The New Prime theorem (2)

$P_{1}=P+2$ and $P_{2}=2 P+1$
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract

Abstrat Using Jiang function we prove that there exist infinitely many primes P such that P_{1} and P_{2} are all prime.

Theorem

$$
\begin{equation*}
P_{1}=P+2 \text { and } P_{2}=2 P+1 \tag{1}
\end{equation*}
$$

There exist infinitely many priems P such that P_{1} and P_{2} are all prime.
Proof. We have Jiang function [1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where

$$
\omega=\prod_{P} P
$$

$\chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
(q+2)(2 q+1) \equiv 0 \quad(\bmod P) \tag{3}
\end{equation*}
$$

where $q=1, \cdots, P-1$.
From (3) we have $\chi(2)=0, \chi(3)=1, \chi(P)=2$ otherwise.
From (3) and (2) we have

$$
\begin{equation*}
J_{2}(\omega)=\prod_{5 \leq P}(P-3) \neq 0 \tag{4}
\end{equation*}
$$

We prove that there exist infinitely many primes P such that P_{1} and P_{2} are all prime.
we have the best asymptotic formula

$$
\pi_{3}(N, 2)=\mid\{P \leq N: P+2=\text { prime, } 2 P+1=\text { prime }\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{2}}{\phi^{3}(\omega)} \frac{N}{\log ^{3} N}\right.
$$

where $\phi(\omega)=\prod_{P}(P-1)$.

Reference

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution, http://www. wbabin. net/math/xuan2.pdf.

