The New Prime theorem (8)

$x^{6}+1091$ has no prime solutions
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstrat
Using Jiang function we prove that $x^{6}+1091$ has no prime solutions.
Shanks conjectured[1,2]:

$f(x)$	$f(m)$ is composite for all m up to
$x^{6}+1091$	3905
$x^{6}+82991$	7979
$x^{12}+4094$	170624
$x^{12}+488669$	616979

The smallest prime value of the last polynomial has no less than 70 digits.

Theorem 1.

$$
\begin{equation*}
(P+1)^{6}+1091 \tag{1}
\end{equation*}
$$

has no prime solutions
Proof. We have Jiang function[3]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P$,
$\chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
(q+1)^{6}+1091 \equiv 0 \quad(\bmod P) \tag{3}
\end{equation*}
$$

$q=1, \cdots, P-1$.
From (3) we have $\chi(2)=0, \chi(3)=2, \chi(5)=2, \chi(7)=6$.
Substituting it into (2) we have

$$
J_{2}(3)=0, \quad J_{2}(7)=0 .
$$

We have prove that (1) has no prime soultions.
In the same way we prove that $x^{6}+82991$ has no prime solutions.

Theorem 2.

$$
\begin{equation*}
P^{12}+4094 \tag{4}
\end{equation*}
$$

has no prime solutioins
Proof. We have Jiang function [3]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{5}
\end{equation*}
$$

$\chi(P)$ is the number of soultions of congruence

$$
\begin{equation*}
q^{12}+4094 \equiv 0 \quad(\bmod P), \tag{6}
\end{equation*}
$$

$q=1, \cdots, P-1$.
From (6) we have

$$
\begin{equation*}
\chi(5)=4, \quad \chi(13)=12 \tag{7}
\end{equation*}
$$

Substituting it into (5) we have $J_{2}(5)=0, J_{2}(13)=0$. We prove (4) has no prime solutions. In the same way we are able to prove $x^{12}+488669$ has no prime solutions

Reference

[1] D. Shanks, A low density of primes. J. Recr. Math., 4(1971)272-275.
[2] P. Ribenboim, The New book of prime Number Records, 3rd edition Springer-Verlag, New York, NY, 1995, pp401.
[3] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf.

