An Application of a Theorem of Orthohomological Triangles

Prof. Ion Pătraşcu
Frații Buzești College, Craiova, Romania
Dr. Florentin Smarandache
University of New Mexico, Gallup Campus, USA

Abstract.

In this note we prove a problem given at a Romanian student mathematical competition, and we obtain an interesting result by using a Theorem of Orthohomological Triangles ${ }^{1}$.

Problem L. 176 (from [1])
Let D, E, F be the projections of the centroid G of the triangle $A B C$ on the lines $B C, C A$, and respectively $A B$. Prove that the Cevian lines $A D, B E$, and $C F$ meet in an unique point if and only if the triangle is isosceles. \{Proposed by Temistocle Bîrsan.\}

Proof

Applying the generalized Pythagorean theorem in the triangle $B G C$, we obtain:

$$
\begin{equation*}
C G^{2}=B G^{2}+B C^{2}-2 B D \cdot B C \tag{1}
\end{equation*}
$$

Because $C G=\frac{2}{3} m_{c}, B G=\frac{2}{3} m_{b}$ and from the median's theorem it results:

$$
4 m_{b}^{2}=2\left(a^{2}+c^{2}\right)-b^{2} \text { and } 4 m_{c}^{2}=2\left(a^{2}+b^{2}\right)-c^{2}
$$

From (1) we get: $B D=\frac{3 a^{2}-b^{2}+c^{2}}{6 a}$.

[^0]From $B C=a$ and $B C=B D+D C$, we get that:

$$
D C=\frac{3 a^{2}+b^{2}-c^{2}}{6 a}
$$

Similarly we find:

$$
\begin{aligned}
& C E=\frac{3 b^{2}-c^{2}+a^{2}}{6 b}, E A=\frac{3 b^{2}+c^{2}-a^{2}}{6 b} \\
& F A=\frac{3 c^{2}-a^{2}+b^{2}}{6 c}, F B=\frac{3 c^{2}+a^{2}-b^{2}}{6 c} .
\end{aligned}
$$

Applying Ceva's theorem it results that $A D, B E, C F$ are concurrent if and only if

$$
\begin{equation*}
\left(3 a^{2}-b^{2}+c^{2}\right)\left(3 b^{2}-c^{2}+a^{2}\right)\left(3 c^{2}-a^{2}+b^{2}\right)=\left(3 a^{2}+b^{2}-c^{2}\right)\left(3 b^{2}+c^{2}-a^{2}\right)\left(3 c^{2}+a^{2}-b^{2}\right) \tag{2}
\end{equation*}
$$

Let's consider the following notations:

$$
a^{2}+b^{2}+c^{2}=T, 2 a^{2}-2 b^{2}=\alpha, 2 b^{2}-2 c^{2}=\beta, 2 c^{2}-2 a^{2}=\gamma
$$

From (2) it results:

$$
(T+\alpha)(T+\beta)(T+\gamma)=(T-\alpha)(T-\beta)(T-\gamma)
$$

And from here:
$T^{3}+(\alpha+\beta+\gamma) T^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) T+\alpha \beta \gamma=T^{3}-(\alpha+\beta+\gamma) T^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) T-\alpha \beta \gamma$.
Because $\alpha+\beta+\gamma=0$, we obtain that $2 \alpha \beta \gamma=0$, therefore $\alpha=0$ or $\beta=0$ or $\gamma=0$, thus $a=b$ or $b=c$ or $a=c$; consequently the triangle $A B C$ is isosceles.

The reverse: If $A B C$ is an isosceles triangle, then it is obvious that $A D, B E$, and $C F$ are concurrent.

Observations

1. The proved problem asserts that:
"A triangle $A B C$ and the pedal triangle of its weight center are orthomological triangles if and only if the triangle $A B C$ is isosceles."
2. Using the previous result and the Smarandache-Pătrăşcu Theorem (see [2], [3], [4]) we deduce that:
"A triangle $A B C$ and the pedal triangle of its simedian center are orthomological triangles if and only if the triangle $A B C$ is isosceles."

References

[1] Temistocle Bîrsan, Training problems for mathematical contest, B. College Level L. 176, Recreaţii Matematice journal, Iași, Romania, Year XII, No. 1, 2010.
[2] Ion Pătrașcu \& Florentin Smarandache, A Theorem about Simultaneous Orthological and Homological Triangles, in arXiv.org, Cornell University, NY, USA.
[3] Mihai Dicu, The Smarandache- Pătrașcu Theorem of Orthohomological Triangles, http://www.scribd.com/doc/28311880/Smarandache-Patrascu-Theorem-of-Orthohomological-Triangles.
[4] Claudiu Coandă, A Proof in Barycentric Coordinates of the Smarandache-Pătrașcu Theorem, Sfera journal, 2010.

[^0]: ${ }^{1}$ It has been called the Smarandache-Pătraşcu Theorem of Orthohomological Triangles (see [2], [3], [4]).

