cup C(7,3)$, which is generated by the generator 4-polynomial $g(x)=x^{4}+1 \cup x^{3}+1 \cup x^{3}+x+1 \cup x^{3}+x^{2}+1$ (we see each of the generator polynomials are distinct). The generator 4-matrix G associated with the cyclic 4 code is given by

$$
\begin{gathered}
G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4}= \\
{\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Now we give the parity check 4 -polynomial $h(x)$ and the associated parity check 4-matrix

$$
\begin{aligned}
h(x)= & h_{1}(x) \cup h_{2}(x) \cup h_{3}(x) \cup h_{4}(x) \\
= & \left(x^{4}+1\right) \cup\left(x^{3}+1\right) \cup\left(x^{4}+x^{2}+x+1\right) \cup\left(x^{4}+x^{3}+\right. \\
& \left.x^{2}+1\right)
\end{aligned}
$$

The related parity check 4-matrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=$

$$
\begin{gathered}
{\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \cup} \\
{\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \cup} \\
{\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

The following are the cyclic 4-codes;
$\{(00000000) \cup(000000) \cup(0000000) \cup(00000$ $00),(00000000) \cup(000000) \cup(0000000) \cup(101$ $1000),(00000000) \cup(000000) \cup(1101000) \cup(1$ $011000),\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup(100100) \cup(1101000)$ $\cup(1011000),(00000000) \cup(100100) \cup(110100$ 0) $\cup(1011000),(10001000) \cup(100100) \cup(0000$ $000) \cup(0000000),(00110011) \cup(011011) \cup(01$ $11001) \cup(0100111)$ and so on $\}.$

Interested reader is expected to find the number of code words in the above example.

Now we proceed on to define dual or orthogonal bicodes, orthogonal tricodes and the notion of orthogonal or dual n codes.

DEFINITION 2.1.23: Let C be a bicode given by $C=C_{1} \cup C_{2}$, the dual bicode of C is defined to be $C^{\perp}=\left\{u_{1} / u_{1} \cdot v_{1}=0\right.$ for all $\left.v_{1} \in C_{1}\right\} \cup\left\{u_{2} / u_{2} \cdot v_{2}=0\right.$ for all $\left.v_{2} \in C_{2}\right\}=C_{1}^{\perp} \cup C_{2}^{\perp}$. If C is a ($k_{1} \cup k_{2}$) dimensional subbispace of the $n_{1} \cup n_{2}$ dimensional vector space, the orthogonal vector space, i.e., the orthogonal complement is of dimension $\left(n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right)$. Thus if C is a $\left(n_{1}, k_{1}\right) \cup\left(n_{2}, k_{2}\right)$ bicode then C^{\perp} is a $\left(n_{1}, n_{1}-k_{1}\right) \cup\left(n_{2}, n_{2}-k_{2}\right)$ bicode.

Further if $G=G_{1} \cup G_{2}$ is the generator bimatrix and $H=$ $H_{1} \cup H_{2}$ is the parity check bimatrix then C^{\perp} has generator bimatrix to be $H=H_{1} \cup H_{2}$ and parity check bimatrix $G=G_{1}$ $\cup G_{2}$. Orthogonality of two bicodes can be expressed by $G H^{T}=$ $H G^{T}=(0)$. That is $\left(G_{1} \cup G_{2}\right)\left(H_{1} \cup H_{2}\right)^{T}=\left(H_{1} \cup H_{2}\right)\left(G_{1} \cup\right.$ $\left.G_{2}\right)^{T}=\left(G_{1} \cup G_{2}\right)\left(H_{1}^{T} \cup H_{2}^{T}\right)=\left(H_{1} \cup H_{2}\right)\left(G_{1}^{T} \cup G_{2}{ }^{T}\right)=G_{1} H_{1}{ }^{T}$ $\cup G_{2} H_{2}{ }^{T}=H_{1} G_{1}{ }^{T} \cup H_{2} G_{2}{ }^{T}=(0) \cup(0)$.

Now using these properties we give an example of a bicode $\mathrm{C}=$ $\mathrm{C}_{1} \cup \mathrm{C}_{2}$ and its orthogonal code $\mathrm{C}^{\perp}=\left(\mathrm{C}_{1} \cup \mathrm{C}_{2}\right)^{\perp}=\mathrm{C}_{1}{ }^{\perp} \cup \mathrm{C}_{2}{ }^{\perp}$.

Example 2.1.34: Given the generator bimatrix of C a binary (7, 3) $\cup(4,3)$ bicode; to find its dual or its orthogonal complement. Given

$$
G=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

The bicode given by the bimatrix G is as follows: $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}=$ $\left\{(0000000) \cup(0000),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \cup(1110),(0000\right.$ $000) \cup(1000),\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array} 000\right) \cup(1011),\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array} 000\right) \cup$ (0 1110), (0000000$) \cup(0011$), (0 000000$) \cup(1101)$, $(0000000) \cup(0101)$, and so on $\}$ We can find $C^{\perp}=\left(C_{1} \cup\right.$ $\left.\mathrm{C}_{2}\right)^{\perp}=\mathrm{C}_{1}{ }^{\perp} \cup \mathrm{C}_{2}{ }^{\perp}$.

The generator matrix of C serves as the parity check matrix of C^{\perp}. Thus using

$$
G=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

as the parity check matrix i.e. G is taken as H . We find C^{\perp} which is as follows $\left\{\left(\begin{array}{llll}0 & 0 & 0 & 000) \\ (0000),(0000000)\end{array}\right.\right.$ $\cup(1101),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\right) \cup(0000),(1000011) \cup(110$ 1), $(0100101) \cup(0000),(0100101) \cup(1101),(001$ $0110) \cup(0000),\left(\begin{array}{lll}0 & 0 & 0110) \cup(1101\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0\end{array} 111\right.$) \cup (0 000), (0001111) $\cup(1101),(1100001) \cup(0000)$, (1100001) $10(1101),(1010101) \cup(0000),(10101$ $01) \cup(1101),(1001100) \cup(0000),(1001100) \cup(1$ 101), (0110011) $\cup(0000),(0110011) \cup(1101)$, (0 $101010) \cup(0000),(0101010) \cup(1101),(001110$ 0) $\cup(0000),\left(\begin{array}{lll}0 & 1 & 1100) \cup(1101),(1110000) \cup(00\end{array}\right.$ 0 0), (1 110000$) \cup(1101$), (11101001) $10(0000),(11$ $01001) \cup(1101),\left(\begin{array}{ll}1 & 1\end{array} 1010\right) \cup(0000),(1011010)$ $\cup(1101),\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right) \cup(0000),\left(\begin{array}{lll}0 & 1 & 1\end{array} 1010\right) \cup(110$ 1), (1 111111$) \cup(0000),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array} 11\right.$) $\left.\cup(1101)\right\}$

Now having defined the notion of the dual bicode of a bicode, C $=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ we now proceed on to define the notion of dual or orthogonal tricode of a tricode and then pass onto generalize it to n-codes ($n \geq 4$).

DEFINITION 2.1.24: Let us consider a tricode $C=C_{1} \cup C_{2} \cup$ $C_{3}=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup C\left(n_{3}, k_{3}\right)$. Let C be generated by the generator trimatrix $G=G_{1} \cup G_{2} \cup G_{3}$. The orthogonal complement of the tricode C or the dual tricode of C denoted by $C^{\perp}=\left(C_{1} \cup C_{2} \cup C_{3}\right)^{\perp}=C_{1}{ }^{\perp} \cup C_{2}{ }^{\perp} \cup C_{3}{ }^{\perp}$ is associated with the trimatrix $G=G_{1} \cup G_{2} \cup G_{3}$ which acts as the parity check trimatrix i.e., $G=H=H_{1} \cup H_{2} \cup H_{3}$. Thus the tricode having $H=H_{1} \cup H_{2} \cup H_{3}$ where $G=H$ and $H_{i}=G_{i} ; i=1,2,3$ is a dual tricode of C and is got by using the parity check trimatrix $H(=G)$ and the tricode $C^{\perp}=C_{1}^{\perp} \cup C_{2}^{\perp} \cup C_{3}{ }^{\perp}$ is a $C\left(n_{1}, n_{1}-\right.$ $\left.k_{1}\right) \cup C\left(n_{2}, n_{2}-k_{2}\right) \cup C\left(n_{3}, n_{3}-k_{3}\right)$ tricode called the dual tricode of C.

We illustrate this by the following example.
Example 2.1.35: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a $\mathrm{C}_{1}(7,4) \cup \mathrm{C}_{2}(7,3)$ $\cup \mathrm{C}_{3}(6,3)$ tricode having the generator trimatrix
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}=$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \cup}
\end{aligned}
$$

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

The tricode generated by the trimatrix $G=G_{1} \cup G_{2} \cup G_{3}$ is given by $\{(0000000) \cup(0000000) \cup(000000),(00$ $00000) \cup(0000000) \cup(100011),(0000000) \cup(0$ $000000) \cup(010101),(0000000) \cup(0000000) \cup$ (0 01110), (0000000) $\cup(0000000) \cup(110110),(0$ $000000) \cup(0000000) \cup(011011),(0000000) \cup$ $(0000000) \cup(101101),(0000000) \cup(0000000)$ $\cup(111000),(0000000) \cup(1001111) \cup(000000)$, $(0000000) \cup(0110011) \cup(000000),(0000000)$ $\cup(1010101) \cup(000000), \ldots,(1000101) \cup(11111$ 11) $\cup(0101001) \cup(111000)\}$ now we find the dual of this tricode C using G the generator trimatrix of the tricode C as the parity check trimatrix of the orthogonal tricode C^{\perp}; i.e. $\mathrm{G}=$ H consequently we have $G_{i}=H_{i}, i=1,2,3$. Thus

$$
\mathrm{G}=\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}=
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \cup}
\end{aligned}
$$

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

is the parity trimatrix of the dual tricode C^{\perp} of the tricode C . Clearly C^{\perp} is a $\mathrm{C}_{1}(7,3) \cup \mathrm{C}_{1}(7,4) \cup \mathrm{C}(6,3)$ tricode associated with the parity check trimatrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$.

The dual tricode C^{\perp} of C is given as follows: $\left\{\left(\begin{array}{llll}0 & 0 & 0 & 000) \\ \hline\end{array}\right.\right.$ $(0000000) \cup(000000),(0000000) \cup(0000000)$ $\cup(011100),(0000000) \cup(0000000) \cup(101010)$, $(0000000) \cup(0000000) \cup(110001),(0000000)$ $\cup(0000000) \cup(110110),(0000000) \cup(000000$ 0) $\cup(011011) \cup(0000000) \cup(0000000) \cup(1011$ 0 1), $\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array} 00\right) \cup(0000000) \cup(000111)$, and so on\}.

Interested reader is left to the task of finding the orthogonal tricode C^{\perp} of the given tricode C.

Now we proceed onto define the concept of dual n-code of an ncode C.

DEFINITION 2.1.25: Let us consider the n-code $C=C_{1}\left(n_{1}, k_{1}\right)$ $\cup C_{2}\left(n_{2}, k_{2}\right) \cup \ldots \cup C_{n}\left(n_{n}, k_{n}\right)$; the dual code of C or the orthogonal code of C denoted by C^{\perp} is defined as $C^{\perp}=\left[\left(C_{1}\left(n_{1}\right.\right.\right.$, $\left.\left.k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right) \cup \ldots \cup C_{n}\left(n_{n}, k_{n}\right)\right]^{\perp}=C_{1}{ }^{\perp}\left(n_{1}, k_{1}\right) \cup C_{2}{ }^{\perp}\left(n_{2}\right.$, $\left.k_{2}\right) \cup \ldots \cup C_{n}^{\perp}\left(n_{n}, k_{n}\right)=C_{1}\left(n_{1}, n_{1}-k_{1}\right) \cup C_{2}\left(n_{2}, n_{2}-k_{2}\right) \cup \ldots$ $\cup C_{n}\left(n_{n}, n_{n}-k_{n}\right) n$-code. If $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ is the generator n-matrix of the n-code C then the orthogonal n-code C^{\perp} has $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ to be its parity check n-matrix i.e. the generator n-matrix of G acts as the parity check nmatrix of C^{\perp} and the parity check n-matrix of C acts as the generator n-matrix of C^{\perp}. We assume $n \geq 4$; when $n=1$ we get the usual code C and its dual code C^{\perp} when $n=2$ we get the bicode $C=C_{1} \cup C_{2}$ and the dual bicode $C^{\perp}=C_{1}{ }^{\perp} \cup C_{2}{ }^{\perp}$, when $n=3$ we get the tricode $C=C_{1} \cup C_{2} \cup C_{3}$ and its dual $C^{\perp}=$ $C_{1}{ }^{\perp} \cup C_{2}^{\perp} \cup C_{3}{ }^{\perp}$. When $n \geq 4$ we get the n-code and its dual n code.

Now are illustrate the dual n -code by an example when $\mathrm{n}=5$.

Example 2.1.36: Consider the 5-code $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup$ C_{5} generated by the 5-matrix
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=$
$\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right] \cup$
$\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1\end{array}\right] \cup$
$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right] \cup$

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

Here $\mathrm{C}_{1}=\mathrm{C}(4,2)$ code, $\mathrm{C}_{2}=\mathrm{C}(5,2)$ code, $\mathrm{C}_{3}=\mathrm{C}(6,3)$ code, C_{4} $=C(4,3)$ code and $\mathrm{C}_{5}=\mathrm{C}(7,3)$ code. The 5 -codes generated by the 5 -matrix G is as follows $\mathrm{C}=\{(0000) \cup(00000) \cup(00$ $0000) \cup(0000) \cup(0000000),(1011) \cup(00000) \cup$ $(000000) \cup(0000) \cup(0000000),(0101) \cup(0000$ 0) $\cup(000000) \cup(0000) \cup(0000000),(1110) \cup(00$ $000) \cup(000000) \cup(0000) \cup(0000000),(1011) \cup$ (10110) $\cup(000000) \cup(0000) \cup(0000000),(101$ 1) $\cup(01011) \cup(000000) \cup(0000) \cup(0000000)$, (1 $011) \cup(11101) \cup(000000) \cup(0000) \cup(0000000)$, $(1011) \cup(10110) \cup(100011) \cup(0000) \cup(000000$ 0) and so on $\}$.

Now C^{\perp} the orthogonal 5-code of the 5 -code works with G the generator 5 -matrix of the 5 -code as the parity check 5 -matrix. Thus the parity check 5 -matrix of the dual (orthogonal), 5-code C^{\perp} is

$$
\begin{aligned}
& H=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \cup}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .}
\end{aligned}
$$

The 5-code associated with the parity check 5-matrix H is C^{\perp} given by
$C^{\perp}=\left\{\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup(00$ 00000), (1010) $0(00000) \cup(000000) \cup(0000) \cup$ $(0000000),\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) \cup(00000) \cup(000000) \cup(000$ 0) $\cup(0000000),\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) \cup(00000) \cup(000000) \cup(0$ $000) \cup(0000000),(1010) \cup(10011) \cup(000000) \cup$ $(0000) \cup(0000000),(0111) \cup(01001) \cup(00000$ 0) $\cup(0000) \cup(0000000),(1101) \cup(11101) \cup(000$ $000) \cup(0000) \cup(0000000),(1010) \cup(10011) \cup(0$ $00000) \cup(1101) \cup(0000000)$ and so on $\}$.

Thus we have shown how the orthogonal n-code of a given n code is obtained. It is also left for the reader to work with any ncode; $n \geq 4$ and obtain the dual n-code.

A code is said to be reversible if $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C$ holds if and only if $\left(a_{n-1}, a_{n-2}, \ldots, a_{1} a_{0}\right) \in C$. In general the reversible bicode and n-code can be defined.

DEFINITION 2.1.26: A bicode $C=C_{1} \cup C_{2}$ is said to be a reversible bicode, i.e., $\left(a_{0} a_{1} \ldots a_{n-1}\right) \cup\left(b_{0} b_{1} \ldots b_{m-1}\right) \in C=C_{1}$ $\cup C_{2}$ if and only if $\left(a_{n-1} a_{n-2} a_{n-3} \ldots a_{1} a_{0}\right) \cup\left(b_{m-1} b_{m-2} b_{m-3} \ldots b_{1}\right.$ $\left.b_{0}\right) \in C=C_{1} \cup C_{2}$.

Likewise if $C=C_{1} \cup C_{2} \cup C_{3}$ be a tricode then it is said to be reversible i.e., $\left(a_{0} a_{1} \ldots a_{n-1}\right) \cup\left(b_{0} b_{1} \ldots b_{m-1}\right) \cup\left(c_{0} c_{1} \ldots c_{t-1}\right)$ $\in C$ if and only if $\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right) \cup\left(b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right) \cup\left(c_{t-1}\right.$ $\left.c_{t-2} \ldots c_{1} c_{0}\right) \in C$.

The tricode generated by $\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right.$ 11) is a reversible tricode.

Is a cyclic n-code a reversible n-code? ($\mathrm{n} \geq 2$). To be more precise is a cyclic code a reversible code? Recall a code C is said to be self orthogonal if $\mathrm{C} \subseteq \mathrm{C}^{\perp}$.

We give the definition of self orthogonal n-code.

DEFINITION 2.1.27: A bicode $C=C_{1} \cup C_{2}$ is said to be self orthogonal bicode if each of C_{1} and C_{2} are self orthogonal codes and we denote it by $C \subseteq C^{\perp}$ i.e. $C=C_{1} \cup C_{2} \subseteq C^{\perp}=C_{1}^{\perp}$ $\cup C_{2}{ }^{\perp}$.

Note: If only one of C_{1} or C_{2} alone is a self orthogonal code of the bicode $C=C_{1} \cup \mathrm{C}_{2}$ then we define the new notion of semi self orthogonal bicode.

DEFINITION 2.1.28: Let $C=C_{1} \cup C_{2}$ be a bicode we say C is said to be semi self orthogonal bicode if in C only one of C_{1} or C_{2} is self orthogonal. We denote a semi self orthogonal bicode by $C_{S}{ }^{\perp}=C_{1}{ }^{\perp} \cup C_{2}, C_{1} \subseteq C_{1}{ }^{\perp}$ or $C_{S}{ }^{\perp}=C_{1} \cup C_{2}^{\perp}$ and $C_{2} \subseteq C_{2}{ }^{\perp}$.

Now we proceed onto define the notion of self orthogonal tricode and generalize the notion to n-codes.

DEFINITION 2.1.29: Let $C=C_{1} \cup C_{2} \cup C_{3}$ be a tricode, we say C is a self orthogonal tricode if each of codes in C i.e. each $C_{i}(i$ $=1,2,3)$ are self orthogonal and this is denoted by $C \subseteq C^{\perp}$ i.e. $C_{1} \cup C_{2} \cup C_{2} \subseteq\left(C_{1} \cup C_{2} \cup C_{3}\right)^{\perp}=C_{1}{ }^{\perp} \cup C_{2}^{\perp} \cup C_{3}{ }^{\perp}$.

If even one of the C_{i} 's in C is not self orthogonal $(i=1,2$, 3) then we say C is not self orthogonal tricode but C is only a semi self orthogonal tricode i.e. in case of semi self orthogonal tricode we denote it by $C_{S}^{\perp}=C_{1}^{\perp} \cup C_{2}^{\perp} \cup C_{3}$ where $C_{1} \subseteq C_{1}^{\perp}$ and $C_{2} \subseteq C_{2}^{\perp}$ but $C_{3} \nsubseteq C_{3}{ }^{\perp}$ or $C_{S}{ }^{\perp}=C_{1}{ }^{\perp} \cup C_{2} \cup C_{3}{ }^{\perp}$ where C_{1} $\subseteq C_{1}{ }^{\perp}, C_{2} \subseteq C_{2}{ }^{\perp}$ and $C_{3} \subseteq C_{3}{ }^{\perp}$ or $C_{S}{ }^{\perp}=C_{1}{ }^{\perp} \cup C_{2} \cup C_{3}$ i.e. C_{1} alone is self orthogonal but C_{2} and C_{3} are not self orthogonal.

DEFINITION 2.1.30: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code; C is said to be self orthogonal if each of the n codes in C is self orthogonal i.e. each $C_{i}^{\perp} \subseteq C_{i} ; i=1,2,3, \ldots, n$ and denoted by $C \subseteq C^{\perp}$ i.e. $C_{1} \cup C_{2} \cup \ldots \cup C_{n} \subseteq\left(C_{1} \cup C_{2} \cup \ldots \cup C_{n}\right)^{\perp}=C_{1}{ }^{\perp}$ $\cup C_{2}{ }^{\perp} \cup \ldots \cup C_{n}{ }^{\perp}$. Even if one of the C_{i} 's in C is not self orthogonal then we do not call the n-code to be a self orthogonal n-code.

However if in the n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ some of the codes are self orthogonal and some of them are not self orthogonal then we call the n-code to be a semi self orthogonal n-code.

Now we illustrate some examples of self orthogonal n-code, tricode and a bicode ($\mathrm{n} \geq 4$).

Example 2.1.37: Let us consider the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} is a $C(4,2)$ code, generated by $x^{2}+1$ and C_{2} is a $C(6,3)$ code generated by the polynomial $x^{3}+1$. Clearly $C=C_{1} \cup C_{2}$ is a self orthogonal bicode.

Example 2.1.38: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a tricode. C_{1} the code generated by $x^{3}+1, C_{2}=C(8,4)$ is the code generated by $x^{4}+1$ and $\mathrm{C}_{3}=\mathrm{C}(4,2)$ is the code generated by $\mathrm{x}^{2}+1$. Thus $\mathrm{C}=\mathrm{C}_{1} \cup$ $\mathrm{C}_{2} \cup \mathrm{C}_{3}$ is self orthogonal tricode.

Example 2.1.39: Let us consider the 6 -code C generated by the 6-polynomial $\left\langle\left(x^{4}+1\right) \cup\left(x^{3}+1\right) \cup\left(x^{5}+1\right) \cup\left(x^{6}+1\right) \cup\left(x^{2}+1\right) \cup\right.$ $\left.\left(\mathrm{x}^{7}+1\right)\right\rangle$ where $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6}$ with $\mathrm{C}_{1}=$ $C(8,4)$, code generated by $x^{4}+1, C_{2}=C(6,3)$ code generated by the polynomial $x^{3}+1, C_{3}$ is a code having the generator polynomial $\left(x^{5}+1\right), C_{4}$ is a code with generator polynomial $x^{6}+1$, the code C_{5} is generated by the polynomial $\mathrm{x}^{2}+1$. Finally the polynomial $x^{7}+1$ generates the code C_{6}.

It is left as an exercise for the reader to verify that the 6 -code is a self orthogonal code with the generator 6-matrix $G=G_{1} \cup \mathrm{G}_{2}$ $\cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6}$

$$
\begin{gathered}
=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup} \\
\\
{\left[\begin{array}{llllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

2.2 Error Detection and Error Correction in n-codes ($\mathrm{n} \geq 2$)

Now having defined the notion of n-codes ($n \geq 4$) we proceed on to define the methods of decoding and error detection. We know if we have any n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}(n \geq 4)$, associated with C is the generator n-matrix $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup$ G_{n} and the parity check n-matrix $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{\mathrm{n}}$, then G and H are related in such a fashion that $\mathrm{GH}^{\mathrm{T}}=(0) \cup(0) \cup \ldots$ $\cup(0)$. Now any n-code word in a n-code would be of the form $\left(\mathrm{x}_{1}^{1} \mathrm{x}_{2}^{1} \ldots \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{x}_{1}^{2} \mathrm{x}_{2}^{2} \ldots \mathrm{x}_{\mathrm{n}_{2}}^{2}\right) \cup \ldots \cup\left(\mathrm{x}_{1}^{\mathrm{n}} \mathrm{x}_{2}^{\mathrm{n}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)$.

Now the operation of any n-code word on the parity check n -matrix H is carried out as follows:

$$
\begin{align*}
& H x^{T}=H\left[\left(x_{1}^{1} x_{2}^{1} \ldots x_{n_{1}}^{1}\right) \cup\left(x_{1}^{2} x_{2}^{2} \ldots x_{n_{2}}^{2}\right) \cup \ldots \cup\left(x_{1}^{\mathrm{n}} \mathrm{x}_{2}^{\mathrm{n}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)\right]^{\mathrm{T}} \\
& =H\left[\left(x_{1}^{1} x_{2}^{1} \ldots x_{n_{1}}^{1}\right)^{T} \cup\left(x_{1}^{2} x_{2}^{2} \ldots x_{n_{2}}^{2}\right)^{T} \cup \ldots\right. \\
& \left.\cup\left(\mathrm{x}_{1}^{\mathrm{n}} \mathrm{x}_{2}^{\mathrm{n}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)^{\mathrm{T}}\right] \\
& =\left[H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right] \\
& {\left[\left(x_{1}^{1} x_{2}^{1} \ldots x_{n_{1}}^{1}\right)^{T} \cup\left(x_{1}^{2} x_{2}^{2} \ldots x_{n_{2}}^{2}\right)^{T} \cup \ldots \cup\left(x_{1}^{n} x_{2}^{n} \ldots x_{n_{n}}^{n}\right)^{T}\right]} \\
& =H_{1}\left(x_{1}^{1} x_{2}^{1} \ldots x_{n_{1}}^{1}\right)^{T} \cup H_{2}\left(x_{1}^{2} x_{2}^{2} \ldots x_{n_{2}}^{2}\right)^{T} \cup \ldots \cup \\
& H_{n}\left(x_{1}^{n} x_{2}^{n} \ldots x_{n_{n}}^{n}\right)^{T} \text {. } \\
& =(0) \cup(0) \cup \ldots \cup(0) \tag{I}
\end{align*}
$$

Equation (I) implies x is a n -code word of C associated with the parity check n-matrix H. Even if one of $H_{i} x_{i}^{T} \neq(0), 1 \leq i \leq n$, then we conclude the code word is not from C. Thus we say $\mathrm{x} \in$ $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ if and only if $\mathrm{Hx}^{\mathrm{T}}=(0) \cup(0) \cup \ldots \cup$ (0) otherwise $\mathrm{x} \notin \mathrm{C}$ and error has occurred during transmission of the n-code.

Before we proceed further we define the notion of Hamming n-distance of two n-code words x and y from the n code C. Let

$$
\mathrm{x}=\left(\mathrm{x}_{1}^{1} \mathrm{x}_{2}^{1} \ldots \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{x}_{1}^{2} \mathrm{x}_{2}^{2} \ldots \mathrm{x}_{\mathrm{n}_{2}}^{2}\right) \cup \ldots \cup\left(\mathrm{x}_{1}^{\mathrm{n}} \mathrm{x}_{2}^{\mathrm{n}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right) \in \mathrm{C}
$$

where each ($x_{1}^{i} x_{2}^{i} \ldots x_{n_{i}}^{i}$) $\in C_{i}$ with $C_{i} a\left(n_{i}, k_{i}\right)$ code.

The Hamming n-distance between x and y is defined to be a n tuple of numbers $\left(t_{1}, \ldots, t_{n}\right)$ where
$\mathrm{t}_{\mathrm{i}}=\mathrm{d}\left\{\left(\mathrm{x}_{1}^{\mathrm{i}} \mathrm{x}_{2}^{\mathrm{i}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{i}}}^{\mathrm{i}}\right),\left(\mathrm{y}_{1}^{\mathrm{i}} \mathrm{y}_{2}^{\mathrm{i}} \ldots \mathrm{y}_{\mathrm{n}_{\mathrm{i}}}^{\mathrm{i}}\right)\right\} ; 1 \leq \mathrm{i} \leq \mathrm{n} ;$
where $\mathrm{y}=\left(\mathrm{y}_{1}^{1} \mathrm{y}_{2}^{1} \ldots \mathrm{y}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{y}_{1}^{2} \mathrm{y}_{2}^{2} \ldots \mathrm{y}_{\mathrm{n}_{2}}^{2}\right) \cup \ldots \cup\left(\mathrm{y}_{1}^{\mathrm{n}} \mathrm{y}_{2}^{\mathrm{n}} \ldots \mathrm{y}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)$. So

$$
\begin{aligned}
\mathrm{d}(\mathrm{x}, \mathrm{y})= & \left(\mathrm{d}\left[\left(\mathrm{x}_{1}^{1} \mathrm{x}_{2}^{1} \ldots \mathrm{x}_{\mathrm{n}_{1}}^{1}\right),\left(\mathrm{y}_{1}^{1} \mathrm{y}_{2}^{1} \ldots \mathrm{y}_{\mathrm{n}_{1}}^{1}\right)\right],\right. \\
& \mathrm{d}\left[\left(\mathrm{x}_{1}^{2} \mathrm{x}_{2}^{2} \ldots \mathrm{x}_{\mathrm{n}_{2}}^{2}\right),\left(\mathrm{y}_{1}^{2} \mathrm{y}_{2}^{2} \ldots \mathrm{y}_{\mathrm{n}_{2}}^{2}\right)\right], \ldots, \\
& \left.\mathrm{d}\left[\left(\mathrm{x}_{1}^{\mathrm{n}} \mathrm{x}_{2}^{\mathrm{n}} \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right),\left(\mathrm{y}_{1}^{\mathrm{n}} \mathrm{y}_{2}^{\mathrm{n}} \ldots \mathrm{y}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)\right]\right) \\
= & \left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right) . \\
\mathrm{d}(\mathrm{x}, \mathrm{x})= & (0,0, \ldots, 0) .
\end{aligned}
$$

when

$$
\begin{aligned}
& \mathrm{x} \quad=\left(\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right) \cup(1111111) \cup(0000) \cup \\
& (101010) \cup(0101010101) \cup \\
& (111000110) \in \mathrm{C}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{y} \quad=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right) \cup \\
& (111100) \cup(1010111101) \cup \\
& \text { (111001000) } \in \text { C. }
\end{aligned}
$$

Now

$$
\begin{aligned}
& d(x, y)=\left\{d\left[(1101010),\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 0
\end{array}\right)\right],\right. \\
& \mathrm{d}\left[\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array} 11 \text {), (1 } 010101\right)\right] \text {, } \\
& \text { d[(0 } 0000 \text {), (1 } 1000)] \text {, } \\
& \mathrm{d}\left[\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1
\end{array}\right)\right. \text {), (1111100)], } \\
& \mathrm{d}[(0101010101),(1010111101)] \text {, } \\
& \text { d[(111000110), (111001000)]\} } \\
& =(1,3,2,3,6,3) \text {. }
\end{aligned}
$$

Here d is a Hamming 6-distance i.e., $\mathrm{n}=6$. The Hamming n weight of the a n-code x is defined as $w(x)=d(x, 0)$. In case
$\mathrm{x} \quad=\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}\right) \cup\left(\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup$ $\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right) \cup\left(\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array} 1\right) \cup$ $(111000110) \in \mathrm{C}_{6}$
we have $\mathrm{w}(\mathrm{x})=\mathrm{d}(\mathrm{x}, 0)=(3,7,0,3,5,5)$. When $\mathrm{n}=1$ we get the usual Hamming distance and Hamming weight. When $n=2$ we get the Hamming bidistance or Hamming 2 distance and Hamming biweight or Hamming 2-weight. When $n=3$ we get the Hamming tridistance or Hamming 3-distance and Hamming

3-weight or Hamming triweight and when $n \geq 4$ we have the Hamming n-distance and Hamming n-weight. So it is analogously defined for linear n-codes $d(x, y)=d(x-y, 0)=$ $\mathrm{w}(\mathrm{x}-\mathrm{y})$. Thus the minimum n-distance of a n -code C is equal to the least of n-weight of all non zero n-code words. If ($\mathrm{d}_{1}, \mathrm{~d}_{2}$, \ldots, d_{n}), denotes the minimum distance of a linear (n, k) code then we call this n-code C as $\left(\left(n_{1}, n_{2}, \ldots, n_{n}\right),\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right.$, $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$) code.

Now this n-code equivalently be denoted by $\left(\mathrm{n}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right) \cup$ $\left(\mathrm{n}_{2}, \mathrm{k}_{2}, \mathrm{~d}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}\right)$.

Now we proceed on to define the notion of n-sphere of $\left(r_{1}, \ldots, r_{n}\right)$ radius of a n-code word $x \in C_{1} \cup C_{2} \cup \ldots \cup C_{n}$. Let $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{n}} \in \mathrm{C} ; \mathrm{x}_{\mathrm{i}} \in \mathrm{C}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

$$
\begin{aligned}
\mathrm{S}_{\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}(\mathrm{x})= & \mathrm{S}_{\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right.}\left(\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{n}}\right) \\
= & \mathrm{S}_{\mathrm{r}_{1}}\left(\mathrm{x}_{1}\right) \cup \mathrm{S}_{\mathrm{r}_{2}}\left(\mathrm{x}_{2}\right) \cup \ldots \cup \mathrm{S}_{\mathrm{r}_{\mathrm{r}}}\left(\mathrm{x}_{\mathrm{n}}\right) \\
= & \left\{\mathrm{y}_{1} \in \mathrm{Z}_{\mathrm{q}}^{\mathrm{n}_{1} / d}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \leq \mathrm{r}_{1}\right\} \cup\left\{\mathrm{y}_{2} \in \mathrm{Z}_{\mathrm{q}}^{\mathrm{n}_{2}} / \mathrm{d}\left(\mathrm{x}_{2},\right.\right. \\
& \left.\left.\mathrm{y}_{2}\right) \leq \mathrm{r}_{2}\right\} \cup \ldots \cup\left\{\mathrm{y}_{\mathrm{n}} \in \mathrm{Z}_{\mathrm{q}}^{\mathrm{n}_{\mathrm{n}}} / \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \leq \mathrm{r}_{\mathrm{n}}\right\}
\end{aligned}
$$

where $x_{i}=\left(x_{1}^{i} x_{2}^{i} \ldots x_{n_{i}}^{i}\right) \in C_{i} ; 1 \leq i \leq n$ where C_{i} is a $\left(n_{i}, k_{i}\right)$ code.

In decoding we distinguish between the detection and the correction of errors. We say a n-code can correct $\left(t_{1}, \ldots, t_{n}\right)+$ $\left(s_{1}, \ldots, s_{n}\right) \geq 0$ errors, if the structure of the n-code makes it possible to correct upto (t_{1}, \ldots, t_{n}) tuple of errors to detect (t_{1}, $\left.\ldots, t_{n}\right)+\left(j_{1}, \ldots, j_{n}\right), 0 \leq j_{i} \leq s_{i}, i=1,2, \ldots, n$, tuple errors, which has occurred during the transmission over a channel. Now we have the following result.

Result: A linear n-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$ with minimum distance $\left(d_{1}, \ldots, d_{n}\right)$ can correct up to $\left(t_{1}, \ldots, t_{n}\right)$ tuple errors and can detect $\left(\mathrm{t}_{1}+\mathrm{j}_{1}, \mathrm{t}_{2}+\mathrm{j}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}+\mathrm{j}_{\mathrm{n}}\right)$ tuple errors with $0 \leq \mathrm{j} \leq \mathrm{s}_{\mathrm{i}}$, i $=1,2, \ldots, n$ if and only if each $2 t_{i}+s_{i} \leq d_{i} ; 1 \leq i \leq n$. Here C_{i} is a (n_{i}, k_{i}, d_{i}) code, $i=1,2, \ldots, n$.

Now we proceed on to define the notion of Hamming nbound. The parameter tuples ($\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}$), ($\left.\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{n}}\right),\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$, $\left(M_{1}, \ldots, M_{n}\right)$ of a ($\left.t_{1}, \ldots, t_{n}\right)$ tuple error correcting n-code,
$C=C\left(n_{1}, k_{1}, d_{1}\right) \cup C\left(n_{2}, k_{2}, d_{2}\right) \cup \ldots \cup C\left(n_{n}, k_{n}, d_{n}\right)$ over $F_{q_{1}} \cup$ $\mathrm{F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}$ of length ($\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{n}}$) with ($\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}$), n-code words satisfy the n tuple inequality

$$
\begin{aligned}
& M_{1}\left(1+\left(q_{1}-1\right)\binom{n_{1}}{1}+\ldots+\left(q_{1}-1\right)^{t_{1}}\binom{n_{1}}{t_{1}}\right) \cup \\
& M_{2}\left(1+\left(q_{2}-1\right)\binom{n_{2}}{1}+\ldots+\left(q_{2}-1\right)^{t_{2}}\binom{n_{2}}{t_{2}}\right) \cup \ldots \cup \\
& M_{n}\left(1+\left(q_{n}-1\right)\binom{n_{n}}{1}+\ldots+\left(q_{n}-1\right)^{t_{n}}\binom{n_{n}}{t_{n}}\right) \\
& \quad \leq\left(q_{1}^{n_{1}}, q_{1}^{n_{2}}, \ldots, q_{n}^{n_{n}}\right)
\end{aligned}
$$

i.e., each
$M_{i}\left[\left(1+\left(q_{i}-1\right)\binom{n_{i}}{1}+\ldots+\left(q_{i}-1\right)^{t_{i}}\binom{n_{i}}{t_{i}}\right] \leq q^{n_{i}} ; i=1,2, \ldots, n\right.$.
As in case of linear codes we define in case of linear n-codes the notion of a special class of n-codes where the n-tuple of vectors are within or on n-spheres of radius tuple $\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ about the n code words of a linear $\left(\left(\left(n_{1}, \ldots, n_{n}\right),\left(k_{1}, \ldots, k_{n}\right)\right)\right)$ code.

Now we illustrate a method by which error first is detected, this is described for a n -code; $\mathrm{n}=5$.

Example 2.2.1: Let us consider a 5-code $C=C_{1} \cup C_{2} \cup \ldots \cup$ C_{5} generated by the generator 5-matrix $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{5}$ where

$$
\begin{aligned}
G & =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \cup \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \cup }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right] .}
\end{aligned}
$$

is a 5-matrix.
The corresponding parity check 5-matrix;

$$
\begin{aligned}
& H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4} \cup H_{5} . \\
&=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup } \\
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup } \\
& {\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right] \cup }
\end{aligned}
$$

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Now we give some of the 5 -codes generated by G in the following;
$\left\{\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right) \cup\right.$ $(0000000),(011100) \cup(1010) \cup(1101100) \cup$ $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}\right) \cup\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}\right)$), (000111$) \cup(0111) \cup$ $(1000111) \cup(01111) \cup(1001111),(000000) \cup$ $(1101) \cup(0110001) \cup(10001) \cup(1010001)$ and so on\}.

Suppose we are sending a code $\mathrm{x} \in \mathrm{C}=\mathrm{C}(6,3) \cup \mathrm{C}(4,2) \cup$ $C(7,3) \cup C(5,3) \cup C(7,4)$ the 5 -code and we have received a message

$$
\begin{aligned}
\mathrm{y} & \left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 0
\end{array} 0\right) \cup\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \cup \\
& \left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right) ; \\
\mathrm{Hy}^{\mathrm{T}}= & {\left[\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\right.} \\
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right] \cup }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\right] \times \\
& {[(1) 111100) \cup(1011) \cup\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right) \cup(0)} \\
& 11011 \text {)] }{ }^{\mathrm{T}} \\
& =\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \cup \\
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \cup}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right]} \\
& =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{lll}
0 & 0
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{llll}
0 & 1 & 0
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$

This clearly shows the received message y is not a 5 -code word from C as $\mathrm{Hy}^{\mathrm{T}} \neq(0) \cup(0) \cup(0) \cup(0) \cup(0)$. Thus we have to formulate a method to obtain the correct code word.

We make use of coset n-leader which we would be defining now.

DEFINITION 2.2.1: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a n-group. H is a n-subgroup of G i.e., $H=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ where each H_{i} is a subgroup of $G_{i} ; i=1,2, \ldots$, n. The coset of the n subgroup H of the n-group G is defined as,

$$
g H=\left(g_{1} \cup g_{2} \cup \ldots \cup g_{n}\right) H
$$

where

$$
g=g_{1} \cup g_{2} \cup \ldots \cup g_{n} \in G
$$

with $g_{i} \in G_{i}, 1 \leq i \leq n$; now

$$
\begin{aligned}
g H & =\left(g_{1} \cup g_{2} \cup \ldots \cup g_{n}\right) H \\
& =\left(g_{1} \cup g_{2} \cup \ldots \cup g_{n}\right)\left(H_{1} \cup \cup \ldots \cup H_{n}\right) \\
& =\left(g_{1} H_{1} \cup g_{2} H_{2} \cup \ldots \cup g_{n} H_{n}\right)
\end{aligned}
$$

where $g_{i} H_{i}$ is the coset of H_{i} in G_{i}.

$$
\begin{aligned}
g H= & \left\{g_{1} h^{1} / h^{1} \in H_{1}\right\} \cup\left\{g_{2} h^{2} / h^{2} \in H_{2}\right\} \cup \ldots \cup \\
& \left\{g_{n} h^{n} / h^{n} \in H_{n}\right\} .
\end{aligned}
$$

Now we can have a n-field $\mathrm{F}_{\mathrm{q}_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}$ or $\mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup$ $\ldots \cup \mathrm{Z}_{2}$ also for when we have to define n codes we need the notion of n-vector spaces and n-subspaces so we accept the
structure of $\mathrm{F}_{\mathrm{q}_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{n}}$ even if each of q_{i} are the same prime number as special n-field which we can call as a pseudo n -field. Thus $\mathrm{Z}_{5} \cup \mathrm{Z}_{7} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{11} \cup \mathrm{Z}_{19}$ is a n -field or to be more precise a 5 -field now, $Z_{3} \cup Z_{3} \cup Z_{3} \cup Z_{3} \cup Z_{7}$ is a pseudo n field; likewise $\mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{2}$ is a pseudo 6 -field. It is pertinent to mention here a n-field or a pseudo n field is not a field. Now we can define n-vector space over the n -field or pseudo n -field. We say $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ to be n -vector space over the n -field, $\mathrm{F}=\mathrm{F}_{\mathrm{q}_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}\left(\mathrm{q}_{\mathrm{i}}-\right.$ prime number $\mathrm{i}=1,2, \ldots, \mathrm{n}$) or over a n-pseudo field $\mathrm{F}=\mathrm{Z}_{2} \cup$ $\mathrm{Z}_{2} \cup \ldots \cup \mathrm{Z}_{2}$ if each V_{i} is a vector space over $\mathrm{F}_{\mathrm{q}_{\mathrm{i}}}$ (or Z_{2}); true for $\mathrm{i}=1,2, \ldots$, n . So $\mathrm{V}=\mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$ is a n-vector space over the n-pseudo field F .

Now if each n_{i} is distinct i.e. $n_{i} \neq n_{j}$, if $i \neq j$ for $1 \leq i, j \leq n$, then we say V is a n-vector space even if some of the n_{i} 's are not distinct then we call V to be a pseudo n-vector space over F a n-field or over a pseudo n-field. Clearly if $V=V_{1} \cup V_{2} \cup$... $\cup \mathrm{V}_{\mathrm{n}}$ is a n-vector space over the n-field $\mathrm{F}_{\mathrm{q}_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}$ then each V_{i} is a vector space over $F_{q_{i}}, i=1,2, \ldots, n$. Further if each of the vector space V_{i} over $F_{q_{i}}$ is finite dimensional say of dimension n_{i} then each V_{i} is isomorphic to $F_{q_{i}}^{n_{i}} ; i=1,2, \ldots, n$. Thus

$$
\mathrm{V}=\mathrm{F}_{\mathrm{q}_{1}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}^{\mathrm{n}_{\mathrm{n}}}
$$

is a finite dimensional n-vector space over the n-field, $\mathrm{F}=\mathrm{F}_{\mathrm{q}_{1}} \cup$ $\mathrm{F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}$ and we say the n -vector space of finite dimension i.e., V is ($n_{1}, n_{2}, \ldots, n_{n}$)-dimension over F.

Suppose $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ be a n -subspace of $\mathrm{V}=$ $V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ i.e. each W_{i} is a subspace of $V_{i}, i=1,2, \ldots$, n and if each W_{i} is of dimension k_{i} over $\mathrm{F}_{\mathrm{q}_{\mathrm{i}}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ then we say W is a n-subspace of the n-vector space over $F=F_{q_{1}} \cup$ $\mathrm{F}_{\mathrm{q}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}$ and W is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)$ dimensional subspace of V and $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \cong F_{q_{1}}^{k_{1}} \cup \mathrm{~F}_{\mathrm{q}_{2}}^{k_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}_{\mathrm{n}}}^{k_{\mathrm{n}}}$;
where $1 \leq k_{i} \leq n_{i} ; i=1,2, \ldots, n$. When we have the n-code these concepts will be used for error correction as well as error detection.

Now we just recall when we have a n-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup$ $\ldots C_{n}=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup \ldots \cup C\left(n_{n}, k_{n}\right)$, then each $C\left(n_{i}\right.$, k_{i}) can be realized as a subspace of the vector space $\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{i}}}$ over Z_{2} or to be more precise each $C\left(n_{i}, k_{i}\right)$ is the subspace $Z_{2}^{k_{i}} \subset Z_{2}^{n_{i}}$ over Z_{2}; for $i=1,2, \ldots$, n. Thus we can say

$$
\begin{aligned}
\mathrm{C} & =\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \mathrm{C}\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right) \cup \ldots \cup \mathrm{C}\left(\mathrm{n}_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}\right) \\
& \cong \mathrm{Z}_{2}^{\mathrm{k}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{k}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{k}_{\mathrm{n}}} \subseteq \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}
\end{aligned}
$$

over Z_{2}. This clearly shows each code in C is of length n_{i} having k_{i} number of messages and $n_{i}-k_{i}$ check symbols; $1 \leq i \leq n$.

Now we proceed onto define the coset n-leader.
We see $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is a n-vector space over the pseudo n-field $F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$ of finite dimension ($\mathrm{n}_{1}, \mathrm{n}_{2}$, ..., n_{n}). So

$$
\begin{aligned}
\mathrm{V} & =\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}} \\
& \cong \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}} .
\end{aligned}
$$

Let C be a n code over Z_{2} where C is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)$ dimensional code. Clearly C is a n-subspace of V and $\mathrm{V} \cong \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup$ $\mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$ i.e. $\mathrm{C}=\mathrm{Z}_{2}^{\mathrm{k}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{k}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{k}_{\mathrm{n}}}$ is contained in $\mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$.

Now we see C is a n-subgroup of the n-group V, so that we can define the n -coset of C in V to be

$$
\begin{aligned}
x+C & =\left\{\left(x=x_{1} \cup x_{2} \cup \ldots \cup x_{n}\right)+C \mid x \in V\right\} \\
& =\left\{\left(x_{1} \cup x_{2} \cup \ldots \cup x_{n}\right)+\left(Z_{2}^{k_{1}} \cup Z_{2}^{k_{2}} \cup \ldots \cup Z_{2}^{k_{n}}\right)\right.
\end{aligned}
$$

(where $\mathrm{x}=\left(\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$) $=\left\{\left(\mathrm{x}_{1}\right.\right.$
$\left.+Z_{2}^{k_{1}}\right) \cup\left(x_{2}+Z_{2}^{k_{2}}\right) \cup \ldots \cup\left(x_{n}+Z_{2}^{k_{n}}\right) \mid x \in Z_{2}^{\mathrm{n}_{1}} \cup Z_{2}^{\mathrm{n}_{2}} \cup \ldots \cup$
$\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$) i.e. $\left.\mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{i}}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

We know the coset of a subgroup H of a group G partitions G ; likewise the n -coset of a n -subgroup H of a n -group G will partition G. In fact here we can realize $V=Z_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup$ $\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$, the n -group will be partitioned by its n -subgroup $\mathrm{C}=\mathrm{Z}_{2}^{\mathrm{k}_{1}}$ $\cup Z_{2}^{k_{2}} \cup \ldots \cup Z_{2}^{k_{n}}$. The n-coset contains ($2^{k_{1}}, 2^{k_{2}}, \ldots, 2^{k_{n}}$) n vectors. Thus V is partitioned in the form

$$
\begin{aligned}
\mathrm{V}= & \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}} \\
= & \left\{\mathrm{Z}_{2}^{\mathrm{k}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{k}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{k}_{\mathrm{n}}}\right\} \cup\left\{\left(\mathrm{x}_{1}^{(1)}+\mathrm{Z}_{2}^{\mathrm{n}_{1}}\right) \cup\right. \\
& \left.\left(\mathrm{x}_{1}^{(2)}+\mathrm{Z}_{2}^{\mathrm{n}_{1}}\right) \cup \ldots \cup\left(\mathrm{x}_{1}^{\left(\mathrm{t}_{1}\right)}+\mathrm{Z}_{2}^{\mathrm{n}_{1}}\right)\right\} \cup\left\{\left(\mathrm{x}_{2}^{(1)}+\mathrm{Z}_{2}^{\mathrm{n}_{2}}\right) \cup\right. \\
& \left(\mathrm{x}_{2}^{(2)}+\mathrm{Z}_{2}^{\mathrm{n}_{2}}\right) \cup \ldots \cup\left(\mathrm{x}_{2}^{\left(\mathrm{t}_{2}\right)}+\mathrm{Z}_{2}^{\mathrm{n}_{2}}\right\} \cup \ldots \cup\left\{\left(\mathrm{x}_{\mathrm{n}}^{(1)}+\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}\right)\right. \\
& \left.\cup\left(\mathrm{x}_{\mathrm{n}}^{(2)}+\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}\right) \cup \ldots \cup\left(\mathrm{x}_{\mathrm{n}}^{\left(\mathrm{t}_{\mathrm{n}}\right)}+\mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}\right)\right\}
\end{aligned}
$$

where $t_{i}=q^{n_{i}-k_{i}}-1 ; i=1,2, \ldots, n$. Thus we see a partition of the n -group $\mathrm{V}=\mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$ by C can be carried out in the following way.
If
$C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$

$$
=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup \ldots \cup C\left(n_{n}, k_{n}\right)
$$

be the n-code, then we see

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}} \\
&=\{\mathrm{x}+\mathrm{C} \mid \mathrm{x} \in \mathrm{~V}\} \\
&=\left\{\left(\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}\right)\right. \\
&=\left\{\left\{\mathrm{x}_{1}+\mathrm{C}_{1}\right\} \cup\left\{\mathrm{x}_{2}+\mathrm{C}_{2}\right\} \cup \ldots \cup\left\{\mathrm{x}_{\mathrm{n}}+\mathrm{C}_{\mathrm{n}}\right\} \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{i}}} ; \mathrm{i}=\right. \\
&1,2, \ldots, \mathrm{n}\} .
\end{aligned}
$$

Now if y is the received n-code word then certainly $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2}$ $\cup \ldots \cup y_{n}$ is such that y is in one of the n -cosets. If the n -code word x has been transmitted then the error n -vector

$$
\begin{aligned}
\mathrm{e} & =\left(e_{1} \cup e_{2} \ldots \cup e_{n}\right) \\
& =(y-x) \\
& =\left(y_{1}-x_{1}\right) \cup \ldots \cup\left(y_{n}-x_{n}\right)
\end{aligned}
$$

where each $\left(y_{1}-x_{i}\right) \in x_{i}^{(i)}+C_{i}, i=1,2, \ldots, n$ and $1 \leq j \leq t_{i}$.
We will illustrate this by an example.
Example 2.2.2: Let $C=C_{1} \cup C_{2}=C(4,2) \cup C(6,3)$ be a bicode associated with the parity check bimatrix,

$$
\begin{gathered}
\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \\
=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

and generator bimatrix

$$
\begin{gathered}
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \\
=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

The set of bicodes are given by
 (0 00000), (1110) $\cup(000000),(0000) \cup(100011)$, $(1011) \cup(100011),(0101) \cup(100011),(1110) \cup$ $(100011),(0000) \cup(001110),(1110) \cup(001110)$, $(0101) \cup(001110),(1011) \cup(001110)$ and so on\}.

Now we give the partition of $Z_{2}^{4} \cup Z_{2}^{6}$ using the bicode $C=$ $\mathrm{C}_{1} \cup \mathrm{C}_{2}$.

0000	1011	0101	1110	code words
1000	0010	1101	0110	other
0100	1111	0001	1010	
0010	1001	0111	1100	
coset leader				

000000	100011	001110	011011	code words
100000	000011	101110	111011	
010000	110011	011110	001011	
001000	101000	000110	010011	other
000100	100111	001010	011111	
000010	100001	001100	011001	
000001	100010	001111	011010	
001001	101001	000111	010010	

coset leader

110110	111000	010101	101101	code words
010110	011000	110101	001101	
100110	101000	000101	111101	
111110	110000	011101	100101	other
110010	111100	010001	101001	
110100	111010	010111	101110	
110111	111001	010100	101101	
111111	110001	011100	100100	

coset leader
is the bicoset of C. Suppose $y=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}\right)$ be the received bicode. We find

$$
\begin{aligned}
\mathrm{Hy}^{\mathrm{T}}= & {\left[\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\right] } \\
& \times\left[\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1
\end{array}\right)\right]^{\mathrm{T}}
\end{aligned}
$$

$$
\left.=\left[\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \cup\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \\
& =(01) \cup(100) \\
& \neq(0) \cup(0) .
\end{aligned}
$$

So $y \notin C$. Hence we now inspect from the coset bileader from the table and we see the coset bileader where (1111) $\cup(100$ $111)$ occurs is $(0100) \cup(000100)=e=e_{1} \cup e_{2}$.

Now $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2}$. Find

$$
\begin{aligned}
& x=e+y \\
& =[(0100) \cup(000100)]+\left[\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1
\end{array}\right)\right] \\
& =\left[(0100)+\left(\begin{array}{llll}
1 & 1 & 1
\end{array}\right)\right] \cup[(000100)+(100111)] \\
& =(1011) \cup(100011) \in C \text {. }
\end{aligned}
$$

Thus the sent message is (1011) $\cup(100011)$.
Now we have the following set to be the bicoset bileader

$$
\begin{aligned}
& \left\{\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \cup(000000),(1000) \cup(100000),\left(\begin{array}{lll}
1 & 0 & 0
\end{array} 0\right) \cup\right.
\end{aligned}
$$

$$
\begin{aligned}
& (1000) \cup(0000000),(1000) \cup(000010),(1000) \cup \\
& \text { (0 } 0000 \text { 1), (1000) } \cup(001001 \text {), (} 0000 \text {) } \cup(100000) \text {, } \\
& (0000) \cup(010000),(0000) \cup(001000),(0000) \cup \\
& \text { (0 } 00100 \text {), (} 0000 \text {) } \cup(000010),(0000) \cup(000001) \text {, } \\
& (0000) \cup(001001),(0100) \cup(000000),(0100) \cup \\
& \text { (10000), (0100) } 10(010000),(0100) \cup(001000) \text {, } \\
& (0100) \cup(000100),(0100) \cup(000010),(0100) \cup \\
& \text { (0 } 0000 \text { 1), (} 0100 \text {) } \cup(001001 \text {, (} 0010 \text {) } \cup(000000 \text {), } \\
& (0010) \cup(100000),(0010) \cup(010000),(0010) \cup \\
& \text { (0 } 01000 \text {), (} 0010 \text {) } \cup(000100 \text {), (} 0010 \text {) } \cup(000010) \text {, } \\
& (0010) \cup(000001),(0010) \cup(001001)\}
\end{aligned}
$$

for the code $C=C(4,2) \cup C(6,3)$.
Thus finding the sent message which is the bicode x and if y is the received bicode and $y \notin C$, y is determined by finding

$$
\begin{aligned}
\mathrm{Hy}^{\mathrm{T}} & =\left(\mathrm{H}_{1} \cup \mathrm{H}_{2}\right) \mathrm{y}^{\mathrm{T}} \\
& =\left(\mathrm{H}_{1} \cup \mathrm{H}_{2}\right)\left(\mathrm{y}_{1} \cup \mathrm{y}_{2}\right)^{\mathrm{T}} \\
& =\left(\mathrm{H}_{1} \cup \mathrm{H}_{2}\right)\left(\mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{y}_{2}{ }^{\mathrm{T}}\right) \\
& =\mathrm{H}_{1} \mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}{ }^{\mathrm{T}} .
\end{aligned}
$$

If $\mathrm{H}_{1} \mathrm{y}^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}{ }^{\mathrm{T}}=(0) \cup(0)$ then $\mathrm{y} \in \mathrm{C}$ if $\mathrm{H}_{1} \mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}{ }^{\mathrm{T}} \neq(0) \cup$ (0), we find the coset leader to which the code y_{1} belongs to and if e_{1} is the coset leader to which y_{1} belongs to, then we find the coset leader to which y_{2} belongs to. Let e_{2} be the coset leader to which y_{2} belongs to. Then $e=e_{1} \cup e_{2}$ is the bierror or the bierror bivector. Now $y+e=x$ gives the sent bicode word. $e=$ $e_{1} \cup e_{2}$ is the bicoset bileader which will be found in the class of bicoset leaders.

Now we proceed on to describe how in the tricode the error is both detected and corrected using the tricoset leaders.

Example 2.2.3: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a tricode with the associated parity check trimatrix

$$
\begin{gathered}
\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}= \\
{\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

The related generator trimatrix of the tricode is given by

$$
\begin{gathered}
G=G_{1} \cup G_{2} \cup G_{3}= \\
{\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

Clearly C $=C(7,4) \cup C(6,3) \cup C(4,2)$ is the tricode. The elements of the tricode are as follows:
$\left\{(0000000) \cup(000000) \cup(0000),\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right) \cup\right.$ $(100100) \cup\left(\begin{array}{lll}1 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}\right) \cup\left(\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right) \cup$ $(010$ 1), $(0010110) \cup(0011) \cup(1110),(001011) \cup$ $(1111111) \cup(0000),\left(\begin{array}{lll}1 & 1 & 1\end{array} 111\right) \cup\left(\begin{array}{ll}1 & 1\end{array} 1111\right) \cup$ $(1110),(1100010) \cup(110110) \cup(1110)$ and so on $\}$.

Suppose $y=(01111111) \cup(011111) \cup(1111)$ be the received tricode word. Find whether the received tricode word is the correct message. If y is to be a correctly received message than we must have $\mathrm{Hy}^{\mathrm{T}}=(0) \cup(0) \cup(0)$. Now consider

$$
\left.\begin{array}{l}
\mathrm{Hy}^{\mathrm{T}}=\left[\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\right. \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]}
\end{array}\right] .
$$

$$
\begin{gathered}
\left.\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\right]^{T} \\
=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \cup \\
=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{ll}
1 & 0 \\
0
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{\mathrm{T}}}
\end{array}\right] \\
\\
\neq(0) \cup(0) \cup(0) .
\end{gathered}
$$

Thus y has error, i.e. the received message has some error. Now we have to detect the error and obtain the correct message. Consider the coset trileader e $=(1000000) \cup(100000) \cup$ (0001); for the vector (01111111) of $Z_{2}{ }^{7}$ falls in the coset with coset leader (1000000); the vector (011111) of $Z_{2}{ }^{6}$ falls in the coset with coset leader (100000) and the vector (1 111) of $\mathrm{Z}_{2}{ }^{4}$ falls in the coset with coset leader (0001). Thus the trivector $(0111111) \cup(011111) \cup(1111)$ falls in the tricoset with the tricoset leader (1000000) $\cup(100000)$ $\cup(0001)=e=e_{1} \cup e_{2} \cup e_{3}$. Thus $y+e=x$ is the correct tricode word which must be the sent message. Thus

$$
\left.\begin{array}{rl}
\mathrm{y}+\mathrm{e}= & {\left[\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \cup\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\right]+[(1} \\
= & 0
\end{array}\right)
$$

$$
=C_{1} \cup C_{2} \cup C_{3} .
$$

Now the same method can be used for any n-code; $n \geq 4$. However we illustrate for a 5-code by an explicit example before we proceed to dewell about other methods.

Example 2.2.4: Consider the 5-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup$ C_{5} associated with the parity check 5-matrix

$$
\begin{aligned}
& \mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}= \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

The corresponding generator 5 matrix

$$
\begin{gathered}
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \\
=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\\
\left.\cup\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \cup \begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

The related 5-code words are as follows:

$$
\left.\begin{array}{l}
\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllll}
0 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cup \\
\left(\begin{array}{l}
0
\end{array} 0\right.
\end{array}\right)
$$

Suppose $y=y_{1} \cup y_{2} \cup y_{3} \cup y_{4} \cup y_{5}=\left(\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 00\right) \cup\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)\right.$
 received word, we have to find whether y is a correct received message. The simple test for this is to find Hy^{T}, if $\mathrm{Hy}^{\mathrm{T}}=(0) \cup$ $(0) \cup(0) \cup(0) \cup(0)$ then $y \in C$ i.e. y is the correct received message. Now consider

$$
\begin{aligned}
& \mathrm{Hy}^{\mathrm{T}}=\left\{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\right. \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\right\} \\
& \times\left[\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0
\end{array}\right)^{T} \cup(11111)^{T} \cup(11111100)^{T} \cup(011000\right. \\
& \text { 1) }{ }^{\mathrm{T}} \cup\left(\begin{array}{lll}
0 & 1 & 0
\end{array} 101\right)^{\mathrm{T}} \text {] } \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]^{\mathrm{T}} \cup\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\mathrm{T}} } \\
& \neq(0) \cup(0) \cup(0) \cup(0) \cup(0) .
\end{aligned}
$$

Thus the received vector $\mathrm{y} \notin \mathrm{C}$ i.e. y is not the correct message; now we have detected that this message has error, now we proceed on to correct the error. This is done by finding the coset-5-leader in which the 5-vector $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2} \cup \mathrm{y}_{3} \cup \mathrm{y}_{4} \cup \mathrm{y}_{5}$ occurs. Suppose, $e=e_{1} \cup e_{2} \cup e_{3} \cup e_{4} \cup e_{5}$ then $y+e=x$ would be the corrected message and $x \in C=C_{1} \cup C_{2} \cup C_{3} \cup$ $\mathrm{C}_{4} \cup \mathrm{C}_{5}$.

Now the coset 5-leader in which y occurs is given by

$$
\left.\begin{array}{rl}
\mathrm{e}= & \left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lllll}
0 & 0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \cup \\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \\
\mathrm{y}+\mathrm{e}
\end{array}\right) \cup\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Now find

$$
H x^{T}=\left\{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \cup\right.
$$

$$
=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
\cup\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup \\
& \left.\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\right\} \times \\
& \left(\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]^{T} \cup\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]^{T} \cup\right. \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]^{T} \cup\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]^{T} \cup} \\
& \left.\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]^{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cup\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right] \cup\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)^{\mathrm{T}} \cup\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right)^{\mathrm{T}} \cup\left(\begin{array}{llll}
0 & 0 & 0
\end{array}\right)^{\mathrm{T}} \cup\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right)^{\mathrm{T}} \cup\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{\mathrm{T}} .
\end{aligned}
$$

Thus x is a 5-code word of C which is the corrected message i.e. the sent message.

Now we proceed on to describe this more technically by defining the term n-syndrome $n \geq 4$, bisyndrome and trisyndrome.

DEFINITION 2.2.2: Let $H=H_{1} \cup H_{2}$ be a parity check bimatrix of a linear $\left(n_{1}, k_{1}\right) \cup\left(n_{2}, k_{2}\right)$ bicode. Then the bivector

$$
\begin{aligned}
S(y) & = & S\left(y_{1}\right) \cup S\left(y_{2}\right) \\
& = & H y \\
& = & \left(H_{1} \cup H_{2}\right)\left(y_{1} \cup y_{2}\right)^{T} \\
& = & \left(H_{1} \cup H_{2}\right)\left(y_{1}{ }^{T} \cup y_{2}{ }^{T}\right) \\
& = & H_{1} y_{1}{ }^{T} \cup H_{2} y_{2}{ }^{T}
\end{aligned}
$$

of length ($\left.n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right)$, is called the bisyndrome of the bivector $y=y_{1} \cup y_{2}$.

$$
S(y)=S\left(y_{1}\right) \cup S\left(y_{2}\right)=(0) \cup(0)
$$

if and only if $y \in C_{1} \cup C_{2}=C$.
$S\left(y^{(1)}\right)=S\left(y^{(2)}\right)=S\left(y_{11}{ }^{(1)} \cup y_{21}{ }^{(1)}\right)=S\left(y_{12}{ }^{(2)} \cup y_{22}{ }^{(2)}\right)$ if and only if $y^{(1)}+C=y^{(2)}+C$ i.e. if and only if $\left(y_{11}{ }^{(1)} \cup y_{21}{ }^{(1)}\right)+\left(C_{1}\right.$ $\left.\cup C_{2}\right)=\left(y_{12}{ }^{(2)} \cup y_{22}{ }^{(2)}\right)+\left(C_{1} \cup C_{2}\right)$ i.e. $\left(y_{11}{ }^{(1)}+C_{1}\right) \cup\left(y_{21}{ }^{(1)}+\right.$ $\left.C_{2}\right)=\left(y_{12}^{(2)}+C_{1}\right) \cup\left(y_{22}^{(2)}+C_{2}\right)$.

If $y=y_{1} \cup y_{2}$ is the received message and $e=e_{1} \cup e_{2}$ is the error with $y=x+e$ then

$$
\begin{aligned}
S(y) & = & S\left(y_{1}\right) \cup S\left(y_{2}\right) \\
& = & S(x+e) \\
& = & S\left(\left(x_{1} \cup x_{2}\right)+\left(e_{1}+e_{2}\right)\right) \\
& = & S\left(\left(x_{1}+e_{1}\right) \cup\left(x_{2}+e_{2}\right)\right) \\
& = & S\left(x_{1}+e_{1}\right) \cup S\left(x_{2}+e_{2}\right) \\
& = & \left\{S\left(x_{1}\right)+S\left(e_{1}\right)\right\} \cup\left\{S\left(x_{2}\right)+S\left(e_{2}\right)\right\} \\
& = & S\left(e_{1}\right) \cup S\left(e_{2}\right)
\end{aligned}
$$

as $x=x_{1} \cup x_{2} \in C=C_{1} \cup C_{2}$ so $S(x)=S\left(x_{1} \cup x_{2}\right)=S\left(x_{1}\right) \cup$ $S\left(x_{2}\right)=(0) \cup(0)$ i.e. y and e are in the same bicoset.

Let us consider how a trisyndrome of a tricode functions and the tricoset leader. Let $H=H_{1} \cup H_{2} \cup H_{3}$ be a parity check trimatrix associated with the tricode $C=C_{1} \cup C_{2} \cup C_{3}$. Any tricode word in C would be of the form $y=y_{1} \cup y_{2} \cup y_{3}$ where y_{1} is the code word in C_{1}, y_{2} a code word in C_{2} and y_{3} the code word in $\mathrm{C}_{3} . \mathrm{Hy}^{T}=S(y)$ i.e.
$S\left(y_{1} \cup y_{2} \cup y_{3}\right)=\left(H_{1} \cup H_{2} \cup H_{3}\right)\left(y_{1}{ }^{T} \cup y_{2}{ }^{T} \cup y_{3}{ }^{T}\right)$

$$
=H_{1} y_{1}{ }^{T} \cup H_{2} y_{2}{ }^{T} \cup H_{3} y_{3}{ }^{T}
$$

$$
=S\left(y_{1}\right) \cup S\left(y_{2}\right) \cup S\left(y_{3}\right)
$$

This $S(y)=(0) \cup(0) \cup(0)$ if and only if $y=y_{1} \cup y_{2} \cup y_{3} \in$ $C=C_{1} \cup C_{2} \cup C_{3}$. If $S(y) \neq(0)$ then $y \notin C$. $S(y)=S\left(y_{1}\right) \cup S\left(y_{2}\right)$ $\cup S\left(y_{3}\right)$ is of length $\left(n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right) \cup\left(n_{3}-k_{3}\right)$ is called the trisyndrome of the trivector $y=y_{1} \cup y_{2} \cup y_{3}$. Thus $S(y)=S\left(y_{1}\right)$ $\cup S\left(y_{2}\right) \cup S\left(y_{3}\right)=(0) \cup(0) \cup(0)$ if and only if $y \in C_{1} \cup C_{2} \cup$ $C_{3}=C$.

$$
S\left(y^{(1)}\right)=S\left(y^{(2)}\right)=S\left(y_{11}{ }^{(1)} \cup y_{21}{ }^{(1)} \cup y_{31}{ }^{(1)}\right)=S\left(y_{12}{ }^{(2)} \cup y_{22}{ }^{(2)} \cup\right.
$$ $\left.y_{32}{ }^{(2)}\right)$ if and only if

$$
\left.\begin{array}{rlrl}
{\left[y_{11}{ }^{(1)} \cup y_{21}{ }^{(1)}\right.} & \left.\cup y_{31}{ }_{31}^{(1)}\right]+\left(C_{1} \cup C_{2} \cup C_{3}\right) \\
& = & \left(y_{12}{ }^{(2)} \cup y_{22}{ }^{(2)} \cup y_{32}(2)\right.
\end{array}\right)+\left(C_{1} \cup C_{2} \cup C_{3}\right) .
$$

If $y=y_{1} \cup y_{2} \cup y_{3}$ is the received message and $e=e_{1} \cup e_{2} \cup e_{3}$ is the error with $y=x+e$ then

$$
\begin{aligned}
S(y) & =S\left(y_{1}\right) \cup S\left(y_{2}\right) \cup S\left(y_{3}\right) \\
& =S(x+e) \\
& =S\left(\left(x_{1} \cup x_{2} \cup x_{3}\right)+\left(e_{1} \cup e_{2} \cup e_{3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =S\left(x_{1}+e_{1}\right) \cup S\left(x_{2}+e_{2}\right) \cup S\left(x_{3}+e_{3}\right) \\
& =\left(S\left(x_{1}\right)+S\left(e_{1}\right)\right) \cup\left(S\left(x_{2}\right)+S\left(e_{2}\right)\right) \cup\left(S\left(x_{3}\right)+S\left(e_{3}\right)\right) \\
& =S\left(e_{1}\right) \cup S\left(e_{2}\right) \cup S\left(e_{3}\right)
\end{aligned}
$$

as $S\left(x_{i}\right)=(0)$ for $i=1,2$, 3. i.e., y and e are in the same tricoset and e is taken as the leader of the tricoset to which the trivector $y=y_{1} \cup y_{2} \cup y_{3}$ belongs.

Now in a similar manner we have the notion of n-syndrome and n coset leader and n-error vector associated with the n code.

Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n code where $C=C\left(n_{1}, k_{1}\right)$ $\cup C\left(n_{2}, k_{2}\right) \cup \ldots \cup C\left(n_{n}, k_{n}\right)$ a n-code $(n \geq 4)$. Any n vector y would be of the form $y=y_{1} \cup y_{2} \cup \ldots \cup y_{n}$. Any n-code $x=x_{1} \cup$ $x_{2} \cup \ldots x_{n}$ would be such that each $x_{i} \in C\left(n_{i}, k_{i}\right)$ is a code of length n_{i} with k_{i} number of message symbols; $i=1,2, \ldots, n$.

Let $H=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ be the parity check n-matrix associated with $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$, the n-code. Let $x=x_{1}$ $\cup x_{2} \cup \ldots \cup x_{n} \in C=C_{1} \cup C_{2} \cup \ldots \cup C_{n} . H x^{T}=\left(H_{1} \cup H_{2} \cup \ldots\right.$ $\left.\cup H_{n}\right)\left(x^{T}\right)=\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left(x_{1}{ }^{T} \cup x_{2}{ }^{T} \cup \ldots \cup x_{n}{ }^{T}\right)=H_{1} x_{1}{ }^{T}$ $\cup H_{2} X_{2}{ }^{T} \cup \ldots \cup H_{n} x_{n}{ }^{T}=(0) \cup(0) \cup \ldots \cup(0)$.

If y is any n-vector if $\mathrm{Hy}^{T} \neq(0) \cup(0) \cup \ldots \cup(0)$ then $y \notin C$ $=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$.

Now

$$
\begin{aligned}
S(y) & =H y^{T} \\
& =\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left(y_{1} \cup y_{2} \cup \ldots \cup y_{n}\right)^{T} \\
& =H_{1} y_{1}{ }^{T} \cup H_{2} y_{2}{ }^{T} \cup \ldots \cup H_{n} y_{n}{ }^{T}
\end{aligned}
$$

is a $\left(n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right) \cup \ldots \cup\left(n_{n}-k_{n}\right)$ length n-vector defined to be the n-syndrome of $y . S(y)=(0) \cup(0) \cup \ldots \cup(0)$ if and only if $y \in C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$.

Now if y is a received message to find the correct sent message. In the first stage we detect whether the received message is correct or not. This is done by calculating S(y) i.e. by finding the n-syndrome of y. i.e.

$$
\begin{aligned}
S(y) & =H y{ }^{T} \\
& =\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right) y^{T} \\
& =\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left(y_{1}{ }^{T} \cup y_{2}{ }^{T} \cup \ldots \cup y_{n}{ }^{T}\right) \\
& =H_{1} y_{1}{ }^{T} \cup H_{2} y_{2}{ }^{T} \cup \ldots \cup H_{n} y_{n} .
\end{aligned}
$$

$$
\begin{aligned}
\text { If } S(y) & =H_{1} y_{1}{ }^{T} \cup H_{2} y_{2}{ }^{T} \cup \ldots \cup H_{n} y_{n}{ }^{T} \\
& =(0) \cup(0) \cup \ldots \cup(0) ;
\end{aligned}
$$

then we say the received message is a correct message and we accept y as the sent message. If on the other hand $S(y) \neq(0) \cup$ (0) $\cup \ldots \cup(0)$ then we say the received message y has error. The error has to be detected as $S(y) \neq(0) \cup(0) \cup \ldots \cup(0)$.

Now we find the error n-vector $e=e_{1} \cup e_{2} \cup \ldots \cup e_{n}$ and add e with y which is the corrected message. Suppose $y=y_{1} \cup$ $y_{2} \cup \ldots \cup y_{n}$ where each y_{i} is a n_{i}-length vector with k_{i} message symbols and $n_{i}-k_{i}$ check symbols; true for $i=1,2, \ldots, n$.

Now we find the n-coset leader for the n vector $y=y_{1} \cup y_{2}$ $\cup \ldots \cup y_{n}$. Suppose $e=e_{1} \cup e_{2} \cup \ldots \cup e_{n}$ is the coset leader then we see $y+e=x=x_{1} \cup x_{2} \cup \ldots \cup x_{n}$. We have each e_{i} is the coset leader of the vector y_{i} in y for $i=1,2, \ldots, n$.

Now it is easily verified $x \in C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ i.e. $H x^{T}$ $=S(x)=(0) \cup(0) \cup \ldots \cup(0)$.

Note: It may so happen that at times when $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2} \cup \ldots \cup \mathrm{y}_{\mathrm{n}}$ is the received n-vector and $H=H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ the parity check matrix of the n-code we have

$$
\begin{aligned}
\mathrm{Hy}^{\mathrm{T}} & =\left(\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{\mathrm{n}}\right)\left(\mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{y}_{2}{ }^{\mathrm{T}} \cup \ldots \cup \mathrm{y}_{\mathrm{n}}{ }^{\mathrm{T}}\right) \\
& =\mathrm{H}_{1} \mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{H}_{2 y_{2}{ }^{\mathrm{T}} \cup \ldots \cup \mathrm{H}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}}{ }^{\mathrm{T}}} \\
& \neq(0) \cup(0) \cup \ldots \cup(0)
\end{aligned}
$$

but some of the $\mathrm{H}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{\mathrm{T}}=(0)$, and some of the $\mathrm{H}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}{ }^{\mathrm{T}} \neq(0) ; \mathrm{i} \neq \mathrm{j}$ so that resulting in $\mathrm{Hy}^{\mathrm{T}} \neq(0) \cup(0) \cup \ldots \cup(0)$ in which case we take the coset leaders of those i for which $\mathrm{H}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{\mathrm{T}}=(0)$ to be (0 0 $\ldots 0$) i.e. the coset leader of the n-code, $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$. Thus we may not or need not in general have each $\mathrm{H}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}{ }^{\mathrm{T}}=(0)$; t $=1,2, \ldots, n$; some may be zero and some may not be zero, at times it may so happen each $\mathrm{H}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}^{\mathrm{T}} \neq(0), \mathrm{t}=1,2, \ldots, \mathrm{n}$ in which case we will have each coset leader to be non zero. We have illustrated this case in the 5 -code given in the earlier example.

Now we proceed onto give the pseudo best n-approximation to the received message when the received message has errors.

This method gives us approximately the best n-code word which is very close to the received message. To this end we define the new notion of pseudo best n-approximation and pseudo n inner product of a finite dimensional n-vector space V $=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over n-field $Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$. For the sake of completeness we recall the definition of n-vector space, n -subvector space and a n-code.

Just for the sake of clarity and simplicity of understanding we use the prime field Z_{2} of characteristic 2 . It is stated that the results and definitions are true for any prime field Z_{p} of characteristic p (p a prime) or even over any non prime field of characteristic p.

DEFINITION 2.2.3: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-vector space of finite dimension ($n_{1}, n_{2}, \ldots, n_{n}$) over the n-field $F=Z_{2}$ $\cup Z_{2} \cup \ldots \cup Z_{2}$ i.e. each V_{i} is a n_{i} dimensional vector space over $Z_{2} ; i=1,2, \ldots, n$. The pseudo n-inner product on the n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is a n-map $\left\langle, \ell_{p}(\right.$ Here $p=2)$ from $V \times V \rightarrow F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$ satisfying the following conditions.
(1) The n-map $\langle,\rangle_{p}=\langle \rangle_{p}^{1} \cup\langle \rangle_{p}^{2} \cup \ldots \cup\langle \rangle_{p}^{n}:\left(V_{1} \cup V_{2} \cup \ldots\right.$ $\left.\cup V_{n}\right) \times\left(V_{1} \cup V_{2} \cup \ldots \cup V_{n}\right) \rightarrow Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$ such that $\langle x, x\rangle_{p} \geq 0$ for all $x \in V$ i.e. $\left(x_{1} \cup x_{2} \cup \ldots \cup x_{n}\right) \in V_{1}$ $\cup V_{2} \cup \ldots \cup V_{n}$ i.e. $\left\langle x_{1}, x_{1}\right\rangle_{p}^{1} \cup\left\{x_{2}, x_{2}\right\rangle_{p}^{2} \cup \ldots \cup\left\langle x_{n}, x_{n}\right\rangle_{p}^{n}$ $\geq 0 \cup 0 \cup \ldots \cup 0$ i.e. each $\left\langle x_{i}, x_{i}\right\rangle_{p}^{i} \geq 0$ for $i=1,2, \ldots, n$ with $x_{i} \in V_{i}$ i.e. $\langle,\rangle^{j}: V_{i} x V_{i} \rightarrow Z_{2}$ and $\{x, x\rangle_{p}=0$ does not imply each $x=x_{1} \cup x_{2} \cup \ldots \cup x_{n}=(0) \cup(0) \cup \ldots \cup(0)$.
(2) $\langle x, y\rangle_{p}=\langle y, x\rangle_{p}$ for all $x, y \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ where $x=x_{1} \cup x_{2} \cup \ldots \cup x_{n}$ and $y=y_{1} \cup y_{2} \cup \ldots \cup y_{n}$ i.e. $\left\langle x_{i}\right.$, $\left.y_{i}\right\rangle_{p}^{i}=\left\langle y_{i}, x_{i}\right\rangle_{p}^{i} ; i=1,2, \ldots, n$.
(3) $\langle x+z, y\rangle_{p}=\langle x, y\rangle_{p}+\langle z, y\rangle_{p}$ for all $x, y, z \in V$ i.e. $\left\langle\left(x_{1} \cup\right.\right.$ $\left.\left.x_{2} \cup \ldots \cup x_{n}\right)+\left(z_{1} \cup z_{2} \cup \ldots \cup z_{n}\right),\left(y_{1} \cup y_{2} \cup \ldots \cup y_{n}\right)\right\rangle$ $\left.=\left\{\left(\mid x_{1}, y_{1}\right\}_{p}^{1} \cup\left\langle x_{2}, y_{2}\right\}_{p}^{2} \cup \ldots \cup\left\langle x_{n}, y_{n}\right\}_{p}^{n}\right)\right\}+\left\{\left\langle z_{1}, y_{1}\right\rangle_{p}^{1}\right.$ $\left.\cup\left\{z_{2}, y_{2}\right\}_{p}^{2} \cup \ldots \cup\left\{z_{n}, y_{n}\right\rangle_{p}^{n}\right\}$ for all $x, y, z \in V$.

$$
\begin{align*}
& \langle x, y+z\rangle_{p}=\left\langle x_{1} \cup x_{2} \cup \ldots \cup x_{n},\left(y_{1} \cup y_{2} \cup \ldots \cup y_{n}\right)+\right. \tag{4}\\
& \left.\left(z_{1} \cup z_{2} \cup \ldots \cup z_{n}\right)\right\rangle=\left\langle x_{1} \cup x_{2} \cup \ldots \cup x_{n},\left(y_{1}+z_{1}\right) \cup\left(y_{2}+\right.\right. \\
& \left.\left.z_{2}\right) \cup \ldots \cup\left(y_{n}+z_{n}\right)\right\rangle=\left(\langle x _ { 1 } , y _ { 1 } \rangle _ { p } ^ { 1 } \cup \{ x _ { 2 } , y _ { 2 } \rangle _ { p } \cup \ldots \cup \left\{x_{n},\right.\right. \\
& \left.\left.y_{n}\right\rangle_{p}^{n}\right)+\left(\left\langle x_{1}, z_{1}\right\rangle_{p}^{1} \cup\left\langle x_{2}, z_{2}\right\rangle_{p}^{2} \cup \ldots \cup\left\{x_{n}, z_{n}\right\rangle_{p}^{n}\right) \text { for all } x, y, \\
& z \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n} .
\end{align*}
$$

(5) $\langle\alpha x, y\rangle_{p}=\alpha\langle x, y\rangle_{p}$ where
$\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n} \in Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$
$x=x_{1} \cup x_{2} \cup \ldots \cup x_{n} \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$
and
$y=y_{1} \cup y_{2} \cup \ldots \cup y_{n} \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$.
$\langle\alpha x, y\rangle_{p}$
$=\quad\left\langle\left(\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}\right)\left(x_{1} \cup x_{2} \cup \ldots \cup x_{n}\right),\left(y_{1} \cup y_{2} \cup\right.\right.$ $\left.\ldots \cup y_{n}\right) \lambda_{p}$
$=\quad\left\{\left(\alpha_{1} x_{1} \cup \alpha_{2} x_{2} \cup \ldots \alpha_{n} x_{n}\right),\left(y_{1} \cup y_{2} \cup \ldots \cup y_{n}\right)\right\rangle_{p}$
$=\left\langle\alpha_{1} x_{1}, y_{1}\right\rangle_{p}^{1} \cup\left\langle\alpha_{2} x_{2}, y_{2}\right\rangle_{p}^{2} \cup \ldots \cup\left\langle\alpha_{n} x_{n}, y_{n}\right\rangle_{p}^{n}$
$=\alpha_{1}\left\langle x_{1}, y_{1}\right\rangle_{p}^{1} \cup \alpha_{2}\left\langle x_{2}, y_{2}\right\rangle_{p}^{2} \cup \ldots \cup \alpha_{n}\left\langle x_{n}, y_{n}\right\rangle_{p}^{n}$
$=\left(\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}\right)\left[\left\langle x_{1}, y_{1}\right\rangle_{p}^{1} \cup\left\langle x_{2}, y_{2}\right\}_{p}^{2} \cup \ldots\right.$ $\left.\cup\left\langle x_{n}, y_{n}\right\rangle_{p}^{n}\right]$
$=\alpha\left[\langle x, y\rangle_{p}\right]$.
Similarly $\langle x, \beta y\rangle_{p}=\beta\langle x, y\rangle_{p}$ for all $\alpha, \beta \in F=Z_{2} \cup Z_{2} \cup \ldots$ $\cup Z_{2}$ and $x, y \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$. We say the n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the n-field $F=Z_{2} \cup Z_{2} \cup \ldots$ $\cup Z_{2}$ of characteristic 2 to be a pseudo n-inner product space if the n-map $\left.\langle,\rangle_{p}=\langle \rangle_{p}^{1} \cup\langle \rangle_{p}^{2} \cup \ldots \cup \zeta\right\rangle_{p}^{n}$ which is a pseudo n inner product defined on the n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup$ V_{n} over the pseudo n-field $F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$.

Now we define the notion of n-subspace of the n-vector space V over the n-field F.

DEFINITION 2.2.4: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-vector space over the n-field $F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$ of dimension ($n_{1} \cup$ $\left.n_{2} \cup \ldots \cup n_{n}\right)$ over F or of dimension $\left(n_{1}, n_{2}, \ldots, n_{n}\right)$ over $F=Z_{2}$ $\cup Z_{2} \cup \ldots \cup Z_{2}$, then we have $V \cong Z_{2}^{n_{1}} \cup Z_{2}^{n_{2}} \cup \ldots \cup Z_{2}^{n_{n}}$. Let W be a proper subset of V i.e. $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ where
each W_{i} is a subspace of dimension k_{i} over Z_{2}, for $i=1,2, \ldots, n$, then W is a n-subspace of dimension $\left(k_{1} \cup k_{2} \cup \ldots \cup k_{n}\right)$ or (k_{1}, k_{2}, \ldots, k_{n}) dimension over $F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{2}$ i.e. $W=W_{1} \cup$ $W_{2} \cup \ldots \cup W_{n}$ where each W_{i} is a subspace of dimension k_{i} over Z_{2} for $i=1,2, \ldots, n$ then W is a n-subspace of dimension $\left(k_{1} \cup\right.$ $\left.k_{2} \cup \ldots \cup k_{n}\right)$ or $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ dimension over $F=Z_{2} \cup Z_{2} \cup \ldots$ $\cup Z_{2}$ i.e.

$$
\begin{aligned}
W & =W_{1} \cup W_{2} \cup \ldots \cup W_{n} \\
& \cong Z_{2}^{k_{1}} \cup Z_{2}^{k_{2}} \cup \ldots \cup Z_{2}^{k_{n}} \subseteq Z_{2}^{n_{1}} \cup Z_{2}^{n_{2}} \cup \ldots \cup Z_{2}^{n_{n}}
\end{aligned}
$$

i.e. $k_{i} \leq n_{i}$, for $i=1,2, \ldots, n$.

Now we proceed on to define the notion of pseudo best napproximation of any n-vector $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} \in V$ relative to the $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ subspace W of V; i.e. $W=W_{1} \cup W_{2}$ $\cup \ldots \cup W_{n} \subset V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is a n-subspace of dimension ($k_{1}, k_{2}, \ldots k_{n}$) i.e. $W \cong Z_{2}^{k_{1}} \cup Z_{2}^{k_{2}} \cup \ldots \cup Z_{2}^{k_{n}} \subseteq Z_{2}^{n_{1}} \cup$ $Z_{2}^{n_{2}} \cup \ldots \cup Z_{2}^{n_{n}}$. Let the n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over $F=Z_{2} \cup Z_{2} \cup \ldots \cup Z_{n}$ be a pseudo n-inner product space with the pseudo n-inner product $\left\rangle_{p}=\langle \rangle_{p}^{1} \cup\langle \rangle_{p}^{2} \cup \ldots \cup\right.$〈 \rangle_{p}^{n} defined on V. Let $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} \in V=V_{1} \cup V_{2} \cup$ $\ldots \cup V_{n}$. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-subspace of dimension $\left(k_{1} \cup k_{2} \cup \ldots \cup k_{n}\right)$ of V. The pseudo best n-approximation to β related to W is defined as follows. Let $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ be a n-basis of W i.e. $\alpha_{1}=\alpha_{1}^{1}$ $\cup \alpha_{2}^{1} \cup \ldots \cup \alpha_{n}^{1}, \alpha_{2}=\alpha_{1}^{2} \cup \alpha_{2}^{2} \cup \ldots \cup \alpha_{n}^{2}, \ldots, \alpha_{k}=\alpha_{1}^{k} \cup$ $\alpha_{2}^{k} \cup \ldots \cup \alpha_{n}^{k}$ is the n-basis of $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ i.e., α $=\left\{\alpha_{1}^{1} \cup \alpha_{2}^{1} \cup \ldots \cup \alpha_{n}^{1}, \alpha_{1}^{2} \cup \alpha_{2}^{2} \cup \ldots \cup \alpha_{n}^{2}, \ldots, \alpha_{1}^{k} \cup \alpha_{2}^{k} \cup\right.$ $\left.\ldots \cup \alpha_{n}^{k}\right\}$ is the chosen n-basis of the $k=\left(k_{1} \cup k_{2} \cup \ldots \cup k_{n}\right)$ dimensional subspace W of V. The pseudo best n-approximation to β related to W if it exists is defined as follows:

$$
\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}\right\rangle_{p} \alpha_{i}=\bigcup_{i=1}^{k} \sum_{t=1}^{n}\left\langle\beta_{t}, \alpha_{i}^{t}\right\rangle_{p}^{t} \alpha_{i}^{t}
$$

If $\sum_{i=1}^{k}\left\langle\beta, \alpha_{i}\right\rangle_{p} \alpha_{i}=0$ we say the pseudo best n-approximation does not exist for this set of k-basis $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}=\left\{\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots\right.\right.$ $\left.\left.\alpha_{n}^{1}\right) \cup\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{n}^{2}\right) \cup \ldots \cup\left(\alpha_{1}^{k} \alpha_{2}^{k} \ldots \alpha_{n}^{k}\right)\right\}$. In this case we choose yet another set of k-basis for W say $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$ and calculate $\sum_{i=1}^{k}\left\langle\beta, \gamma_{i}\right\rangle_{p} \gamma_{i}$ and take this as the pseudo best n approximation to β.

Now we apply this pseudo best n-approximation to get the most likely n-code word. Let C be the n-code over the n field $Z_{2} \cup$... $\cup \mathrm{Z}_{2}=\mathrm{F}$; i.e. $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$ be a $\left(\mathrm{k}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{k}_{2}, \mathrm{n}_{2}\right) \cup \ldots$ $\left.\cup\left(k_{n}, n_{n}\right)\right)$ n-code i.e. C is a n-subspace of $V=V_{1} \cup V_{2} \cup \ldots \cup$ $\mathrm{V}_{\mathrm{n}} \cong \mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}=\mathrm{V}$.
$\mathrm{C} \cong \mathrm{Z}_{2}^{\mathrm{k}_{1}} \cup \mathrm{Z}_{2}^{\mathrm{k}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{k}_{\mathrm{n}}}$. Now in the above definition we take $\mathrm{C}=\mathrm{W}$ in the definition of n -pseudo best approximation. If some n-code word is transmitted and β is the received n-code word then
(1) If $\beta \in \mathrm{C}$, then β is accepted as a correct message.
(2) If $\beta \notin \mathrm{C}$ then we apply the notion of pseudo n-best approximation to β related to the n-subspace C in $\mathrm{Z}_{2}^{\mathrm{n}_{1}} \cup$ $\mathrm{Z}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{Z}_{2}^{\mathrm{n}_{\mathrm{n}}}$.

Let us consider a k -basis for C say $\alpha=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$ of C . Now $\beta \notin \mathrm{C}$ so relative to this basis we have the pseudo best napproximation as $\sum\left\langle\beta, c_{i}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}} \neq 0$ each c_{i} is a basis of the code C_{i} which is a $\left(n_{i}, k_{i}\right)$ code i.e., $c_{i}=\left(c_{1}^{i}, c_{2}^{i}, \ldots, c_{k_{i}}^{i}\right), i=1,2, \ldots$, k. Thus $\alpha=\left\{\left(c_{1}^{1}, c_{2}^{1}, \ldots, c_{k_{1}}^{1}\right) \cup\left(c_{1}^{2}, c_{2}^{2}, \ldots, c_{k_{2}}^{2}\right) \cup \ldots \cup\left(c_{1}^{k}\right.\right.$, $\left.\left.c_{2}^{k}, \ldots, c_{k_{k}}^{k}\right)\right\}$.

If $\Sigma\left\langle\beta_{i} c_{i}\right\rangle_{p} c_{i}=0$ then choose another set of k-basis $D=\left\{D^{1}\right.$, $\left.D^{2}, \ldots, D^{k}\right\}$ of C and find $x=\sum_{i=1}^{k}\left\langle\beta, D^{i}\right\rangle_{p} D^{i}$.

Then x is the pseudo best n -approximated message to β and $\mathrm{x} \in \mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$.

Note: With the advent of computers it is left for the computer scientist to find programs to obtain the sets of basis for any C code and also a program to find the pseudo best n approximation of β say α in $C, \beta \notin \mathrm{C}$.

It is still a challenge for them to find sets of n-basis for the n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ and find the pseudo best n approximation to β in order to use the formula $\alpha=\sum_{\mathrm{i}=1}^{\mathrm{k}}\left\langle\beta, \mathrm{c}_{\mathrm{i}}\right\rangle_{\mathrm{p}} \mathrm{c}_{\mathrm{i}}$.

Here it is pertinent to mention that a nice programming can be made by the computer scientist / engineer to find a method of obtaining different sets of basis. Once this is made it is easy for any coding theorist to obtain the pseudo best n -approximation to any received message which has error.

Still it is interesting to note that one can find sets of n basis for the given n-code C which is the n-subspace of the space C over Z_{2}. Using these sets of n -basis the approximately correct set of codes can be obtained.

Now using the Hamming n-distance i.e. if $x=\left(x_{1}^{1}, x_{2}^{1}, \ldots\right.$, $\left.\mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{2}}^{2}\right) \cup \ldots \cup\left(\mathrm{x}_{1}^{\mathrm{n}}, \mathrm{x}_{2}^{\mathrm{n}}, \ldots, \mathrm{x}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)$ and $\mathrm{y}=$ $\left(y_{1}^{1}, y_{2}^{1}, \ldots, y_{n_{1}}^{1}\right) \cup\left(y_{1}^{2}, y_{2}^{2}, \ldots, y_{n_{2}}^{2}\right) \cup \ldots \cup\left(y_{1}^{n}, y_{2}^{n}, \ldots, y_{n_{n}}^{n}\right)$ are in $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$, then the Hamming n-distance between x and y is the Hamming distance between each of ($\mathrm{x}_{1}^{\mathrm{i}}$ $\left.x_{2}^{i} \quad \ldots \quad x_{n_{i}}^{i}\right)$ and ($\left.\begin{array}{llll}y_{1}^{i} & y_{2}^{i} & \ldots & y_{n_{i}}^{i}\end{array}\right)$ say $t_{i}, 1 \leq i \leq n$ then the Hamming n distance between x and y is the n-tuple given by (t_{1}, t_{2}, \ldots, t_{n}) where any t_{j} is the usual Hamming distance between $\left(x_{1}^{j} x_{2}^{j} \ldots x_{n}^{j}\right)$ and $\left(y_{1}^{j} y_{2}^{j} \ldots y_{n}^{j}\right), j=1,2, \ldots, n$. We will choose
that best approximated message y^{\prime} which has least number of differences from the sent and received message y.

We illustrate this by the following example.
Example 2.2.5: Let us consider the 4-code $C=C_{1} \cup C_{2} \cup C_{3} \cup$ C_{4} where $\mathrm{C}_{1}=\mathrm{C}(4,2), \mathrm{C}_{2}=\mathrm{C}(6,3), \mathrm{C}_{3}=\mathrm{C}(6,3)$ and $\mathrm{C}_{4}=\mathrm{C}$ $(5,2)$ with generator 4-matrix
$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}$ with

$$
\begin{gathered}
\mathrm{G}_{1}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], \\
\mathrm{G}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right], \\
\mathrm{G}_{3}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

and

$$
\mathrm{G}_{4}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Now the 4-codes are the collection of 4-code words

$$
\begin{aligned}
& C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \\
& =\left\{(0000),\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\right\} \cup\{(000000), \\
& \text { (100001), (010010), (001100), (110011), } \\
& (101101),(011110),(111111)\} \cup\{(000000), \\
& \text { (100100), (010010), (0 } 01001 \text {), (} 110110 \text {), } \\
& (101101),(111111)(011011)\} \cup\{(00000), \\
& \text { (10110), (0 } 101 \text {), (11101)\}. }
\end{aligned}
$$

Any 4-code word $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \mathrm{x}_{3} \cup \mathrm{x}_{4}$, where $\mathrm{x}_{\mathrm{i}} \in \mathrm{C}_{\mathrm{i}}$, $\mathrm{i}=$ $1,2,3,4$. Now $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$ is a 4-subspace of the 4 vector space $\mathrm{V}=\mathrm{Z}_{2}^{4} \cup \mathrm{Z}_{2}^{6} \cup \mathrm{Z}_{2}^{6} \cup \mathrm{Z}_{2}^{5}$ i.e., $\mathrm{C} \cong \mathrm{Z}_{2}^{2} \cup \mathrm{Z}_{2}^{3} \cup$ $\mathrm{Z}_{2}^{3} \cup \mathrm{Z}_{2}^{2}$. Clearly all the four subspaces $\mathrm{Z}_{2}^{2}, \mathrm{Z}_{2}^{3}, \mathrm{Z}_{2}^{3}$ and Z_{2}^{2} are distinct as $\mathrm{C}_{\mathrm{i}} \neq \mathrm{C}_{\mathrm{j}} ; \mathrm{i} \neq \mathrm{j} ; 1 \leq \mathrm{i}, \mathrm{j} \leq 4$.

Suppose we have received the message $y=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{ll}1 & 1\end{array}\right.$ $11000) \cup\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}\right) \cup\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)=y_{1} \cup y_{2} \cup y_{3} \cup y_{4}$. Clearly y $\notin C$ as the 4 -syndrome $S(y)=S\left(y_{1}\right) \cup S\left(y_{2}\right) \cup S\left(y_{3}\right)$ $\cup S\left(\mathrm{y}_{4}\right) \neq(0) \cup(0) \cup(0) \cup(0)$. This is attained by using
$\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}$

$$
\begin{gathered}
=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
\cup\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
\cup\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { as } \\
& \begin{aligned}
\mathrm{S}(\mathrm{y}) & =\mathrm{Hy}^{\mathrm{T}} \\
& =\left(\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}\right)\left(\mathrm{y}_{1} \cup \mathrm{y}_{2} \cup \mathrm{y}_{3} \cup \mathrm{y}_{4}\right)^{\mathrm{T}} \\
& =\mathrm{H}_{1} \mathrm{y}_{1}{ }^{\mathrm{T}} \cup \mathrm{H}_{2} \mathrm{y}_{2}{ }^{\mathrm{T}} \cup \mathrm{H}_{3} \mathrm{y}_{3}{ }^{\mathrm{T}} \cup \mathrm{H}_{4} \mathrm{y}_{4}{ }^{\mathrm{T}} \\
& \neq(0) \cup(0) \cup(0) \cup(0) .
\end{aligned}
\end{aligned}
$$

We get the basis of the 4 -subspace C of V. Let

```
B = {(1001 1), (0 1 0 1)} \cup {(100000 1), (10 1 1 0 1),
    (0 1 0 0 1 0)} \cup {(1 0 0 1 0 0), (0 1 0 0 1 0),
    (001001)}\cup{(10110)\cup(01011)}
```

be a 4-basis of $\mathrm{C} \subseteq \mathrm{V}$. To find the pseudo best 4-approximation of y relative to the 4 -subspace C . Clearly $\mathrm{y} \notin \mathrm{C}$. Let x be the pseudo best 4 -approximation to y . Then

```
x = {\langle(1 1 1 1 1), (100
```



```
        + \langle(1111100\rangle,(101101) \rangle
        0), (1 1 1 1 0 0) >
        100) >
        0010) + <(011111 1), (001001) >
        \langle(1 1 1 1 1), (1 0 1 1 0) >p(1 0 1 1 0) +\langle(1 1 1 1 1), (0 1
        0 1 1) >p (0 1 0 1 1) )}
= {(1011) + 0} \cup{(10000 0 1) +(1011 0 1) + (0 1 0
        010)}\cup{(10010 0) + 0 + 0} \cup{(1011 0) + (0 1 0
        11)}
= (1011)\cup(0111110)\cup(100100)\cup(11110 1).
```

This x belong to C . Now the 4 -Hamming distance is given by $(1,3,5,1)$. Now if we $\{\phi\}$ is put small $\{\phi\}$ wish we can take this as our sent code. Otherwise we now use a different set of basis for the subcodes which gave the distance as 3 and 5 and work for a better approximation. Let the set of new-basis for C be $\{\phi\} \cup\{(100001)$, (010010$),(001100)\} \cup\{(1001$ 00), (001001), (110110) \} $\cup\{\phi\}$. As the differences hamming distance between the x_{1} and y_{1} is 1 and that of x_{4} and y_{4} be 1 . The new pseudo best 4 -approximated code is

$$
\begin{aligned}
& z=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \cup\left\{\langle(1111100)(100001)\rangle_{p}(100001)+\right. \\
& \langle(111100),(010010)\rangle_{p}(010010)+\langle(11110 \\
& \text { 0), } \left.(001100)\rangle_{p}(001100)\right\} \cup\{\langle(011111)(100 \\
& 100)\rangle_{\mathrm{p}}\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array} 00\right)+\langle(011111),(001001)\rangle_{\mathrm{p}}(00 \\
& \left.1001)+\langle(011111) \text {, (110110) }\rangle_{p}(110110)\right\rangle \cup \\
& \left\{\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\quad\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) \cup\left\{\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right)+0\right\} \cup\{(100 \\
& 100)+0+(110110)\} \cup(11101) \\
& =\quad(1011) \cup(110011) \cup(010010) \cup(11101) \text {. }
\end{aligned}
$$

Now the Hamming 4-distance between the received vector and z is ($1,4,3,1$). Clearly $z \in C$. Now one can take this as the received vector z or y , some may prefer z to y and others may prefer y to z.

Now we have seen the methods of finding, detecting error and correcting it by finding the pseudo best n -approximations.

The main use of pseudo best n-approximation than finding the correct code by the n-coset method is by the n-coset leader method we would get only one solution but in case of pseudo best n-approximations we can find for the closest solution as close to the received message by both varying the n-basis or the very pseudo dot product used in the construction of the pseudo vector space. So we have choice to choose the pseudo best approximated message when the received message is erroneous.

We have mainly used these n-codes to construct the new class Periyar linear codes. The n-codes will find their applications in computers, in successfully sending the message to satellites in cryptography and so on. These n-codes can also used as the data storage matrices. We as a last class of n-codes define the new notion of false n-code ($n \geq 2$).

2.3 False n-matrix and Pseudo False n-matrix

We define the new notion of false n-matrix and m-pseudo false n -matrix ($\mathrm{m}<\mathrm{n}$). This is mainly introduced for the sake of both defining the 1-pseudo false generator n-matrix, m-pseudo false generator n-matrix in case of generator matrices of these special codes. Also for defining the 1 -pseudo false parity check nmatrix, m-pseudo false parity check n-matrix ($\mathrm{m}<\mathrm{n}$) and the notion of false parity check matrix.

DEFINITION 2.3.1: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ if all of them are equal i.e. $M_{1}=M_{2}=M_{3}=\ldots=M_{n}$ then we call M to be a false n-matrix. M_{i} can be a square matrix or a rectangular
matrix. If each of the matrix M_{i} is a square matrix then we call M a false square n-matrix. If each of the matrix M_{i} is a rectangular matrix then we call M to be a false rectangular nmatrix. Now when $n=2$ we get the false bimatrix, when $n=3$ we get the false trimatrix for $n \geq 4$ we get the false n-matrix.

Now we proceed on to define the notion of 1-pseudo false nmatrix.

DEFINITION 2.3.2: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{i} \cup \ldots \cup M_{n}$ be a union of $n(n \geq 3)$ matrices if $M_{1}=M_{2}=\ldots=M_{i-1}=M_{i+1}=\ldots$ $=M_{n}$ and M_{i} alone distinct in this collection then we call M to be a 1-pseudo false n-matrix. If $n=2$ we get the usual bimatrix. If $n=3$ we get the 1 -pseudo false trimatrix, for $n \geq 4$ we have 1pseudo false n-matrix. If all the n matrices $M_{1}, M_{2}, \ldots, M_{i-1}, M_{i}$, $M_{i}+1, \ldots, M_{n}$ are $m \times m$ square matrices then we call M to be a 1 -pseudo false $n, m \times m$ square matrix. If all the n-matrices M_{1}, $M_{2}, \ldots, M_{i-1}, M_{i}, M_{i+1}, \ldots, M_{n}$ are $t \times s$ rectangular matrices then we call M to be a 1-pseudo false $t \times s$ rectangular n-matrix.

If all the matrices $M_{1}, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{n}$ are $m \times m$ square matrices and M_{i} a $t \times t$ square matrix $(t \neq s)$ then we call M to be a 1-pseudo false mixed square n-matrix.

If all the matrices $M_{1}, M_{2}, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{n}$ are rectangular $s \times t$ matrices and M_{i} is a $p \times q$ rectangular matrix then we call M to be a 1-pseudo false mixed rectangular nmatrices.

Now we illustrate them by simple examples.
Example 2.3.1: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}$ where

$$
\mathrm{M}_{1}=\left[\begin{array}{cccc}
3 & 0 & 1 & 2 \\
2 & 1 & 8 & 9 \\
1 & 6 & 5 & -1 \\
0 & 7 & 2 & 5
\end{array}\right]=\mathrm{M}_{2}=\mathrm{M}_{3}=\mathrm{M}_{5}
$$

and

$$
\mathrm{M}_{4}=\left[\begin{array}{llll}
5 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 0 & 1 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

Clearly M is a 1-pseudo false square 5 -matrix.
Example 2.3.2: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4}$ where

$$
M_{1}=\left[\begin{array}{ccccc}
5 & 7 & 9 & 11 & 8 \\
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 4 & 3 \\
2 & 1 & 0 & 9 & 6
\end{array}\right]=M_{2}=M_{4}
$$

and

$$
\mathrm{M}_{3}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & 1 & 2 \\
3 & 4 & 5 & 6
\end{array}\right],
$$

clearly M is a 1-pseudo false mixed square 4-matrix.
Example 2.3.3: Consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup$
M_{6} where

$$
M_{1}=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 9 & 0 & 1 & 2 & 3 & 4 \\
6 & 7 & 8 & 9 & 2 & 1 & 2 \\
1 & 9 & 0 & 0 & 8 & 5 & 9
\end{array}\right]=M_{2}=M_{3}=M_{4}=M_{5}
$$

and

$$
M_{6}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 1 & 9 & 6 & 5 \\
9 & 0 & 1 & 8 & 3 & 2 & 1 \\
1 & 3 & 5 & 7 & 6 & 1 & 5 \\
2 & 4 & 6 & 9 & 0 & 5 & 1
\end{array}\right]
$$

We see M_{6} is also a rectangular 4×7 matrix. M is a 1 -pseudo 4 $\times 7$ rectangular false 6 -matrix.

Example 2.3.4: Consider the 1-pseudo false 5-matrix $\mathrm{N}=\mathrm{N}_{1} \cup$ $\mathrm{N}_{2} \cup \mathrm{~N}_{3} \cup \mathrm{~N}_{4} \cup \mathrm{~N}_{5}$ where

$$
\mathrm{N}_{1}=\left[\begin{array}{llllll}
3 & 1 & 1 & 2 & 3 & 1 \\
0 & 5 & 1 & 0 & 5 & 0 \\
1 & 0 & 1 & 2 & 6 & 3 \\
2 & 1 & 1 & 4 & 0 & 0
\end{array}\right]=\mathrm{N}_{3}=\mathrm{N}_{4}=\mathrm{N}_{5}
$$

and

$$
\mathrm{N}_{2}=\left[\begin{array}{lll}
3 & 1 & 2 \\
9 & 8 & 7 \\
6 & 7 & 8 \\
4 & 3 & 2 \\
1 & 0 & 5 \\
1 & 1 & 3
\end{array}\right]
$$

We see $N_{i}, i=1,3,4,5$ is the same 4×6 rectangular matrix where as N_{2} is a 6×3 rectangular matrix. Hence N is a 1pseudo false mixed rectangular 5-matrix.

Now we give examples of 1-pseudo false mixed n-matrices.
Example 2.3.5: Consider the 1-pseudo false 5-matrix M = $\mathrm{M}_{1} \cup$ $\mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}$ where

$$
M_{1}=M_{2}=M_{3}=M_{4}=\left[\begin{array}{lllll}
3 & 9 & 0 & 1 & 6 \\
0 & 8 & 1 & 2 & 7 \\
1 & 7 & 2 & 3 & 8 \\
1 & 6 & 3 & 4 & 9 \\
4 & 5 & 4 & 5 & 0
\end{array}\right],
$$

a 5×5 square matrix and

$$
M_{5}=\left[\begin{array}{llllll}
3 & 4 & 7 & 3 & 7 & 2 \\
1 & 5 & 8 & 1 & 5 & 6 \\
2 & 6 & 9 & 8 & 4 & 9
\end{array}\right]
$$

a 3×6 rectangular matrix.
We call M to be 1-pseudo mixed false 5-matrix.
Example 2.3.6: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6}$ be a 1-pseudo false 6-matrix where

$$
M_{2}=M_{3}=M_{4}=M_{5}=M_{6}=\left[\begin{array}{llll}
3 & 4 & 1 & 2 \\
9 & 8 & 7 & 6 \\
1 & 2 & 3 & 4 \\
5 & 0 & 1 & 0 \\
7 & 8 & 1 & 2 \\
9 & 3 & 0 & 9
\end{array}\right]
$$

and

$$
M_{1}=\left[\begin{array}{llll}
2 & 1 & 4 & 3 \\
9 & 8 & 6 & 7 \\
3 & 9 & 7 & 5 \\
4 & 0 & 1 & 9
\end{array}\right]
$$

the 4×4 square matrix. Clearly M is a 1-pseudo mixed false 6matrix.

Now having seen all the 5 types of 1-pseudo false nmatrices we now proceed on to define the notion of 2-pseudo false n-matrix ($n \geq 4$). We see when $n=3$ we will have only false trimatrix and the notion of 1-pseudo false trimatrix, cannot exist i.e., we do not have the notion of 2 -pseudo false trimatrix. For 2-pseudo false trimatrix to be defined we need $\mathrm{n} \geq 4$.

DEFINITION 2.3.3: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}(n \geq 4)$ be a false matrix in which $M_{1}=M_{2}=\ldots=M_{n-2}$ and $M_{n-1}=M_{n}$. We call M to be a 2-pseudo false n-matrix.

Before we proceed on to discuss more properties about these class of matrices we give an example of it.

Example 2.3.7: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6} \cup$ M_{7} be a false 7-matrix.

Suppose

$$
M_{1}=\left[\begin{array}{lllllll}
3 & 4 & 5 & 6 & 7 & 8 & 1 \\
1 & 0 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 0 & 1 & 2 & 3
\end{array}\right]=M_{3}=M_{4}=M_{5}=M_{6}
$$

and

$$
M_{2}=\left[\begin{array}{lllll}
3 & 0 & 1 & 2 & 3 \\
4 & 4 & 5 & 6 & 7 \\
5 & 8 & 9 & 0 & 1 \\
7 & 2 & 3 & 4 & 5 \\
1 & 6 & 7 & 8 & 9
\end{array}\right]=M_{7}
$$

then we call M to be a 2 -pseudo false 7 -matrix.

It is very important to note that in case of 2 -pseudo false n matrix $n \geq 4$. We give a few subclasses of 2-pseudo false n matrices.

DEFINITION 2.3.4: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be a 2-pseudo false n-matrix, suppose $M_{1}=M_{2}=\ldots=M_{n-2}$ be the same square $m \times m$ matrix

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m m}
\end{array}\right]
$$

and

$$
M_{n-1}=M_{n}=\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m m}
\end{array}\right]
$$

a square $m \times m$ matrix where $M_{i} \neq M_{n-1} ; i=1,2, \ldots, n-2$, then we call M to be a 2-pseudo $m \times m$ square false n-matrix.

We give an example of a 2 -pseudo $\mathrm{m} \times \mathrm{m}$ square false n -matrix.
Example 2.3.8: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6}$ where

$$
M_{1}=M_{3}=M_{4}=M_{5}=\left[\begin{array}{lllll}
3 & 2 & 0 & 1 & 1 \\
5 & 1 & 9 & 8 & 3 \\
7 & 3 & 2 & 9 & 0 \\
8 & 5 & 1 & 8 & 9 \\
6 & 6 & 7 & 1 & 0
\end{array}\right]
$$

and

$$
\mathrm{M}_{2}=\mathrm{M}_{6}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 0 \\
1 & 3 & 5 & 7 & 9 \\
2 & 4 & 6 & 8 & 0 \\
8 & 7 & 9 & 2 & 1
\end{array}\right]
$$

be 5×5 matrices. M is a 2-pseudo false square 6 -matrix.
DEFINITION 2.3.5: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup \ldots \cup G_{m}$ be a 2-pseudo false M matrix if $G_{1}=G_{2}=G_{3}=\ldots=G_{m-2}=\left(a_{i j}\right)$ be a square $n \times n$ matrix and $G_{m-1}=G_{m}$ be a square $t \times t$ matrix $(t \neq$ n) then we call G to be the 2-pseudo false m-matrix to be a 2pseudo false mixed square m-matrix.

We illustrate this by the following example.
Example 2.3.9: Consider the 2-pseudo false 7-matrix given by $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6} \cup \mathrm{M}_{7}$ where

$$
M_{1}=M_{3}=M_{4}=M_{6}=M_{7}=\left[\begin{array}{ccccc}
3 & 8 & 11 & 4 & 5 \\
7 & 12 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 & 13 \\
1 & 2 & 12 & 5 & 15
\end{array}\right]
$$

a 5×5 square matrix.

$$
\mathrm{M}_{2}=\mathrm{M}_{5}=\left[\begin{array}{lll}
3 & 1 & 7 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

be a 3×3 square matrix. We call M to be a 2 -pseudo false mixed square 7 -matrix.

Now we proceed on to define the notion of 2-pseudo false rectangular n-matrix.

DEFINITION 2.3.6: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be a 2-pseudo false n-matrix. We call M to be a 2-pseudo false $s \times t$ rectangular n-matrix if $M_{1}=M_{2}=\ldots=M_{n-2}=\left(a_{i j}\right), 1 \leq i \leq s$ and $1 \leq j \leq t$ and $M_{n-1}=M_{n-2}=\left(b_{i j}\right) ; 1 \leq i \leq s$ and $1 \leq j \leq t ; a_{i j} \neq b_{i j}$.

We now illustrate this by a simple example.
Example 2.3.10: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}$ where

$$
M_{1}=M_{3}=M_{5}=\left[\begin{array}{llllll}
3 & 0 & 1 & 2 & 3 & 4 \\
1 & 5 & 6 & 7 & 8 & 9 \\
2 & 1 & 1 & 0 & 2 & 2 \\
5 & 3 & 0 & 4 & 0 & 5
\end{array}\right]
$$

be a 4×6 rectangular matrix and

$$
M_{2}=M_{4}=\left[\begin{array}{llllll}
1 & 5 & 9 & 3 & 7 & 1 \\
2 & 6 & 0 & 4 & 8 & 2 \\
3 & 7 & 1 & 5 & 9 & 3 \\
4 & 8 & 2 & 6 & 0 & 5
\end{array}\right]
$$

a 4×6 rectangular matrix. We call M to be a 2-pseudo false $4 \times$ 6 rectangular 5-matrix.

Now we proceed on to define the notion of 2-pseudo false mixed rectangular 5-matrix.

DEFINITION 2.3.7: Consider the 2-pseudo false m-matrix $N=$ $N_{1} \cup N_{2} \cup N_{3} \cup \ldots \cup N_{m}(m \geq 4)$. We say N is a 2-pseudo false mixed rectangular m-matrix if $M_{1}=M_{2}=\ldots=M_{m-2}=\left(a_{i j}\right)$ is a s $\times t$ rectangular matrix $s \neq t$ and $1 \leq i \leq s$ and $1 \leq j \leq t$ and M_{m-1} $=M_{m}=\left(b_{i j}\right)$, ap$\times q$ rectangular matrix $p \neq q$ and $p \neq s$ (or $t \neq$ q).

Now we illustrate this by the following example.
Example 2.3.11: Let $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup M_{5} \cup M_{6} \cup$ $\mathrm{M}_{7} \cup \mathrm{M}_{8}$ be a 2-pseudo false 8-matrix.

$$
\mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{M}_{4}=\mathrm{M}_{5}=\mathrm{M}_{6}=\mathrm{M}_{8}=\left[\begin{array}{lllllll}
2 & 6 & 3 & 4 & 1 & 2 & 3 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 0 & 1 & 3 & 2
\end{array}\right]
$$

be a 3×7 matrix. Let

$$
M_{3}=M_{7}=\left[\begin{array}{llllll}
3 & 1 & 3 & 1 & 5 & 9 \\
4 & 2 & 5 & 2 & 6 & 0 \\
5 & 0 & 2 & 3 & 7 & 1 \\
6 & 1 & 8 & 4 & 8 & 5
\end{array}\right]
$$

a 4×6 rectangular matrix. M is a 2-pseudo mixed rectangular false 8 -matrix.

Now we proceed on to define the notion of 2-pseudo mixed false n-matrix.

DEFINITION 2.3.8: Let $M=M_{1} \cup M_{2} \cup M_{3} \cup \ldots \cup M_{n}$ be a 2pseudo false n-matrix. If $M_{1}=M_{2}=\ldots=M_{n-2}$ be a rectangular (or square) $p \times q(t \times t)$ matrix and $M_{n-1}=M_{n}$ be the square (or rectangular) $t \times t($ or $p \times q)$ matrix, then we define M to be a 2 pseudo false mixed n-matrix. Here 'or' is used in the mutually exclusive sense.

We now illustrate this by the following example.
Example 2.3.12: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}$ be a 2 pseudo false 5-matrix where

$$
\mathrm{G}_{1}=\mathrm{G}_{3}=\mathrm{G}_{5}=\left[\begin{array}{ccccccc}
1 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 9 & 8 & 7 & 6 & 5 & 4 \\
3 & 2 & 3 & 2 & 1 & 0 & 6 \\
4 & 1 & 0 & 1 & 5 & 2 & 1
\end{array}\right]
$$

is a 4×7 matrix and

$$
\mathrm{G}_{2}=\mathrm{G}_{\mathrm{n}}=\left[\begin{array}{llll}
3 & 4 & 5 & 6 \\
7 & 8 & 9 & 0 \\
1 & 2 & 3 & 4 \\
0 & 1 & 9 & 3
\end{array}\right]
$$

is a 4×4 square matrix. Hence G is a 2 -pseudo false mixed 5 matrix.

Example 2.3.13: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5} \cup \mathrm{P}_{6} \cup \mathrm{P}_{7}$ be a 2-pseudo false 7-matrix. Here

$$
P_{1}=P_{3}=P_{4}=P_{5}=P_{6}=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 1 & 3 & 14 \\
15 & 7 & 14 & 10 & 1 \\
6 & 5 & 4 & 3 & 2
\end{array}\right]
$$

is a 5×5 square matrix and

$$
P_{2}=P_{7}=\left[\begin{array}{cccccc}
1 & 4 & 7 & 0 & 15 & 3 \\
2 & 5 & 8 & 1 & 7 & 18 \\
3 & 6 & 9 & 10 & 8 & 2
\end{array}\right]
$$

is a 3×6 matrix. Thus P is a 2-pseudo false mixed 7-matrix.

Now we proceed on to define the notion of 3-pseudo false nmatrix $n \geq 6$. We see when $n=3$ (or 4 and 5) we can get only a 1-pseudo false matrix (or a two pseudo false matrix) respectively. For n = 4 we cannot have a 3-pseudo false matrix for it will turn out to be a 1-pseudo false matrix.

Thus for one to define even the notion of 3-pseudo false nmatrix we need $\mathrm{n} \geq 6$.

DEFINITION 2.3.9: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be a pseudo false n-matrix $(n \geq 6)$ where $M_{1}=M_{2}=\ldots=M_{n-3}=\left(a_{i j}\right)=A, a$ matrix and $M_{n-2}=M_{n-1}=M_{n}=B$ with $A \neq B$. Then we call M to be a 3-pseudo false n-matrix. If in a 3-pseudo false n-matrix M both A and B are $m \times m$ square matrices then we call M to be a 3 -pseudo false square n-matrix. If in the 3-pseudo false n-matrix M both A and B happen to be a $p \times q$ rectangular matrices then we call M to be a 3-pseudo false rectangular n-matrix.

If in the 3-pseudo false n-matrix $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$, $A=M_{1}=M_{2}=\ldots=M_{n-3}$ happen to be a $m \times m$ square matrix and $B=M_{n-2}=M_{n-1}=M_{n}$ be a $t \times t$ square matrix $(m \neq t)$ then we call M to be a 3 -pseudo mixed square false n-matrix. If in the 3-pseudo false n-matrix $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}, M_{1}=M_{2}$ $=\ldots=M_{n-3}=A$ be a $m \times m$ square matrix (or a $t \times s$ rectangular matrix) and $M_{n-2}=M_{n-1}=M_{n}=B$ be a $p \times q$ rectangular matrix (or a $s \times s$ square matrix) then we call M to be a 3-pseudo false mixed n-matrix.

Now we will illustrate this by the following examples.
Example 2.3.14: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{8}$ be a 3-pseudo false 8-matrix where

$$
M_{1}=M_{3}=M_{5}=M_{7}=M_{8}=\left[\begin{array}{cccccc}
3 & 7 & 1 & 5 & 8 & 10 \\
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 1
\end{array}\right]
$$

and

$$
M_{2}=M_{4}=M_{6}=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 0 & 1 & 2 \\
3 & 4 & 5 & 6 & 7 & 8
\end{array}\right]
$$

where both the matrices are 3×6 rectangular matrices. Clearly M is a 3-pseudo rectangular false 8-matrix.

Now we proceed on to give an example of a 3-pseudo square false n-matrix.

Example 2.3.15: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{7}$ be a 3 pseudo false 7-matrix, where

$$
M_{2}=M_{3}=M_{4}=M_{7}=\left[\begin{array}{llll}
3 & 1 & 5 & 9 \\
1 & 2 & 6 & 0 \\
5 & 3 & 7 & 1 \\
6 & 4 & 8 & 2
\end{array}\right]
$$

be 4×4 matrix and

$$
M_{1}=M_{5}=M_{6}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & 1 & 2 \\
3 & 4 & 5 & 6
\end{array}\right]
$$

a 4×4 square matrix.
We see M is a 3-pseudo square false 7-matrix.
Now we give an example of a 3-pseudo mixed square false n-matrix.

Example 2.3.16: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{6}$ be a 3 pseudo mixed rectangular matrix where

$$
M_{1}=M_{2}=M_{3}=\left[\begin{array}{llllll}
1 & 5 & 9 & 3 & 7 & 1 \\
2 & 6 & 0 & 4 & 8 & 2 \\
3 & 7 & 1 & 5 & 9 & 3 \\
4 & 8 & 2 & 6 & 0 & 4
\end{array}\right]
$$

and

$$
M_{4}=M_{5}=M_{6}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 0 \\
1 & 2 & 3 & 4 & 6 \\
7 & 8 & 9 & 0 & 1
\end{array}\right] .
$$

Clearly one set of matrices is a 4×6 rectangular matrix where as another set of matrices is a 4×5 rectangular matrices. Thus M is a 3-pseudo mixed rectangular false 6-matrix.

Example 2.3.17: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{8}$ where

$$
M_{1}=M_{2}=M_{5}=M_{6}=M_{8}=\left[\begin{array}{llll}
1 & 5 & 6 & 7 \\
2 & 8 & 9 & 0 \\
3 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]
$$

and

$$
M_{3}=M_{4}=M_{7}=\left[\begin{array}{lllll}
4 & 3 & 2 & 1 & 9 \\
6 & 7 & 8 & 9 & 0 \\
1 & 3 & 5 & 7 & 4 \\
2 & 4 & 6 & 8 & 5 \\
1 & 0 & 8 & 7 & 3
\end{array}\right] .
$$

We see M is a 3 -pseudo mixed square false 8 -matrix. Now we present an example of a 3 -pseudo mixed false n-matrix.

Example 2.3.18: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{9}$ be a 3 pseudo 9 matrix where

$$
\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 9 & 10 & 3 & 11 & 12 & 13 \\
3 & 14 & 15 & 6 & 16 & 8 & 9
\end{array}\right]=M_{1}=M_{2}=
$$

$$
\mathrm{M}_{4}=\mathrm{M}_{5}=\mathrm{M}_{7}=\mathrm{M}_{8}
$$

and

$$
M_{3}=M_{6}=M_{9}=\left[\begin{array}{llll}
3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 \\
5 & 0 & 1 & 8 \\
1 & 8 & 9 & 0
\end{array}\right]
$$

a 4×4 square matrix. M is a 3 -pseudo mixed false 9 -matrix.
Example 2.3.19: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{7}$ where

$$
M_{1}=M_{3}=M_{5}=M_{7}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 8 & 11 & 1 \\
6 & 9 & 2 & 15 \\
7 & 10 & 5 & 8
\end{array}\right]
$$

and

$$
\mathrm{M}_{2}=\mathrm{M}_{4}=\mathrm{M}_{6}=\left[\begin{array}{cccccc}
1 & 4 & 5 & 6 & 7 & 8 \\
2 & 9 & 10 & 1 & 2 & 3 \\
3 & 4 & 5 & 6 & 7 & 11
\end{array}\right]
$$

a 3×6 rectangular matrix. M is a 3 -pseudo mixed false $7-$ matrix.

Now we proceed on to define the notion of m-pseudo false n -matrix $\mathrm{m}<\mathrm{n}$ and $(\mathrm{n} \geq 2 \mathrm{~m}) \mathrm{m}>3$.

DEFINITION 2.3.10: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be a pseudo false n-matrix we call M to be a m-pseudo false n-matrix ($n \geq$ $2 m$ and $m \geq 4$) if $M_{1}=M_{2}=\ldots=M_{m}=A$ and $M_{m+1}=M_{m+2}=$ $\ldots=M_{n}=B$ with $A \neq B$. If in the m-pseudo false n-matrix ($n \geq$ $2 m$ and $m \geq 4) M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ if we have $M_{1}=M_{2}=$ $\ldots=M_{m}=A$ be a $t \times t$ square matrix and $M_{m+1}=M_{m+2}=\ldots=$
$M_{n}=B$ be a $t \times t$ square matrix but $A \neq B$ then we define M to be a m-pseudo $t \times t$ square false n-matrix.

We see if the conditions on m and n are not put we may not have the definition to be true.

Now we proceed on to give an illustration of the same.

Example 2.3.20: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{9}$ be a false 9matrix where $M_{1}=M_{3}=M_{5}=M_{7}=M_{9}=A$ and $M_{2}=M_{4}=M_{6}$ $=M_{8}=B(A \neq B)$. We see M is a 4-pseudo false 9-matrix.

The following observations are important. (1) when the false n-matrix is a false 9 -matrix we cannot have 5 -pseudo 9 matrix to be defined we can have only 4-pseudo 9-matrix or 3pseudo 9 -matrix or 2 -pseudo 9 -matrix or 1 -pseudo 9 -matrix to be defined. Clearly $9>2.4$ here $n=9$ and $m=4$.

Example 2.3.21: Let us consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{12}$ be a pseudo false 12-matrix. We see M can only be a maximum 6pseudo false 12-matrix however it can be a m-pseudo false 12matrix $\mathrm{m}=1,2,3,4,5$ and 6 . Clearly M is not a 7 -pseudo false 12-matrix. We see if $\mathrm{M}_{1}=\mathrm{M}_{3}=\mathrm{M}_{5}=\mathrm{M}_{7}=\mathrm{M}_{9}=\mathrm{M}_{11}=\mathrm{A}$ and $\mathrm{M}_{2}=\mathrm{M}_{4}=\mathrm{M}_{6}=\mathrm{M}_{8}=\mathrm{M}_{10}=\mathrm{M}_{12}=\mathrm{B}(\mathrm{A} \neq \mathrm{B})$ then M is a 6pseudo false 12-matrix.

Now we proceed on to define various classes of m-pseudo false n-matrices $(\mathrm{n} \geq 2 \mathrm{~m}, \mathrm{~m}<\mathrm{n})$.

DEFINITION 2.3.11: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}(n \geq 2 m$ and $m<n$) be a m-pseudo false n-matrix. If $M_{1}=M_{2}=M_{5}=\ldots=$ $M_{m}=A$ where A is a $t \times t$ square matrix and $M_{m+1}=M_{m+2}=\ldots$ $=M_{n}=B$, B also a $t \times t$ square matrix with $A \neq B$ then we call M to be a m-pseudo square false n-matrix. If on the other hand in $M_{1}=M_{2}=\ldots=M_{m}=A$, A happens to be a $p \times q$ rectangular matrix $(p \neq q)$ and $M_{m+1}=M_{m+2}=\ldots=M_{n}=B$, $(A$ $\neq B$) but B is also a $p \times q$ rectangular matrix than we call M to be a m-pseudo rectangular false n-matrix. Suppose we have M_{1} $=M_{2}=\ldots=M_{m}=A$ to be a $p \times p$ square matrix and $M_{m+1}=$ $M_{m+2}=\ldots=M_{n}=B$ to be a $t \times t$ square matrix $(p \neq t)$ then we call M to be a m-pseudo mixed square false n-matrix if we have in the false n matrix $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}, M_{1}=M_{2}=\ldots=$
$M_{m}=A$, A a $p \times q$ rectangular matrix and $M_{m+1}=M_{m+2}=\ldots=$ $M_{n}=B$, a $t \times s$ rectangular matrix $p \neq t$ (or $q \neq s$) (or not in the mutually exclusive sense) then we define M to be a m-pseudo mixed rectangular false n-matrix.

Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be a m-pseudo false n-matrix we say M is a m-pseudo mixed false n-matrix if $M=M_{1} \cup M_{2} \cup$ $\ldots \cup M_{m}=A$ is a $p \times p$ square matrix (or at $\times s t \neq s a$ rectangular matrix) and $M_{m+1}=M_{m+2}=\ldots=M_{n}=B$ is a $t \times s$ rectangular (or a $p \times p$ square matrix) then we call M to be a m-pseudo mixed false n-matrix.

Now we illustrate these by the following examples:-
Example 2.3.22: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{10}$ be 4-pseudo false matrix where

$$
M_{1}=M_{3}=M_{4}=M_{6}=M_{7}=M_{8}=\left[\begin{array}{llll}
3 & 1 & 2 & 3 \\
1 & 4 & 5 & 6 \\
2 & 7 & 8 & 9 \\
5 & 0 & 1 & 2
\end{array}\right]
$$

a 4×4 square matrix and

$$
M_{2}=M_{5}=M_{9}=M_{10}=\left[\begin{array}{llll}
0 & 9 & 8 & 7 \\
6 & 5 & 4 & 3 \\
2 & 1 & 0 & 1 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

a 4×4 square matrix. Clearly M is a 4 -pseudo false to matrix which is a 4 -pseudo square false 10 matrix.

Example 2.3.23: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{12}$ be a 6 pseudo false 12-matrix where

$$
M_{1}=M_{3}=M_{5}=M_{7}=M_{9}=M_{11}=\left[\begin{array}{lllllll}
1 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 9 & 7 & 5 & 3 & 1 & 8 \\
3 & 8 & 6 & 4 & 2 & 0 & 5
\end{array}\right]
$$

be a 3×7 rectangular matrix and

$$
M_{2}=M_{4}=M_{6}=M_{8}=M_{10}=M_{12}=\left[\begin{array}{lllllll}
9 & 6 & 5 & 4 & 3 & 2 & 1 \\
8 & 1 & 3 & 5 & 7 & 9 & 8 \\
7 & 2 & 4 & 6 & 8 & 0 & 5
\end{array}\right]
$$

be a 3×7 rectangular matrix. We see M is a 6 -pseudo rectangular false 12-matrix.

We see a twelve matrix can maximum be only a 6 -pseudo false 12 -matrix and can never be a 7 or 8 or 9 or 10 or 11 pseudo false 12-matrix.

Example 2.3.24: Consider the false n-matrix $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup$ $\ldots \cup \mathrm{M}_{15}$ where

$$
M_{1}=M_{2}=M_{3}=M_{4}=M_{5}=M_{6}=M_{15}=\left[\begin{array}{llll}
3 & 8 & 9 & 0 \\
4 & 1 & 2 & 3 \\
5 & 4 & 5 & 6 \\
6 & 7 & 8 & 9
\end{array}\right]
$$

be a 4×4 square matrix and

$$
M_{7}=M_{8}=M_{9}=M_{10}=M_{11}=M_{12}=M_{13}=M_{14}=\left[\begin{array}{lll}
3 & 2 & 1 \\
0 & 5 & 6 \\
9 & 8 & 7
\end{array}\right]
$$

a 3×3 square matrix. Clearly M is a 7 -pseudo mixed square false 15 -matrix.

Example 2.3.25: Suppose $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{17}$ be a false pseudo 17-matrix where

$$
\begin{aligned}
M_{1}= & M_{2}=M_{6}=M_{7}=M_{8}=M_{9}=M_{10}=M_{17} \\
& =\left[\begin{array}{ccccccc}
1 & 5 & 6 & 7 & 8 & 9 & 0 \\
2 & 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 7 & 8 & 9 & 0 & 11 & 1 \\
4 & 12 & 6 & 8 & 4 & 3 & 10
\end{array}\right]
\end{aligned}
$$

a 4×7 rectangular matrix and

$$
\begin{aligned}
M_{3}=M_{4}=M_{5}=M_{11} & =M_{12}=M_{13}=M_{14}=M_{15}=M_{16} \\
& =\left[\begin{array}{lll}
3 & 1 & 2 \\
5 & 9 & 0 \\
6 & 4 & 2 \\
7 & 1 & 9 \\
8 & 3 & 5
\end{array}\right]
\end{aligned}
$$

be a 5×3 rectangular matrix, then M is a 8 -pseudo mixed rectangular false 17-matrix.

Example 2.3.26: Let us consider the 18-matrix $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup$ $\mathrm{M}_{3} \cup \ldots \cup \mathrm{M}_{18}$ where

$$
M_{1}=M_{2}=M_{3}=\ldots=M_{8}=M_{9}=\left[\begin{array}{ccccc}
1 & 6 & 7 & 8 & 9 \\
2 & 10 & 9 & 8 & 7 \\
3 & 6 & 5 & 4 & 3 \\
4 & 2 & 1 & 11 & 9 \\
5 & 8 & 7 & 6 & 5
\end{array}\right]
$$

a 5×5 square matrix and

$$
\mathrm{M}_{10}=\mathrm{M}_{11}=\ldots=\mathrm{M}_{18}=\left[\begin{array}{lllllllll}
3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 8 & 9 & 1 & 9 & 2 & 8 & 7 & 3 \\
4 & 4 & 5 & 9 & 8 & 7 & 6 & 5 & 4 \\
5 & 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8 \\
6 & 0 & 1 & 3 & 0 & 7 & 0 & 9 & 0
\end{array}\right]
$$

a 5×9 rectangular matrix. We see M is a 9-pseudo mixed false 18-matrix.

Example 2.3.27: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{9}$ be a false 9matrix, where

$$
M_{1}=M_{3}=M_{5}=M_{7}=M_{9}=\left[\begin{array}{llllll}
1 & 0 & 3 & 4 & 8 & 9 \\
2 & 5 & 1 & 0 & 2 & 1 \\
3 & 4 & 8 & 7 & 6 & 0 \\
4 & 1 & 2 & 3 & 4 & 5
\end{array}\right]
$$

be a 4×6 rectangular matrix and

$$
M_{2}=M_{4}=M_{6}=M_{8}=\left[\begin{array}{ccc}
3 & 6 & 1 \\
4 & 7 & 0 \\
5 & 10 & 9
\end{array}\right]
$$

be a a 3×3 square matrix. M is a 4 -pseudo mixed false 9matrix. Clearly M is not a 5 -pseudo mixed false 9 -matrix.

2.4 False n-codes ($\mathrm{n} \geq 2$)

In this section we introduce yet another new class of codes called false n-codes which can find its applications in cryptography. If false n-codes are used it is very difficult to hack the secrets. They can also be used in the place of codes with ARQ protocols.

DEFINITION 2.4.1: Let $C=C_{1} \cup C_{2}$ be a bicode if $C_{1}=C_{2}$ then we call C is a false bicode.

Example 2.4.1: Let $C=C_{1} \cup C_{2}$ where C_{1} is generated by

$$
G_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

and C_{2} generated by

$$
G_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

i.e. $C=\left\{\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array} 1\right),(010010),(001100)\right.$, (1 1 0 0 1 1) , (1011101), (0111110), ($\left.\left.\begin{array}{llllll}1 & 1 & 1 & 1\end{array}\right)\right\} \cup$ $\left\{(000000),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right)\right.$, (110011); (101101), (011110), (111111)\}.

This false bicode has the following main advantages or purposes.

1. If they want $A R Q$ messages they can use false bicode so that when the message is received if both vary one can take the better of the two or at times one may be a correct message and other a wrong message.
2. Also when they are not in a position to get or transform the channel as ARQ protocols then also these false bicodes may be helpful.
3. When false codes are used in crypto system it can easily mislead the hacker thereby maintaining security.

We will however illustrate this by one simple example.
Example 2.4.2: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}$ be a false bicode where $\mathrm{C}_{1}=\mathrm{C}$ (7.3) code C_{1} is generated by the generator matrix

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

The false bicode is given by
$\mathrm{C}=\left\{\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0\end{array}\right)\right.$, (000110001$),\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array}\right),\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 1\end{array}\right)$, (0 1111100), (11110110$)\} \cup\{(0000000)$,

 (1110110)\}.

Suppose some message $x=\left(x_{1} x_{2} x_{3} \ldots x_{7}\right) \cup\left(x_{1} x_{2} x_{3} \ldots x_{7}\right) \in C$ the false bicode is sent and if $y=(1111111) \cup(110111$ 1) is the received message, we see (11111111) $\notin \mathrm{C}_{1}$ only (11 $01111) \in C_{1}$ so the correct message is taken as (1101111) or one assumes (1101111) to be the sent message.

This false bicode save the user from unnecessarily spending money over sending the message or asking them to send the message several times that too when the ARQ protocols are impossible. We give another important use of these false bicodes. If the sender wants to maintain some confidentiality he would send from the false bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}$ a bicode word x $\cup y \in C$ where the sender knows only one message is relevant and the other is only to misguide the person who would try to know the confidentiality of the message. He would be certainly mislead. Thus the confidentiality can be preserved.

Now we proceed onto to define false tricode and false ncode.

DEFINITION 2.4.2: Let $C=C_{1} \cup C_{2} \cup C_{3}$ be a tricode where C_{1} $=C_{2}=C_{3}$ then we call the tricode to be a false tricode.

We illustrate this by the following example.
Example 2.4.3: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$ be a tricode where $\mathrm{C}_{1}=$ $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}(7,4)$ a linear code i.e. the generator trimatrix of C is

$$
\begin{gathered}
c \\
=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup \\
\\
{\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] .}
\end{gathered}
$$

The false tricode
$\mathrm{C}=\left\{\left(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right.$, ($\left.\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 1\end{array}\right)$, (00100001), (00001011), (11100011), (0 11100111), (00111010), (101010100),

 (1 11000011), (01110111), (00011010),
 (1 11100010), (011111100), (11101000), $\left.\left(\begin{array}{lll}1 & 0 & 1\end{array} 1010\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right)\right\} \cup\left\{\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right)\right.$, (100001001), (01100110), (0010001), (00001011), (11100011), (01110111), (0011010), (1010100), (01011111),
 (1101000), (1011010), (1111001)\}.

Any $x, y, z \in C$ is of the form $x=x_{1} \cup x_{2} \cup x_{3}, y=y_{1} \cup y_{2} \cup$ $\mathrm{y}_{3}, \mathrm{z}=\mathrm{z}_{1} \cup \mathrm{z}_{2} \cup \mathrm{z}_{3}, \mathrm{z}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} \in \mathrm{C}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 3$.

Now if x is sent and y is received where $y=\left(\begin{array}{llll}1 & 11 & 0 & 0\end{array}\right)$ $\cup(1110010) \cup(0111100)=y_{1} \cup y_{2} \cup y_{3}$ and if the messages in $x=x_{1} \cup x_{2} \cup x_{3}$ only x_{1} is aimed to be the code to
be sent or used where as x_{2} and x_{3} are used to mislead the hacker then while decoding this tricode the receiver will not bother about y_{2} and y_{3} he will only decode y_{1}. Thus when one uses such trick the data will be protected to some extent. If we increase the tricode from 3 to an arbitrarily large number say n then even pitching at the truly sent message would be impossible. To this end we define the false n code.

DEFINITION 2.4.3: A code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ where C is an n-code ($n \geq 4$) but in which $C_{1}=C_{2}=C_{3}=\ldots=C_{n}$ then we call C to be a false n-code.

We just give an example of a false n-code.
Example 2.4.4: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ where each C_{i} is a linear code generated by the generator matrix

$$
\mathrm{G}_{\mathrm{i}}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

$\mathrm{i}=1,2 \ldots, 5$. The 5-code
$\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}\left(\mathrm{C}_{1}=\mathrm{C}_{2}=3=\mathrm{C}_{4}=\mathrm{C}_{5}\right)$
$=\{(00000000),(10001100),(01000110)$, (00100011), (00010101), (11001010), (0 110010 1), (00110110), (10101111), (0101001), (10011001), (1110100 1), (0 11110000), (11011111), (10111010), (11111100) \} $\cup\{(00000000),(10001100$), (0 1000110), (00100011), (0001010 1), (11001010), (01100101), (00110110), (10101011), (0 101001), (1001100 1), (11101001), (01110000), (11011111), (10111000), (11111100)\} $\cup\{(00000000)$, (10001100), (01000110), (00100011), (00010101), (11001010), (01100101),
(0 01110110$),\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array} 1\right.$), (01010011), (1 00011001), (111101001), (011110000), (1 101111), (10111000), (111111100$)\} \cup$ $\left\{(00000000),(10001100),\left(\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)\right.$, (0 0 1 0 0 0 1 1), (00010101), (110001010),
 (0 10010011), (100111001), (111101001), (0 111100000$)$, (110111111), (101111000), $(11111100)\} \cup\{(00000000),(10001100)$, (01000110), (00100011), (00010101), (11001010), (01100101), (00110110), (10101011), (01010011), (10011001), (1 11101001), (011110000), (111011111), (10111000), (111111100)\}.

Note if $\mathrm{x} \in \mathrm{C}$ then $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \mathrm{x}_{3} \cup \mathrm{x}_{4} \cup \mathrm{x}_{5}$ where $\mathrm{x}_{\mathrm{i}} \in \mathrm{C}_{1}, 1$ $\leq \mathrm{i} \leq 5$; each of the x_{i} 's can be distinct or x_{i} 's can be the same. For instance let $x=(01110000) \cup(11011111) \cup(101$ $11000) \cup(11111100) \cup(10001100)$ we see each of the elements in x is distinct.

Let $y=(01110000) \cup(01110000) \cup(0111000$ $0) \cup(01110000),(01110000) \in \mathrm{C}_{1}$ we see each of the elements in y are one and the same. Both $x, y \in C=C_{1} \cup C_{1} \cup$ $\mathrm{C}_{1} \cup \mathrm{C}_{1} \cup \mathrm{C}_{1}$.

Now we proceed onto give the uses.
When one wants to use confidentiality in sending the message so that the intruder should not break the message in such cases we can use these false n-codes. That is in the false n-code $x=x_{1}$ $\cup x_{2} \cup \ldots \cup x_{n}$ he can enclose the message say in one or more of the code and just sent the code x when he receives the message he need not decode or even verify whether the codes in other coordinates are correct code words but just decode only the codes which carries the message. Thus false codes play a major role in keeping the key intact i.e. the hacker cannot hack it. This can be ones private e-mail or any other thing in which confidentiality is needed.

Yet another use of this false n-code is when the message is sent and if the received message has error then they make an
automatic repeat request this can be avoided instead the message after calculating the time period they can so place the length of the code so that we get the same message transmitted. This can be done any desired number of times. Use of this false n code would certainly be economically better when compared to using the method of ARQ protocols where it is at times impossible to capture the message after a time like photographs by moving satellites or missiles.

Now we proceed on to define the notion of 1-pseudo false n -code ($\mathrm{n} \geq 3$). For when $\mathrm{n}=2$ we have the 1-pseudo false bicode coincides with the usual bicode which is not at all a false bicode.

DEFINITION 2.4.4: Let $C=C_{1} \cup C_{2} \cup C_{3}$ be a tricode in which $C_{1}=C_{2}$ and C_{3} is different from C_{1}, then we define C to be a 1pseudo false tricode.

We illustrate this 1-pseudo false tricode by the following example.

Example 2.4.5: Let us consider the 1-pseudo false tricode $\mathrm{C}=$ $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{2}$ where $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ generated by the pseudo false trimatrix

$$
\begin{gathered}
G=G_{1} \cup G_{2} \cup G_{2}= \\
{\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right]} \\
\cup\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
\cup\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] ;
\end{gathered}
$$

The 1-pseudo false tricode

$$
\left.\begin{array}{rl}
\mathrm{C}= & \left\{\begin{array}{lllllllllll}
(0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right), \\
& (0
\end{array}\right)
$$

Any $x=x_{1} \cup x_{2} \cup x_{3}$ is such that $x_{1} \in C_{1}$ and $x_{2} \in C_{2}, x_{3} \in C_{3}$ i.e. $x=(1001100) \cup(100100) \cup(111111)$ or $x=(11$ $11001) \cup(011011) \cup(011011)$.

Now we proceed onto define 1-pseudo false n-code n > 3 .
DEFINITION 2.4.5: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{i} \cup \ldots \cup C_{n}$ be a union of n number of codes ($n \geq 4$). If $C_{1}=C_{2}=\ldots=C_{i-1}=C_{i+1}$ $=\ldots=C_{n}$ and $C_{i} \neq C_{j}$ if $i \neq j, j=1,2,3, \ldots, i-1, i+1, \ldots, n$ then we call C to be a 1-pseudo false n-code i.e. in the set of n number of codes $C_{1}, C_{2}, \ldots, C_{i-1}, C_{i}, C_{i+1}, \ldots, C_{n}$ only C_{i} is different and all the other n-1 codes are one and the same.

Now we give an example of a 1-pseudo n-code, $n>3$.
Example 2.4.6: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{1} \cup \mathrm{C}_{1} \cup \mathrm{C}_{1} \cup \mathrm{C}_{1}$ be a 1pseudo false six code generated by the 1-pseudo false 6-matrix

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{1} \cup \mathrm{G}_{1} \cup \mathrm{G}_{1} \cup \mathrm{G}_{1}
$$

where

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

and

$$
\mathrm{G}_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

The 1-pseudo false 6-code

$$
\begin{aligned}
\mathrm{C}= & \left\{\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right),\right. \\
& (1) \\
& 1
\end{aligned} 1
$$

Any element x in C would be of the form $x=x_{1} \cup x_{2} \cup x_{3} \cup x_{4}$ $\cup x_{5} \cup x_{6}$ where $x_{2}, x_{1}, x_{3}, x_{4}, x_{5}$ and x_{6} are of length seven but $x_{2} \in C_{2}$ and $x_{i} \in C_{1}, i=1,3,4,5,6$, i.e. $x=(1011011) \cup(1$ $111110) \cup(0101101) \cup(1011011) \cup(1110110)$ $\cup(1011011)$ or if $y=y_{1} \cup y_{2} \cup y_{3} \cup y_{4} \cup y_{5} \cup y_{6}=(1011$ $011) \cup(1010000) \cup(1011011) \cup(1011011) \cup(1$ $011011) \cup(1011011)$ i.e., all the y_{i} are equal to $(1011$ 011) for $\mathrm{i}=1,2,3,4,5,6$ and $\mathrm{y}_{2}=(1010000) \in \mathrm{C}_{2}$. Note it is interesting to mention when $\mathrm{n}=3$ we get the 1 -pseudo false tricode.

Note: It is interesting to note that if $\mathrm{n} \geq 2 \mathrm{~m}$ we can have maximum only a m-pseudo false code we can never have $m+r$ -pseudo false n -code where $\mathrm{r} \geq 1$. Another interesting factor to make a note of, is if $n=2 m+1$ then also we can have maximum only a m-pseudo false ($2 \mathrm{~m}+1$)-code. Here also we cannot have a $m+r$-pseudo false $(2 m+1)$ code $r \geq 1$. This is the very property of t-pseudo false n codes. These class of t pseudo false n-codes will be very useful when we want to send 2-repeated messages of different lengths we can use it to send 2different messages of different length when we are not in a position to demand for ARQ protocols or when we want to send secret message which should be kept as very confidential ($\mathrm{n} \geq$ 2t; t $<\mathrm{n}$).

Now we define yet another new class of pseudo false codes.
DEFINITION 2.4.6: Let us consider a n code $C=C_{1} \cup C_{2} \cup \ldots$ $\cup C_{n}$ where $C_{i}=C\left(n_{r}, k_{r}\right) ; C_{j}=C\left(n_{j}, k_{j}\right)(i \neq j$ and $r \neq j)$ and C_{1} $=C_{2}=\ldots=C_{i-1}=C_{i+1}=\ldots=C_{j-1}=C_{j+1}=\ldots=C_{n}=\left(n_{p}, k_{p}\right) p$ $\neq j, p \neq r$ and then we call C to be a $(1,1)$ pseudo false n-code, n ≥ 4.

We illustrate this by an example.
Example 2.4.7: Let us consider a 6 -code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup$ $\mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6}$ where C_{2} is a $(6,4)$ code generated by $\mathrm{G}=\mathrm{G}_{1} \cup$ $\ldots \cup \mathrm{G}_{6}$ where

$$
\mathrm{G}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] .
$$

C_{5} is a $(7,3)$ code generated by

$$
G_{5}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

C_{1}, C_{3}, C_{4} and C_{6} are $(5,2)$ codes generated by the generator matrix

$$
G_{1}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]=G_{3}=G_{4}=G_{6} .
$$

Thus the generator 6 matrix G is of the form

$$
\begin{gathered}
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] \cup \\
{\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]} \\
\cup\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
\cup\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

$\mathrm{C}=(5,2) \cup(6,4) \cup(5,2) \cup(5,2) \cup(7,3) \cup(5,2)$ is a $(1,1)$ pseudo false 6-code given by

$$
\left.\begin{array}{rl}
C= & \left\{\begin{array}{llllll}
(0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
1 & 0 & 1 & 1 & 0
\end{array}\right),\left(\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1
\end{array}\right)
\end{array}\right\}
$$

The main advantage of this code is it can be used in transmission when one is interested in sending 3 types of messages one a repeating one, where as the other two are just two different messages.

Another use of this code is when one wants to fool the hacker he will not be in any position to known which of the code in C that carries the true message so that it may be impossible for him to hack the information, thus this will be of immense use to a cryptologist.

Now we can like wise define any (t , t)-pseudo n -code when $\mathrm{t}=$ 2 , $\mathrm{n} \geq 5$ and (t, t)-pseudo n -code when $\mathrm{n} \geq 2 \mathrm{t}+1$ and $\mathrm{t}<\mathrm{n}$. This new class of codes will be very much helpful in several places.

DEFINITION 2.4.7: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be any false n code, we define C to be a (t, t)-pseudo false n-code ($n \geq 2 t+1$), $t \geq 2$ if $C_{1}=C_{2}=\ldots=C_{t}=A ; C_{t+1}=C_{t+2}=\ldots=C_{2 t}=B(A \neq$ B) $C_{2 t+1}=C_{2 t+2}=\ldots=C_{n}=C$; where $A \neq C$ and $B \neq C$.

We now proceed on to give an example of it and proceed on to define new classes.

Example 2.4.8: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{16}$ be any false 16 code we define C to be a $(5,5)$ pseudo false 16 code ($16 \geq 10+$ 1) if

$$
\begin{gathered}
\mathrm{C}_{1}=\mathrm{C}_{2}=\ldots=\mathrm{C}_{5}=\mathrm{A}=\mathrm{C}(7,3) ; \\
\mathrm{C}_{6}=\mathrm{C}_{7}=\ldots=\mathrm{C}_{10}=\mathrm{B}=\mathrm{C}(9,6) ;(\mathrm{A} \neq \mathrm{B}) ;
\end{gathered}
$$

and

$$
\mathrm{C}_{11}=\mathrm{C}_{12}=\ldots=\mathrm{C}_{16}=\mathrm{D}=\mathrm{C}(7,4) ;
$$

where $\mathrm{A} \neq \mathrm{B}, \mathrm{D} \neq \mathrm{B}$ and $\mathrm{D} \neq \mathrm{A}$.
DEFINITION 2.4.8: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a pseudo false n-code we call C a (t, m)-pseudo false n-code $(t \neq m)$ if $n>$ $t+m+1$ and $C_{1}=C_{2}=\ldots=C_{t}=A, a\left(n_{t}, k_{t}\right)$ code, $C_{t}=C_{t+1}=$ $\ldots=C_{t+m}=C\left(n_{m}, k_{m}\right)=P, t \neq m$ and $C_{t+m+1}=\ldots=C_{n}=C\left(n_{i}\right.$, $\left.k_{i}\right)=B, i \neq t, i \neq m$ and $P \neq B$.

This code will also be very useful to maintain secrecy of the message and it will be very difficult for the intruder to easily break open the key.

Now we illustrate it by an example.

Example 2.4.9: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \ldots \cup \mathrm{C}_{19}$ be a (5, 8)pseudo false 19-code where $\mathrm{C}_{1}=\mathrm{C}_{2}=\ldots=\mathrm{C}_{5}$ is a $\mathrm{C}(8,4)$ code $\mathrm{C}_{7}=\mathrm{C}_{8}=\mathrm{C}_{9}=\mathrm{C}_{10}=\mathrm{C}_{12}=\mathrm{C}_{13}=\mathrm{C}_{14}=\mathrm{C}_{15}$ is a $\mathrm{C}(7,3)$ code and $\mathrm{C}_{6}=\mathrm{C}_{16}=\mathrm{C}_{17}=\mathrm{C}_{19}$ is a $\mathrm{C}(6,3)$ code.

Now we show a n-code communication n-channel by figure 2.4.1.

FIGURE 2.4.1

Chapter Three

Periyar Linear Codes

This chapter has two sections. In section one we introduce a new class of codes called Periyar linear codes and in section two the applications of these new classes of codes are given.

3.1 Periyar Linear Codes and their Properties

In this section for the first time we introduce the new class of codes called Periyar Linear Codes and enumerate some of its properties. We proceed on to define a Periyar Linear Code. The authors to honour Periyar in his $125^{\text {th }}$ birthday have named this code in his name.

DEFINITION 3.1.1: A n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}(n \geq 2)$ is said to be a Periyar linear code (P-linear code) if it has a $\left(n_{i}, k_{i}\right)$ subcode $C_{i} \subseteq C$ such that no other subcode in C is a (n_{i}, k_{i}) code, i fixed. C may have a subcode with $i \neq j$. Further $C \vee C_{i}$ has no (n_{j}, k_{j}) subcode (By subcode of C we mean any C_{i} of C; 1 $\leq i \leq n)$.

We first illustrate this by the following example.

Example 3.1.1: Consider the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} is a $(5,3)$ code and C_{2} is a $(7,4)$ code. C is a Periyar linear code as C contains a subcode C_{1} which is a $(5,3)$ and C_{1} does not contain any $(5,3)$ code. Also C_{2} is a $(7,4)$ subcode of C . $\mathrm{C} \backslash \mathrm{C} 2$ does not contain any $(7,4)$ code. Thus this bicode is a Periyar linear code.

We cannot always say every bicode is a P-linear code to this we give the following example.

Example 3.1.2: Consider the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} and C_{2} are both $(7,3)$ codes given by the parity check matrices H_{1} and H_{2} where

$$
\mathrm{H}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
\mathrm{H}_{2}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$C_{1}=\{(0000000),(1001111$), (0100100), (001001 0), (1101100), (1011010), (0110110), (111111 0) \} and $\mathrm{C}_{2}=\{(0000000$), (1001011), (0101101), (0 01011), (1100110), (0111010), (1 011100), (11 $10001)$ \}. We see both C_{1} and C_{2} are $(7,3)$ codes and C is a bicode but C is not a P -linear code for we cannot find a subcode other than $(7,3)$ subcodes.

We have a class of n-codes ($\mathrm{n} \geq 2$) which are Periyar linear codes which is clear from the following.

ThEOREM 3.1.1: Every n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ where C_{i} is a $\left(n_{i}, k_{i}\right)$ code, $i=1,2, \ldots, n$ and $n_{i} \neq n_{j}$ if $i \neq j$ and (or) $k_{i} \neq$ k_{j} if $i \neq j, i \leq i, j \leq n$ is a P-linear code.

Proof: Clearly we see if $n_{i} \neq n_{j}$ for $i \neq j$ then the n-code $C=C_{1}$ $\cup C_{2} \cup \ldots \cup C_{n}=C\left(n_{1}, k_{1}\right) \cup C\left(n_{2}, k_{2}\right) \cup \ldots \cup C\left(n_{n}, k_{n}\right)$ is such that each $C_{i}=C\left(n_{i}, k_{i}\right)$ is distinct from $C_{j}=C\left(n_{j}, k_{j}\right)$. So C has $\left(n_{i}, k_{i}\right)$ subcodes hence C is a P-linear code. Here it may so happen $k_{i}=k_{j}$ even if $i \neq j$. Still $n_{i} \neq n_{j}$ for $i \neq j$ is sufficient to produce P-linear codes.

Now we have a n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}=C_{1}\left(n_{1}, k_{1}\right)$ $\cup C_{2}\left(n_{2}, k_{2}\right) \cup \ldots \cup C_{n}\left(n_{n}, k_{n}\right)$ where some $n_{i}=n_{j}, i \neq j$ but none of the $k_{i}=k_{j}$ if $i \neq j$ then also C is a P-linear code.

Clearly if both $n_{i} \neq n_{j}(i \neq j)$ and $k_{i} \neq k_{j}(i \neq j)$ then also C is a P-linear code.

Note: According to the definition of P-linear codes C we should not have two distinct subcodes B and B^{\prime} in C such that both B and B^{\prime} are $\left(\mathrm{n}_{\mathrm{t}}, \mathrm{k}_{\mathrm{t}}\right)$ linear codes with $\mathrm{B} \nsubseteq \mathrm{B}^{\prime}$ and $\mathrm{B}^{\prime} \nsubseteq \mathrm{B}$.

We will illustrate all the three cases by the following examples.

Example 3.1.3: Let us consider a bicode $C=C_{1} \cup C_{2}$ where C_{1} is a $(7,3)$ linear code and C_{2} is a $(7,4)$ linear code. We see both the codes C_{1} and C_{2} are of same length 7 but $k_{1} \neq k_{2}$ hence C is a P-linear code.

Example 3.1.4: Consider a bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where $\mathrm{C}_{1}=\mathrm{C}(9$, $5)$ and $C_{2}=C(7,5)$ both C_{1} and C_{2} are linear codes having same number of message symbols but have different lengths viz., 9 and 7. Hence C is a P-linear code.

Example 3.1.5: Consider a bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} is a (7, $3)$ code and C_{2} is a $(8,4)$ code then C is a P-linear code.

Now consider a tricode $C=C_{1} \cup C_{2} \cup C_{3}=C_{1}(7,5) \cup$ $C_{2}(6,3) \cup C_{3}(6,3)$ with $C_{2} \neq C_{3}$ still C is not a P-linear code; it is only a tricode.

Now we proceed on to define a new notion called weak Periyar linear code.

DEFINITION 3.1.2: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a linear n code $(n \geq 3)$ we say C is a weak Periyar linear code (weak P linear code) if C has a subcode C_{j} which is different from other subcodes C_{i} i.e. C has atleast one subcode different from C_{j}.

It is important to see that we may have several subcodes of same length and number of message symbols in $C=C_{1} \cup C_{2} \cup$ $\ldots \cup \mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$. We still cannot say they are not P-linear codes but only they are weak P-linear codes.

Example 3.1.6: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ be a 4 -code where $\mathrm{C}_{1}=(7,3)$ code $\mathrm{C}_{2}=(7,3)$ code, $\mathrm{C}_{3}=(6,3)$ code and $\mathrm{C}_{4}=(6$, 2) where C_{1} is generated by

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right],
$$

C_{2} generated by

$$
\mathrm{G}_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right],
$$

C_{3} is generated by

$$
G_{3}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

and C_{4} is generated by

$$
\mathrm{G}_{4}=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& C_{1}=\left\{\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right),\right.
\end{aligned}
$$

> (1011010), (1110011)\},
> $C_{2}=\left\{\left(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0\end{array}\right)\right.$, ($\left.\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 1\end{array}\right)$, (0010110), (11101110), (01110001), (1011111), (1111000)\},
> $C_{3}=\quad\{(000000),(100110),(010101),(001011)$, (110011), (0 11110), (10110 1), (111000)\} and
> $C_{4}=\{(000000),(101110),(010111),(111001)\}$.

We see if we take C_{4} or C_{3} as a subcode of C then C is a P linear code. But if we take C_{2} or C_{1} as a subcode then clearly C $=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$ is not a P-linear but only a weak Periyar linear code. Thus from this example we see C is both a P-linear code as well as weak P-linear code. So we are forced to define a new concept because we see the notion of weak P-linear code and P -linear code does not divide C into two classes which are disjoint but we have a over lap.

So we define a new notion called duo Periyar linear code.
DEFINITION 3.1.3: Let us consider a n-code $C=C_{1} \cup C_{2} \cup \ldots$ $\cup C_{n},(n \geq 3)$ if C is both a P-linear code as well as a weak P linear code then we call C to be a duo Periyar linear code (duo P-linear code).

All P-linear nodes need not be duo P-linear codes or a all weak P-linear codes need not be duo P-linear code or a P-linear code need not be a weak P-linear code or vice versa.

Theorem 3.1.2: A P-linear code in general need not be a weak P-linear code. Likewise a weak P-linear code need not always be a P-linear code.

Proof: To prove these above statements we give in support some examples.

Let $\mathrm{C}=\mathrm{C}(6,3) \cup \mathrm{C}(63) \cup \mathrm{C}(7,4) \cup \mathrm{C}(7,4)$ be a 4 -code where $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$ with C having the generator 4-matrix G $=G_{1} \cup G_{2} \cup G_{3} \cup G_{4}$ where

$$
\begin{aligned}
& \mathrm{G}_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right], \\
& \mathrm{G}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right], \\
& \mathrm{G}_{3}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
G_{4}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

where the code generated by G_{1} is $\{(000000)$, (100001), (0 10010), (001100), (11001 1), (0 11110), (10 110 1), $\left.\left(\begin{array}{ll}1 & 1\end{array} 1111\right)\right\}=C(6,3)=C_{1}$.

The code generated by G_{2} is $\{(000000),(100110)$, (0 1010 1), (001011), (110011), (011110), (101101), $(111000)\}=\mathrm{C}(6,3)=\mathrm{C}_{2}$.

Clearly $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ The code generated by G_{3} is $\left\{\left(\begin{array}{lll}0 & 00000\end{array}\right.\right.$ 0), (1000101), (0 10001), (0 01001 1), (0001110),
(1100111), (1010110), (0110001), (0011101), (0 101100), (1001011), (1110100), (0111111), (11

Now the code generated by G_{4} is $\left\{\left(\begin{array}{lll}0 & 0 & 00000),(10000\end{array}\right.\right.$ $10)$, (010011 1), (001001 1), (0 001110), (1 10010 1), (0110100), (0 01110 1), (1010001), (0 10100 1), (1001100), (1110110), (0111010), (1101001), (1 011011), (1111000) \} $10(7,3)=C_{9}$ Clearly $C_{3} \neq C_{4}$. All the four codes are distinct, but C is not a P-linear code it is only a weak S linear code. Thus we see a code can be weak P-linear code but not a P-linear code.

Example 3.1.7: Consider the 3 code $C=C_{1} \cup C_{2} \cup C_{3}=C(7,3)$ $\cup C(6,3) \cup C(5,3)$ where $C(7,3)$ is generated by the matrix

$$
G_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

The $C(6,3)$ code is generated by the matrix

$$
\mathrm{G}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

The code $C(5,3)$ is generated by the matrix

$$
G_{3}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

The code generated by G_{1} is $\{(0000000)$, (1001100), (0 $100110)$, (0 01010 1), (1101010), (0110011), (10 $11001),(1111111)\}$. The code generated by G_{2} is $\{(000$ 000), (100001), (010010), (001100), (110011), (0 $11110)$, (1 01101), (1 11111)\}. The code generated by
G_{3} is $\left\{(00000),(10011),(01001),(00110),\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)\right.$,
 linear code and is not a weak P linear code. Thus we see we can have a n-code which is a P-linear code and not a weak P-linear code.

Now we give an example of a n-code ($\mathrm{n}>2$) which is both a P-linear code as well as a weak P-linear code.

Example 3.1.8: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ be a 4-linear code, where $\mathrm{C}_{1}=\mathrm{C}(7,4)$ linear code, $\mathrm{C}_{2}=\mathrm{C}(5,2)$ be another linear code, $C_{3}=C(5,3)$ code and C_{4} be a $C(6,3)$ linear code. It is easily verified C is a P -linear code for it has only one subcode $\mathrm{C}(7,4)$ or $\mathrm{C}(5,2)$. It is also a weak P-linear code for it has two subcodes of length 5 . Thus $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$ is a duo P linear code.

Now having seen examples of all the types of codes defined. Now we proceed onto define P-linear repetition code.

DEFINITION 3.1.4: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code where each C_{i} is a repetition code of length n_{i} with $n_{i}-1$ check symbols where the $n_{i}-1$ check symbols $x_{2}{ }^{i}=x_{3}{ }^{i}=\ldots=x_{n}{ }^{i}$ are equal to a_{1} (a_{1} 'repeated' $n_{i}-1$ times) then we may obtain a binary $\left(n_{i}, 1\right)$ code with parity-check matrix

$$
H_{i}=\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Clearly there are only two code words in the code $C\left(n_{i}, 1\right)$, namely ($00 \ldots 0$) and ($11 \ldots 1$) this is true for $i=1,2, \ldots, n$. Thus we have n distinct repetition codes, since C is a n-code C_{i} $\neq C_{j}$ if $i \neq j$. We see every subcode is distinct so we call C a Periyar linear repetition code (P-linear repetition code).

Example 3.1.9: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ be a 4-code, where $\mathrm{C}_{1}=\left\{\left(\begin{array}{lll}0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)\right\}, \mathrm{C}_{2}=\left\{(000000),\left(\begin{array}{ll}1 & 11111\end{array}\right)\right\}, \mathrm{C}_{3}$ $=\{(0000000),(1111111)\}$ and $C_{4}=\{(000000000)$,
(111111111) \}. Each code C_{i} is a repetition code which are distinct, this code is associated with the parity check 4-matrix H $=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}$.

$$
H=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\left[\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Clearly C is a P-linear repetition code, where $\mathrm{C}=\left\langle\left\{\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)\right.\right.$), (1 $111)\} \cup\{(000000),(111111)\} \cup\{(0000000),(111$ $1111)\} \cup\{(111111111),(00000000)\}\rangle$.

Now we proceed on to define the Periyar linear parity check code.

DEFINITION 3.1.5: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a m-code. We define C to be a Periyar Parity check code if each C_{i} is a ($m_{i}, m_{i}-1$) parity check binary code, $i=1,2, \ldots, m$. Clearly if C is to be a m-code we need each C_{i} must be distinct i.e. if $C_{i}=$ $C\left(m_{i}, m_{i}-1\right)$ then $m_{i} \neq m_{j}$ if $i \neq j$. C is associated with a parity check m-matrix $H=H \cup H_{2} \cup \ldots \cup H_{n}$ where each H_{i} is a $1 x$ m_{i} unit vector i.e. $H_{i}=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & \ldots\end{array}\right)$.

We give an example of a P-linear parity check code.
Example 3.1.10: Consider the 5 code $C=C_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup$ C_{5} where each C_{i} is a parity check $\left(\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}-1\right)$ binary linear code $H_{1}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 1\right.$ 1), $H_{2}=\left(\begin{array}{lll}1 & 1 & 1\end{array} 1\right.$), $H_{3}=\left(\begin{array}{lll}1 & 1 & 1\end{array} 111\right.$) , $H_{4}=(1$ $11111111)$ and $H_{5}=(1111)$, where $H=H_{1} \cup H_{2} \cup H_{3} \cup$ $\mathrm{H}_{4} \cup \mathrm{H}_{5}$ is a parity check 5 -matrix. Since each code C_{i} is distinct for $\mathrm{i}=1,2, \ldots, 5$ we see C is a P -linear parity check code and not a weak P-linear parity check code.

THEOREM 3.1.3: A linear binary repetition n-code ($n \geq 2$) is always a P-linear binary repetition code and never a weak P linear binary repetition code and hence never a duo P-linear binary code.

Proof: Given $C=C_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$ is a linear binary repetition n-code ($n \geq 2$). Since C is a repetition n-code each code C_{i} is distinct and is a repetition code for $\mathrm{i}=1,2, \ldots$, n . So C cannot have two subcodes of same length.

So C is not a weak P-linear code. Further C has n-distinct subcodes i.e. C has a subcode which has a length different from other subcodes, so C is a P-linear code. Since C is only a P-
linear code and not a weak P-linear code so C cannot be a duo P-linear code. Hence the claim.

Next we prove the following interesting theorem about Parity Check n-code.

Theorem 3.1.4: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be linear binary m-parity check code. Then C is only a P-linear code and not a weak P-linear code; thus C is not a duo P-linear code.

Proof: Given $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a linear binary mparity check code; i.e. each C_{i} is a parity check code of length m_{i} and $\mathrm{m}_{\mathrm{i}} \neq \mathrm{m}_{\mathrm{j}}$ if $\mathrm{i} \neq \mathrm{j}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$. Thus each C_{i} is distinct. Hence C has subcode which is unique i.e. C has subcode of length m_{j} then C has no other subcode of length m_{j}. So C is a Plinear code. Now C has no two subcodes which are of same length, hence C is not a weak P-linear code.

Thus we have proved in case of every n-code if it is repetition n-code or a parity check n-code then it is only a Plinear code and never a weak P-linear code thus not a duo Plinear code.

Hence we have seen that all n-codes are not duo n-codes. We have a special class of n-codes which are also P-linear codes and not weak P-linear n-codes. We have already given examples of P-linear repetition code and P-linear parity check code.

We now proceed on to define the notion of binary Hamming P code.

DEFINITION 3.1.6: Let $C=C_{1} \cup C_{2} \cup \ldots C_{n}$ be a n-code ($n \geq$ 2). If each C_{i} is a binary Hamming code of length $n_{i}=2^{m_{i}}-1$ $\left(m_{i} \geq 2\right) ; i=1,2, \ldots, n$. Thus any subcode of C is of length n_{i} and clearly C has no subcode of length n_{i}; so C is a defined to be a Periyar linear Hamming code (P-linear Hamming code).

Example 3.1.11: Consider the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} is a $\mathrm{n}_{1}=2^{3}-1$ binary Hamming code and C_{2} is a $\mathrm{n}_{2}=2^{4}-1$ binary Hamming code. Then C is a P-linear Hamming code.

We expect the reader to prove the following theorem.
Theorem 3.1.5: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code $(n \geq$ 2) such that each C_{i} is a Hamming binary code of length $n_{i}=2^{i}$ $-1, i=1,2, \ldots, n$. Then C is a P-linear Hamming code and C is never a weak P-linear code and hence is not a duo P-linear code.

DEFINITION 3.1.7: Let $C=C_{1} \cup C_{1}^{\perp}$ be a bicode where C_{1} is a (n, k) code and C^{\perp} the dual code of C. We call C whole bicode. We see in case of whole bicode both of them are of same length but the number of message symbols in them is assumed to be different.

We illustrate this by the following example.
Example 3.1.12: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}{ }^{\perp}$ be a bicode where C_{1} is generated by the generator matrix

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] .
$$

The generator matrix of $\mathrm{C}_{1}{ }^{\perp}$ is given by

$$
\mathrm{G}_{2}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The code generated by G_{1} is $C_{1}=\{(0000000),(100011$ 0), (0101010), (0 01110 1), (1 101100), (011011 1), (1011011), (1110001)\}. The code generated by C_{2} i.e., $\mathrm{C}_{1}^{\perp}=\{(0000000),(0111000),(1010100),(11000$ 10), (001000 1), (1101100), (0110110), (111001
1), (1011010), (1000101), (0101001), (0001110), (0 10011 1), (1 00101 1), (1111101), (0 011111) \}.

The whole bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}{ }^{\perp}$ where all the elements of C_{1} and $\mathrm{C}_{1}{ }^{\perp}$ are given.

Now it is a natural question to ask can we define whole tricode the answer is no. But we can have a 4 -whole code and in general a whole n-code if and only if n is an even number.

DEFINITION 3.1.8: Let $C=C_{1} \cup C_{1}{ }^{\perp} \cup C_{2} \cup C_{2}{ }^{\perp} \ldots \cup C_{n} \cup$ $C_{n}{ }^{\perp}$ be a $2 n$-code where C_{i} and its dual $C_{i}{ }^{\perp}$ find their place in C then we call C a whole $2 n$-code ($n \geq 1$), $i=1,2, \ldots, n$.

THEOREM 3.1.6: Let $C=C_{1} \cup C_{1}{ }^{\perp} \cup C_{2} \cup C_{2}{ }^{\perp} \cup \ldots \cup C_{n} \cup$ $C_{n}{ }^{\perp}$ be a whole $2 n$-code. C is not a P-linear code but C is always a weak P-linear code. Further C is not a duo P-linear code.

Proof: We are given $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}^{\perp} \cup \mathrm{C}_{2} \cup \mathrm{C}_{2}{ }^{\perp} \cup \ldots \cup \mathrm{C}_{\mathrm{n}} \cup$ $\mathrm{C}_{\mathrm{n}}{ }^{\perp}$ to be a whole 2 n -code. Thus C has atleast 2 subcodes of same length since if C has the subcode C_{i} then C_{i}^{\perp} is also a subcode as C is a whole $2 n$-code. Hence C is a weak P-linear code and never a P-linear code, thus the whole $2 n$ code can never be a duo P-linear code. Hence the claim.

We have seen a class of n-codes which are P-linear codes and never weak P-linear codes. Now we have established that whole 2n-codes are weak P-linear codes and never a P-linear code.

Now we proceed onto give yet another class of duo P-linear codes to this end we define the notion of pseudo whole n-code ($\mathrm{n} \geq 3$).

DEFINITION 3.1.9: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ (n an odd number) we call C to be a pseudo whole n-code if $C=C_{1} \cup C_{1}{ }^{\perp}$ $\cup C_{2} \cup C_{2}^{\perp} \cup \ldots \cup C_{\frac{n-1}{2}} \cup C_{\frac{n-1}{2}}^{\perp} \cup C_{n}$ as n is given to be an
odd number where $C=a$ union of the whole code plus another arbitrary code of length different from all other codes in C.

We illustrate this by the following example.
Example 3.1.13: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}{ }^{\perp} \cup \mathrm{C}_{2}$ be a tricode where C is the union of code and its dual and another code C_{2} where C is a pseudo whole code.
C_{1} is generated by

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

and $\mathrm{C}_{1}{ }^{\perp}$ is generated by

$$
\mathrm{G}_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

C_{2} is a code generated by

$$
G_{3}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

C is a pseudo whole code.
THEOREM 3.1.7: Let $C=C_{1} \cup C_{1}^{\perp} \cup C_{2} \cup C_{2}^{\perp} \cup \ldots \cup C_{\frac{n-1}{2}} \cup$ $C_{\frac{n-1}{2}}^{\perp} \cup C_{n}$ (n-odd) be the pseudo whole n-code; then C is a duo P-linear whole code.

Proof: Given $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{1}{ }^{\perp} \cup \mathrm{C}_{2} \cup \mathrm{C}_{2}{ }^{\perp} \cup \ldots \cup C_{\frac{n-1}{2}} \cup C_{\frac{n-1}{2}}^{\perp} \cup$
C_{n} be the pseudo whole n-code (n -odd). C has a subcode C_{n} which has no other subcode the same length. Hence C is a P linear code, C has subcodes C_{i}, then C has same length subcode given by $\mathrm{C}_{\mathrm{i}}^{\perp} 1 \leq \mathrm{i} \leq \frac{n-1}{2}$. Thus C is a weak P-linear code. C is both a P-linear code as well as C is a weak- P -linear code, so C is a duo P-linear code which will be known as the duo P-linear pseudo whole code. Thus we have the class of pseudo whole codes which happen to be a duo P-linear code.

Now having seen the 3 distinct classes of codes we now proceed on to define the notion of Periyar cyclic code.

DEFINITION 3.1.10: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code (n $\geq 2)$ if each C_{i} is a cyclic code then we define C to be a n-cyclic code. If each C_{i} is of length n_{i} and $n_{i} \neq n_{j}$ if $i \neq j$ for $1 \leq i, j \leq n$ then we define C to be a Periyar cyclic code. If C has more than one subcyclic code of length n_{i}, then we define C to be a weak Periyar cyclic code.

First we will provide some examples of them so that it would make the reader understand the definition better.

Example 3.1.14: Consider the cyclic 5-code $C=C_{1} \cup C_{2} \cup C_{3}$ $\cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ where C_{1} is a $(6,3)$ code C_{2} a $(7,4)$ code, C_{3} a $(7,3)$ code, C_{4} a $(8,4)$ code and C_{5} are $(5,4)$ cyclic codes. Let G be the associated generator 5-matrix of C .
$G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}$

$$
=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \cup} \\
&
\end{aligned}
$$

All the 5 codes $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and C_{5} are cyclic. Thus C is a cyclic 5-code.

We see C is both a P-cyclic code as well as weak P-cyclic code. C is given by the following 5 -codes

$$
\begin{aligned}
& C=\{(000000),(100100)(010010),(001001) \text {, } \\
& \text { (110110), (0 } 11011 \text {), (} 10110 \text {) , (} 111111 \text {) \} } \\
& \cup\left\{(0000000),(1101000),\left(\begin{array}{llllll}
0 & 1 & 0 & 100
\end{array}\right)\right. \text {, }
\end{aligned}
$$

(0111110001$),\left(\begin{array}{lllllll}1 & 1 & 0 & 0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}\right)$,
(1001011) $0 \cup\left\{(0000000),\left(\begin{array}{lll}1 & 1 & 010\end{array}\right)\right.$,
(0 11110110), (0011101), (1001110),
\{(00000000), (10001000), (01000100),
(00100010), (0001000), (11001100),
(01100110), (00110011), (10101010),
(01010101), (10011001), (11101110),
(01110111), (11011101), (10111011),
$(11111111)\} \cup\{(00000),(11000),(01100)$,
(001110), (00011), (10100), (01010),
(10001) \}
is a cyclic 5-code. For this has C_{5} alone to be subcode likewise. C_{4} is a subcode and has no other subcode of length 8 ; whereas C has C_{2} and C_{3} to be subcodes of length 7 . Thus C is both a P linear cyclic code as well as weak P-linear cyclic code.

Example 3.1.15: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{2} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ where C_{1} is a $C(6,3)$ code, C_{2} is a $C(6,1)$ code, C_{3} a $(7,3)$ code, C_{4} a $(7,4)$ code and C_{5} a $(7,3)$ code. Clearly C is not a P-linear cyclic code but only a weak P-linear cyclic code where C is generated by the generator 5-matrix given by

$$
\begin{aligned}
G & =G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}= \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup } \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \cup }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

Clearly G generates a 5 -cyclic code and G is not a P-linear cyclic code but only a weak P-cyclic code. For it has subcodes of length 6 and 7 respectively.

Now we have seen an example of a weak P-linear cyclic code which is not a P-cyclic code.

We proceed on to give an example of a P-cyclic code which is not a weak P-linear cyclic code.

Example 3.1.16: Consider the cyclic 4-code $C=C_{1} \cup C_{2} \cup C_{3}$ $\cup \mathrm{C}_{4}$ generated by the generator 4-matrix

$$
\begin{aligned}
& \mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}= \\
& {\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \cup}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

We see this cyclic 4-code has 4 subcodes each is of length different from the other i.e. C has a subcode of length 7, length 6 , length 5 and length 8 . So C is a P-linear code and not a weak P-linear code. Hence the claim.

Now we proceed on to give an example of a cyclic n-code which is a weak P-cyclic code and not a P-cyclic code.

Example 3.1.17: Consider a cyclic 4 code C given by C $=\mathrm{C}_{1} \cup$ $\mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ generated by

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}
$$

where

$$
\mathrm{G}_{1}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right],
$$

$$
\begin{aligned}
\mathrm{G}_{2} & =\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \\
\mathrm{G}_{3} & =\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\mathrm{G}_{4}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

We see the codes C_{1} and C_{2} are of same length 7 but have different number of message symbols viz. 3 and 4 respectively. C is a $C(7,3)$ linear code and C_{2} is a $(7,4)$ linear code. Now C_{3} and C_{4} are linear codes of length $6, C_{3}$ is a $(6,3)$ linear code and C_{4} is a $(6,5)$ linear code. Thus C is a cyclic 4 -code but not a Plinear cyclic code only a weak P-linear cyclic code as C has two subcodes of length 7 and two subcodes of length 6 . It has no unique subcode.

Now we proceed onto define the notion of pseudo Periyar cyclic n-code.

DEFINITION 3.1.11: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code. We call C to be a pseudo Periyar cyclic code if C has atleast one cyclic code i.e. atleast one of the C_{i} 's is a cyclic code ($n \geq$ 2).

We give example of a pseudo P-cyclic code.
Example 3.1.18: Consider the 4 -code $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$ where C is generated by the generator matrix

$$
\begin{aligned}
& G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right] \cup} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .}
\end{aligned}
$$

The 4-code generated by G is given by $\mathrm{C}=\left\{\begin{array}{ll}(00000 & 0\end{array}\right),(100$ 100), (010011), (001011), (110111), (011000), (1 01111), (111100)\} $\cup\{(000000),(100100),(0100$ 10), (0 0100 1), (1 10110), (01101 1), (10110 1), (11 $1111)\} \cup\{(0000000),(1001001),(0100110),(00$ 1001) , (110111) , (011010 1), (1011010), (111 $1100)\} \cup\{(0000000),(1000110),(0100101),(00$ 1001), (000111 1), (110001 1), (0110110), (001 1100), (10 1010 1), (0 10101 0), (1001001), (1 110 00 0), (0 11100 1), (11 01100), (1 011010), (1 1111 $11)\}$. We see among the four codes only C_{2} is a cyclic code so C is a pseudo P-cyclic code.

Now we proceed on to define the notion of pseudo strong Periyar cyclic code.

DEFINITION 3.1.12: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be n-code if in C we have only n-1 of the codes among $C_{1}, C_{2}, \ldots, C_{n}$ to be cyclic then we define C to be a pseudo strong Periyar cyclic code.

Now we proceed on to illustrate this by the following example.

Example 3.1.19: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6}$ be a 6code where C is generated by the 6 -matrix

$$
\begin{aligned}
G & =G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5} \cup G_{6}= \\
& =\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \cup } \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup } \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \cup }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Clearly the codes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{5}$ are cyclic only C_{6} is a non cyclic code so C is a pseudo strong P-cyclic code. We see in this example C_{1} is a $(7,4)$ cyclic code generated by the polynomial $x^{3}+x+1$ and $x^{3}+x+1 / x^{7}+1 . C_{2}$ is a $(7,3)$ cyclic code generated by the polynomial $x^{4}+x^{2}+x+1$ and $x^{4}+x^{2}+x+1 / x^{7}+1$. C_{3} is a $(6,3)$ cyclic code generated by the polynomial $x^{3}+1$ and $x^{3}+1 / x^{6}+1$. C_{4} is a $(6,5)$ cyclic code generated by the polynomial $\mathrm{x}+1, \mathrm{C}_{5}$ is a $(8,4)$ cyclic code generated by a generator polynomial $x^{4}+1$ and $x^{4}+1 / x^{8}+1$ and C_{6} is not a cyclic code. So C is a pseudo strong P-cyclic 6-code.

We see all pseudo strong P-cyclic codes are trivially pseudo Pcyclic codes. But in general a pseudo P-cyclic code need not be a strong pseudo P-cyclic code.

Now we would define the notion of weak Periyar false codes.
DEFINITION 3.1.13: $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ is a false n-code if atleast one of the subcodes is different from the other codes then we define C to be a weak Periyar false code.

Clearly a false code is never a weak P-false code.
THEOREM 3.1.8: The class of m-pseudo false n-codes ($n \geq 2 m$, $2 \leq m<n$) are weak P-false codes.

Proof: From the very definition of m-pseudo false n-codes C = $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$ we see $\mathrm{C}_{1}=\mathrm{C}_{2}=\ldots=\mathrm{C}_{\mathrm{m}}=\mathrm{A}$ and $\mathrm{C}_{\mathrm{m}+1}=$ $\mathrm{C}_{\mathrm{m}+2}=\ldots=\mathrm{C}_{\mathrm{n}}=\mathrm{B} ; \mathrm{A} \neq \mathrm{B}$. Thus C has atleast one subcode is different from other codes.

Hence C is a weak P-false code.
DEFINITION 3.1.14: A false n-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}(n \geq$ 2) is said to be Periyar false code if and only if C is a 1-pseudo false code i.e. C has one and only one subcode C_{i} different from other subcodes of C.

Theorem 3.1.9: Every 1-pseudo false n-code is a P-false code.
Proof: Follows from the very definition of P-false codes.
We illustrate by an example.
Example 3.1.20: Consider the 1-pseudo false n-code C $=\mathrm{C}_{1} \cup$ $\mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ given by $\mathrm{C}_{1}=\mathrm{C}(5,3), \mathrm{C}_{2}=\mathrm{C}(7,4), \mathrm{C}_{3}=$ $C(7,4)=C_{4}=C_{5}$. Clearly C has one and only subcode $C_{1}=$ $C(5,3)$ and other subcodes of C are identical with $C(7,4)$ thus C is a pseudo P-false code.

We proceed onto define yet another new type of P-linear codes built using the set of different types of codes like repetition code, parity check code, cyclic code and any other general code. This type of new codes will be known as P-linear mixed codes.

DEFINITION 3.1.15: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a n-code if some of the codes C_{i} are parity check codes, some of the codes C_{j} are repetition codes and some others C_{k} are cyclic codes then we call C to be a Periyar linear mixed code where $1 \leq i, j, k \leq n$.

We illustrate this by the following example.
Example 3.1.21: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$ be a P-linear mixed code where C_{1} is a repetition code, C_{2} a parity check
code, C_{3} a cyclic code and C_{4} and C_{5} a general code. Suppose H $=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}$.

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \cup \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \cup\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \cup} \\
& \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

H is a mixed parity check matrix of the P -linear mixed codes.

3.2 Application of these New Classes of Codes

In this section we give a few applications of these new classes of codes.

1. The m -pseudo false n -codes (t, t) pseudo false n -codes and (t, m) pseudo false n -codes can be used in cryptography. The true message can be sent in the m codes and just the remaining ($\mathrm{n}-\mathrm{m}$) codes will serve to mislead the intruder. Infact this code can also be used for m persons simultaneously and each one will read his message from the n-code i.e., if $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ here $\mathrm{C}_{\mathrm{i}_{1}}=\mathrm{C}_{\mathrm{i}_{2}}=\ldots=\mathrm{C}_{\mathrm{i}_{\mathrm{m}}}=\mathrm{A}, 1 \leq \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}} \leq \mathrm{n}, \mathrm{i}_{\mathrm{j}} \neq \mathrm{i}_{\mathrm{t}}$ if $\mathrm{j} \neq \mathrm{t}$. Then i_{1} can be assigned the first customer, i_{2} to
the second and i_{m} to the $m^{\text {th }}$ customer so they know the place in which their message is present. For instance i_{1} $=5$ the first customer will only decode the code word x_{5} from $\mathrm{x}=\mathrm{x}_{1} \cup \ldots \cup \mathrm{x}_{\mathrm{n}}$ and he will not bother to pay any attention to other codes. Thus it is very difficult for the intruder to hack this way of message transmission. In case they have two sets of customers say t and m in number then (t, m) pseudo n code can be used.
2. These codes can be used in networking of computers when in the work place some m of them work on the same data and t on another set of data. Infact the (t, m) pseudo n-code can be extended to any ($\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{r}}$) pseudo n code without any difficultly. Further the transmission or working with them is not difficult as we have super computer to cater to our needs.
3. These n-codes or n-false codes or m pseudo false n codes or (m, t) pseudo false n codes can be easily used when we cannot use ARQ protocols, so n - false codes and m-pseudo false n codes will serve best in those cases.
4. These new classes of codes can also be used in data storage. The authors strongly feel these codes are best suited in any networking. Finally they can be used with highest degree of security in defence department of any nation.
5. Periyar code finds its applications in channels where all the n information which are passed simultaneously are distinct. In such channels Periyar codes are best suited.

Further Reading

1. Abraham, R., Linear and Multilinear Algebra, W. A. Benjamin Inc., 1966.
2. Albert, A., Structure of Algebras, Colloq. Pub., 24, Amer. Math. Soc., 1939.
3. Berlekamp, E.R., Algebraic Coding Theory, Mc Graw Hill Inc, 1968.
4. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, Macmillan Publ. Company, 1977.
5. Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc., 31 433-435, 1995.
6. Bruce, Schneier., Applied Cryptography, Second Edition, John Wiley, 1996.
7. Burrow, M., Representation Theory of Finite Groups, Dover Publications, 1993.
8. Charles W. Curtis, Linear Algebra - An introductory Approach, Springer, 1984.
9. Dubreil, P., and Dubreil-Jacotin, M.L., Lectures on Modern Algebra, Oliver and Boyd., Edinburgh, 1967.
10. GEL'FAND, I.M., Lectures on linear algebra, Interscience, New York, 1961.
11. Greub, W.H., Linear Algebra, Fourth Edition, SpringerVerlag, 1974.
12. Halmos, P.R., Finite dimensional vector spaces, D Van Nostrand Co, Princeton, 1958.
13. Hamming, R.W., Error Detecting and error correcting codes, Bell Systems Techical Journal, 29, 147-160, 1950.
14. Harvey E. Rose, Linear Algebra, Bir Khauser Verlag, 2002.
15. Herstein I.N., Abstract Algebra, John Wiley,1990.
16. Herstein, I.N., and DAVID J. Winter, Matrix Theory and Lienar Algebra, Maxwell Pub., 1989.
17. Herstein, I.N., Topics in Algebra, John Wiley, 1975.
18. Hoffman, K. and Kunze, R., Linear algebra, Prentice Hall of India, 1991.
19. HUMMEL, J.A., Introduction to vector functions, AddisonWesley, 1967.
20. JACOB BILL, Linear Functions and Matrix Theory, Springer-Verlag, 1995.
21. Jacobson, N., Lectures in Abstract Algebra, D Van Nostrand Co, Princeton, 1953.
22. JACOBSON, N., Structure of Rings, Colloquium Publications, 37, American Mathematical Society, 1956.
23. Johnson, T., New spectral theorem for vector spaces over finite fields Z_{p}, M.Sc. Dissertation, March 2003 (Guided by Dr. W.B. Vasantha Kandasamy).
24. Katsumi, N., Fundamentals of Linear Algebra, McGraw Hill, New York, 1966.
25. Kostrikin, A.I, and Manin, Y. I., Linear Algebra and Geometry, Gordon and Breach Science Publishers, 1989.
26. LANG, S., Algebra, Addison Wesley, 1967.
27. LAY, D. C., Linear Algebra and its Applications, Addison Wesley, 2003.
28. Mac William, F.J., and Sloane N.J.A., The Theory of Error Correcting Codes, North Holland Pub., 1977.
29. Pettofrezzo, A. J., Elements of Linear Algebra, PrenticeHall, Englewood Cliffs, NJ, 1970.
30. Pless, V.S., and Huffman, W. C., Handbook of Coding Theory, Elsevier Science B.V, 1998.
31. Roman, S., Advanced Linear Algebra, Springer-Verlag, New York, 1992.
32. Rorres, C., and Anton H., Applications of Linear Algebra, John Wiley \& Sons, 1977.
33. SEMMES, Stephen, Some topics pertaining to algebras of linear operators, November 2002. http://arxiv.org/pdf/math.CA/0211171
34. SHANNOL, C.E., A Mathematical Theory of Communication, Bell Systems Technical Journal, 27, 379-423 and 623-656, 1948.
35. Shilov, G.E., An Introduction to the Theory of Linear Spaces, Prentice-Hall, Englewood Cliffs, NJ, 1961.
36. Thrall, R.M., and Tornkheim, L., Vector spaces and matrices, Wiley, New York, 1957.
37. VAN Lint, J.H., Introduction to Coding Theory, Springer, 1999.
38. Vasantha Kandasamy and Rajkumar, R. Use of best approximations in algebraic bicoding theory, Varahmihir Journal of Mathematical Sciences, 6, 509-516, 2006.
39. Vasantha Kandasamy and Thiruvegadam, N., Application of pseudo best approximation to coding theory, Ultra Sci., 17 , 139-144, 2005.
40. Vasantha Kandasamy, W.B., Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, Rehoboth, 2003.
41. Vasantha Kandasamy, W.B., Bivector spaces, U. Sci. Phy. Sci., 11 , 186-190 1999.
42. Vasantha Kandasamy, W.B., Linear Algebra and Smarandache Linear Algebra, Bookman Publishing, 2003.
43. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to bimatrices, Hexis, Phoenix, 2005.
44. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to Linear Bialgebra, Hexis, Phoenix, 2005.
45. Voyevodin, V.V., Linear Algebra, Mir Publishers, 1983.
46. Zelinksy, D., A first course in Linear Algebra, Academic Press, 1973.

INDEX

(1, 1) pseudo false n-code, 165
(t, m) pseudo false n-code, 167
(t, t) pseudo false n-code, 167
1-pseudo false mixed square n-matrix, 138
1-pseudo false n-code, 165
1-pseudo false parity check n-matrix, 137-8
1-pseudo false $\mathrm{t} \times \mathrm{s}$ rectangular matrix, 138
1-pseudo false tricode, 162
2 pseudo false $\mathrm{m} \times \mathrm{m}$ square n-matrix, 143
2 pseudo false mixed square matrix, 144
2-pseudo false mixed rectangular n-matrix, 145-6
2-pseudo false n-matrix, 142
2-pseudo false rectangular n-matrix, 145
3-pseudo false mixed n-matrix, 148
3-pseudo false mixed rectangular n-matrix, 148
3-pseudo false mixed square n-matrix, 148
3-pseudo false n-matrix, 148
3-pseudo false square n-matrix, 148
A

Algebraic codes, 8
ARQ protocols, 156-7

B

Best approximation, 28-9
Bialgebra, 77-8
Bicodes, 45-8
Bicoset bileader, 112-3
Bidegree, 77-8
Bierror bivector, 117
Bigenerator matrix, 48
Biisomorphism, 77
Bimatrices, 33-4
Binary code, 10
Binary Hamming bicode, 71
Binary Hamming n-code, 75
Binary Hamming tricode, 73
Bisyndrome, 47-8, 117, 125
Block code, 10
Block length, 10

C

Canonical generator matrix, 11
Check bipolynomial, 53
Check equation, 14-5
Check symbols, 9-10
Code polynomials, 24-5
Code vectors, 24-5
Column bimatrix, 34
Component matrices n-matrix, 42
Components of a bimatrix, 39
Control digit, 69
Control symbol, 8, 69
Control symbols, 8
Coset leader, 21
Coset n-leader, 112-3
Coset of a code, 20
Cyclic bicode, 51-2, 78-9
Cyclic bishift, 76
Cyclic code, 23-4

Cyclic n-code, 89
Cyclic tricode, 83

D

Dual bicode, 97
Dual n-code, 97
Dual tricode, 94-5
Duo P-linear binary code, 178
Duo P-linear whole code, 182-3

E

Encoding matrix, 11

F

Factor bigroup, 77-8
False bicode, 157
False bimatrix, 137-8
False n-code, 137, 156, 160
False n-rectangular matrix, 137-8
False n-square matrix, 137-8
False parity check matrix, 137
False tricode, 158
False trimatrix, 137

G

Generator bipolynomial, 51-2
Generator n-matrix, 90
Generator polynomial, 24-5
Generator tripolynomial, 84-5
Group code, 10

H

Hamming 2-weight, 104-5
Hamming bidistance, 60

Hamming code, 22-3
Hamming distance, 13-4
Hamming n-bound, 103-5
Hamming n-distance, 103
Hamming tridistance, 104-5
Hamming triweight, 104-5
Hamming weight, 13-4

I

Inner product, 26-7
L
Linear bialgebra, 46
Linear biequations, 46
Linear codes, 7, 10
Linear cyclic bicode, 76

M

Message symbols, 8-10
Minimum distance, 14-5
Minimum weight, 21
Mixed bimatrix, 35-6
m-pseudo false mixed rectangular n-matrix, 151-3
m-pseudo false mixed square n-matrix, 151-2
m-pseudo false n-matrix, 137, 151-2
m-pseudo false parity check n-matrix, 137
m-pseudo false rectangular n-matrix, 151-3
m-pseudo false square n-matrix, 151-2

N

n-codes, 45, 62
n-coset leader, 112-3
Nearest neighbour decoding, 15
n-error vector, 127
n-field, 110-1
n-group, 110-1
n-map, 129
n-matrix, 62
n-parity check matrix, 67
n-polynomial, 89
n-pseudo field, 110-1
n-sphere of radius ($\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}$), 104-5
n-subgroup, 11-1
n-subspaces, 110-2
n-syndrome, 127-8
Null space of H, 10
n-vector spaces, 110-2

0

Orthogonal code, 16-7
Orthogonal complement of a tricode, 94-5
Orthogonal complement, 16
Orthogonal n-code, 97
Orthogonal vector space, 93

P

Parity check bicode, 50-1
Parity check bimatrix, 48
Parity check code, 11, 14
Parity check matrix, 10
Parity check n-code, 71
Parity check n-matrix, 67
Parity check n-polynomial, 90
Parity check polynomial, 24-5
Parity check trimatrix, 65-6
Parity check tripolynomial, 84-5
Periyar cyclic code, 183
Periyar false code, 192
Periyar linear code, 137, 169
Periyar linear Hamming code, 179
Periyar linear mixed code, 192
Periyar linear Parity check code, 178

Periyar linear repetition code, 176
P-linear code, 169
P-linear Hamming code, 179-80
P-linear parity check code, 178
P-linear repetition code, 176
Pseudo best approximation, 30-1, 55
Pseudo best n-approximation, 130-2
Pseudo inner byproduct, 56
Pseudo inner product, 30
Pseudo n-field, 11-1
Pseudo n-inner product, 129-30
Pseudo n-vector spaces, 110-2
Pseudo Periyar cyclic code, 188
Pseudo strong Periyar cyclic code, 190
Pseudo whole n-code, 181-2

R

Rectangular bimatrix, 34-5
Repetition bicode, 50
Repetition code, 10, 14
Repetition n-code, 67
Repetition tricode, 65-6
Reversible bicode, 99-100
Reversible tricode, 99-100
Row bimatrix, 34
Row trivector, 70

S

Self orthogonal bicode, 100
Self orthogonal n-code, 100-1
Self orthogonal tricode, 100-1
Semi self orthogonal bicode, 100
Semi self orthogonal n-code, 100-1
Semi self orthogonal tricode, 100-1
Source decoding, 7-9
Source encoding, 7-9
Sphere of radius r, 15-6

Square bimatrix, 35
Sub bispaces of a bivector space, 46
Syndrome, 21
Systematic linear code, 10

T

Transmission rate, 10
Transmitted code word, 55
Tricode, 60
Tricoset leader, 117
Tripolynomial, 82
Trisyndrome, 125-6
W
Weak Periyar false code, 191
Weak Periyar linear code, 172
Weak P-linear code, 172
Whole bicode, 180

ABOUT THE AUTHORS

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the Department of Mathematics, Indian Institute of Technology Madras, Chennai. In the past decade she has guided 11 Ph.D. scholars in the different fields of non-associative algebras, algebraic coding theory, transportation theory, fuzzy groups, and applications of fuzzy theory of the problems faced in chemical industries and cement industries.

She has to her credit 640 research papers. She has guided over 57 M.Sc. and M.Tech. projects. She has worked in collaboration projects with the Indian Space Research Organization and with the Tamil Nadu State AIDS Control Society. This is her $33^{\text {rd }}$ book.

On India's 60th Independence Day, Dr.Vasantha was conferred the Kalpana Chawla Award for Courage and Daring Enterprise by the State Government of Tamil Nadu in recognition of her sustained fight for social justice in the Indian Institute of Technology (IIT) Madras and for her contribution to mathematics. (The award, instituted in the memory of Indian-American astronaut Kalpana Chawla who died aboard Space Shuttle Columbia). The award carried a cash prize of five lakh rupees (the highest prize-money for any Indian award) and a gold medal. She can be contacted at vasanthakandasamy@gmail.com You can visit her on the web at: http://mat.iitm.ac.in/~wbv or: http://www.vasantha.net

Dr. Florentin Smarandache is an Associate Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 100 articles and notes in mathematics, physics, philosophy, psychology, literature, rebus. In mathematics his research is in number theory, non-Euclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability). Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He can be contacted at smarand@unm.edu

