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Abstract 

Using Jiang function we prove that for every positive integer k there exist infinitely 
many primes P  such that each of ( 1)P j j+ +  is prime. 
Theorem. 

                   , ( 1)( 1, , )P P j j j k+ + = L .                     （1） 

For every positive integer k there exist infinitely many primes P  such that each of 
( 1)P j j+ +  is prime. 

Proof. We have Jiang function [1, 2, 3] 
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where 
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Pω = Π , 

( )Pχ  is the number of solutions of congruence 
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where 1, , 1.q P= −L  

From (3) we have 
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From (3) and (2) we have. 
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We prove that for every positive integer k there exist infinitely many primes P  such 
that each of ( 1)P j j+ +  is prime. 
We have the asymptotic formula [1, 2, 3] 
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where ( ) ( 1)
P

Pφ ω = Π − . 
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Note Let 11P = , 11 ( 1)( 1, ,9)j j j+ + = L  are all prime. 

Let 41P = , 41 ( 1)( 1, ,39)j j j+ + = L  are all prime. 
Example 1. Let 1, , 2k P P= + , twin primes theorem. 
From (4) we have 
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We prove twin primes theorem. There exist infinitely many primes P  such that 
2P +  is prime. 

From (5) we have the best asymptotic formula 
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Exampe 2. Let 2, , 2, 6k P P P= + + . 

From (4) we have 
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We prove that there exist intinitely many primes P  such that 2P +  and 6P +  are 
all prime. 
From (5) we have the best asymptotic formula 
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Example 3. Let 6, , ( 1)( 1, ,6)k P P j j j= + + = L  

From (4) we have 
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We prove that there exist infinitely many primes P  such that each of ( 1)P j j+ +  is 
prime. 
From (5) we have the best asymptotic formula 
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The author takes a day to write this paper. 
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Remark. Cramér’s random model of prime theory is false. 

Example. Assming that the events “ P  is prime” and “ 2P +  and 4P +  are primes” 
are independent, we conclude that , 2P P +  and 4P +  are simultaneously prime 
with probability about 31/ log N . There are about 3/ logN N  3-tuple prime less 
than N . Letting N →∞  we obtain the 3-tuple conjecture which is false. 
 


