New prime K-tuple theorem (6)

 $P, P+4^n (n=1,\cdots,k)$

Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that for every positive integer k there exist infinitely many primes P such that each of $P + 4^n$ is prime. Theorem

$$P, P+4^{n}(n=1,\cdots,k).$$
 (1)

For every psitive integer k there exist infinitely many primes P such that each of $P+4^n$ is prime.

Proof. We have Jiang function [1]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)], \qquad (2)$$

where $\omega = \prod_{P} P$,

 $\chi(P)$ is the number of solutions of congruence

$$\prod_{n=1}^{k} [q+4^n] \equiv 0 \pmod{P}, \qquad (3)$$

where $q = 1, \dots, P-1$.

From (3) we have

If P < 2k then $\chi(P) = \frac{P-1}{2}$, if 2k < P then $\chi(P) = k$.

Frome (3) and (2) we have

$$J_{3}(\omega) = \prod_{P=3}^{P<2k} \frac{P-1}{2} \prod_{2k< P} (P-1-k) \neq 0.$$
(4)

We prove that for every positive integer k there exist infinitely many primes P_1 and P_2 such that each of $P + 4^n$ is prime.

We have the best asymptotic formula [1, 2]

$$\pi_{k+1}(N,2) = \left| \left\{ P \le N : P + 4^n = prime \right\} \right| \sim \frac{J_2(\omega)\omega^k}{\phi^{k+1}(\omega)} \frac{N}{\log^{k+1}N}.$$

$$\tag{5}$$

where $\phi(\omega) = \prod_{P} (P-1)$.

References

Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. (http://www. [1] wbabin. net/math/xuan2. pdf)