New prime K-tuple theorem (6)

$$
P, P+4^{n}(n=1, \cdots, k)
$$

Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China

Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that for every positive integer k there exist infinitely many primes P such that each of $P+4^{n}$ is prime.

\section*{Theorem} $$
\begin{equation*} P, P+4^{n}(n=1, \cdots, k) . \tag{1} \end{equation*}
$$

For every psitive integer k there exist infinitely many primes P such that each of $P+4^{n}$ is prime.

Proof. We have Jiang function [1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P$,
$\chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
\prod_{n=1}^{k}\left[q+4^{n}\right] \equiv 0 \quad(\bmod P) \tag{3}
\end{equation*}
$$

where $q=1, \cdots, P-1$.
From (3) we have
If $P<2 k$ then $\chi(P)=\frac{P-1}{2}$, if $2 k<P$ then $\chi(P)=k$.
Frome (3) and (2) we have

$$
\begin{equation*}
J_{3}(\omega)=\prod_{P=3}^{P<2 k} \frac{P-1}{2} \prod_{2 k<P}(P-1-k) \neq 0 . \tag{4}
\end{equation*}
$$

We prove that for every positive integer k there exist infinitely many primes P_{1} and P_{2} such that each of $P+4^{n}$ is prime.
We have the best asymptotic formula [1, 2]

$$
\begin{equation*}
\pi_{k+1}(N, 2)=\mid\left\{P \leq N: P+4^{n}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k}}{\phi^{k+1}(\omega)} \frac{N}{\log ^{k+1} N} .\right. \tag{5}
\end{equation*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.

References

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. (http://www. wbabin. net/math/xuan2. pdf)

