The New Prime theorem (8)

 x^{6} +1091 has no prime solutions

Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China jiangchunxuan@vip.sohu.com

Abstrat

Using Jiang function we prove that $x^6 + 1091$ has no prime solutions. Shanks conjectured[1,2]:

Table 52.

f(x)	f(m) is composite for all m up to
x^{6} +1091	3905
$x^{6} + 82991$	7979
$x^{12} + 4094$	170624
$x^{12} + 488669$	616979

The smallest prime value of the last polynomial has no less than 70 digits. **Theorem 1.**

$$(P+1)^6 + 1091 \tag{1}$$

has no prime solutions

Proof. We have Jiang function[3]

$$J_{2}(\omega) = \prod_{p} [P - 1 - \chi(P)], \qquad (2)$$

where $\omega = \prod_{P} P$,

 $\chi(P)$ is the number of solutions of congruence

$$(q+1)^6 + 1091 \equiv 0 \pmod{P}$$
(3)

 $q=1,\dots, P-1$. From (3) we have $\chi(2)=0$, $\chi(3)=2$, $\chi(5)=2$, $\chi(7)=6$. Substituting it into (2) we have

$$J_2(3) = 0$$
, $J_2(7) = 0$.

We have prove that (1) has no prime soultions.

In the same way we prove that $x^6 + 82991$ has no prime solutions.

Theorem 2.

$$P^{12} + 4094$$
 (4)

has no prime solutioins

Proof. We have Jiang function [3]

$$J_2(\omega) = \prod_P [P - 1 - \chi(P)], \qquad (5)$$

 $\chi(P)$ is the number of soultions of congruence

$$q^{12} + 4094 \equiv 0 \pmod{P},$$
 (6)

 $q=1,\cdots,P-1.$

From (6) we have

$$\chi(5) = 4, \quad \chi(13) = 12 \tag{7}$$

Substituting it into (5) we have $J_2(5) = 0$, $J_2(13) = 0$. We prove (4) has no prime solutions. In the same way we are able to prove $x^{12} + 488669$ has no prime solutions

Reference

- [1] D. Shanks, A low density of primes. J. Recr. Math., 4(1971)272-275.
- [2] P. Ribenboim, The New book of prime Number Records, 3rd edition Springer-Verlag, New York, NY, 1995, pp401.
- [3] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf.