rankilistance hicotes and their generalization

W. B. Vasantha Kandasamy florentin Smarentache N. Suresh Bahu R.S.Selvaraj

W. B. Vasantha Kandasamy Florentin Smarandache
N. Suresh Babu R.S. Selvaraj

RANK DISTANCE BICODES AND THEIR GENERALIZATION

Svenska fysikarkivet

Stockholm, Sweden
2010

Svenska fysikarkivet (Swedish physics archive) is a publisher registered with the Royal National Library of Sweden (Kungliga biblioteket), Stockholm.

Postal address for correspondence:
Näsbydalsvägen 4/11, 18331 Täby, Sweden

Peer-Reviewers:
Prof. Ion Patrascu
Department of Mathematics
Fratii Buzesti College, Craiova, Romania
Prof. Catalin Barbu, Vasile Alecsandri College, Bacau, Romania
Dr. Fu Yuhua, 13-603, Liufangbeili
Liufang Street, Chaoyang district, Beijing, 100028, P. R. China

Copyright © Authors, 2010
Copyright © Publication by Svenska fysikarkivet, 2010

Copyright note: Electronic copying, print copying and distribution of this book for non-commercial, academic or individual use can be made by any user without permission or charge. Any part of this book being cited or used howsoever in other publications must acknowledge this publication. No part of this book may be reproduced in any form whatsoever (including storage in any media) for commercial use without the prior permission of the copyright holder. Requests for permission to reproduce any part of this book for commercial use must be addressed to the Author. The Author retains his rights to use this book as a whole or any part of it in any other publications and in any way he sees fit. This Copyright Agreement shall remain valid even if the Author transfers copyright of the book to another party.

ISBN: 978-91-85917-12-9

CONTENTS

Preface 5
Chapter One
BASIC PROPERTIES OF RANK DISTANCE CODES 7
Chapter Two
RANK DISTANCE BICODES AND THEIR PROPERTIES 25
Chapter Three
RANK DISTANCE m-CODES 77
Chapter Four
APPLICATIONS OF RANK DISTANCE m-CODES 131
FURTHER READING 133
INDEX 144
ABOUT THE AUTHORS 150

PREFACE

In this book the authors introduce the new notion of rank distance bicodes and generalize this concept to Rank Distance n-codes (RD n-codes), n, greater than or equal to three. This definition leads to several classes of new RD bicodes like semi circulant rank bicodes of type I and II, semicyclic circulant rank bicode, circulant rank bicodes, bidivisible bicode and so on. It is important to mention that these new classes of codes will not only multitask simultaneously but also they will be best suited to the present computerised era. Apart from this, these codes are best suited in cryptography.

This book has four chapters. In chapter one we just recall the notion of RD codes, MRD codes, circulant rank codes and constant rank codes and describe their properties. In chapter two we introduce few new classes of codes and study some of their properties. In this chapter we introduce the notion of fuzzy RD codes and fuzzy RD bicodes. Rank distance m-codes are introduced in chapter three and the property of m -covering radius is analysed. Chapter four indicates some applications of these new classes of codes.

Our thanks are due to Dr. K. Kandasamy for proofreading this book. We also acknowledge our gratitude to Kama and Meena for their help with corrections and layout.
W.B.VASANTHA KANDASAMY

FLORENTIN SMARANDACHE
N. SURESH BABU
R.S.SELVARAJ

Chapter One

Basic Properties of
 Rank Distance Codes

In this chapter we recall the basic definitions and properties of Rank Distance codes (RD codes). The Rank Distance (RD) codes are special type of codes endowed with rank metric introduced by Gabidulin [24, 27]. The rank metric introduced by Gabidulin is an ideal metric for it has the capability of handling varied error patterns efficiently.

The significance of this new metric is that it recognizes the linear dependence between different symbols of the alphabet. Hence a code equipped with the rank metric detects and corrects more error patterns compared to those codes with other metric. In 1985 Gabidulin has studied a particular class of codes equipped with rank metric called Maximum Rank Distance (MRD) codes. Throughout this book V^{n} denotes a linear space of dimension n over the Galois field GF $\left(2^{\mathrm{N}}\right), \mathrm{N}>1$. By fixing a basis for V^{n} over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$, we can represent any element $\mathrm{x} \in \mathrm{V}^{\mathrm{n}}$ as an n -tuple $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ where $\mathrm{x}_{\mathrm{i}} \in \mathrm{GF}\left(2^{\mathrm{N}}\right)$.

Again, $\mathrm{GF}\left(2^{\mathrm{N}}\right)$ can be considered as a linear space of dimension ' N ' over $\operatorname{GF}(2)$. Hence an element $\mathrm{x}_{\mathrm{i}} \in \operatorname{GF}\left(2^{\mathrm{N}}\right)$ has a representation as a N -tuple ($\alpha_{\mathrm{il}}, \alpha_{\mathrm{i} 2}, \ldots, \alpha_{\mathrm{in}}$) over $\mathrm{GF}(2)$ with respect to some fixed basis. Hence associated with each $x \in V^{n}$, ($\mathrm{n} \leq \mathrm{N}$) there is a matrix,

$$
\mathrm{m}(\mathrm{x})=\left[\begin{array}{ccc}
\alpha_{11} & \ldots & \alpha_{1 \mathrm{n}} \\
\alpha_{21} & \ldots & \alpha_{2 \mathrm{n}} \\
\vdots & & \vdots \\
\alpha_{\mathrm{N} 1} & \ldots & \alpha_{\mathrm{Nn}}
\end{array}\right]^{\mathrm{T}}
$$

where the $i^{\text {th }}$ column represents the $i^{\text {th }}$ coordinate ' x_{i} ' of x over $\mathrm{GF}(2)$. If we assume $\mathrm{x}_{\mathrm{i}} \in \mathrm{GF}\left(2^{\mathrm{N}}\right)$ has a representation as a N tuple $x_{i}=\alpha_{1 i} u_{1}+\alpha_{2 i} u_{2}+\ldots+\alpha_{N i} u_{N}$ where $u_{1}, u_{2}, \ldots, u_{N}$ is some fixed basis of the field $F_{q^{N}}$ regarded as a vector space over F_{q}. If A_{N}^{n} denote the ensemble of all $N \times n$ matrices over F_{q} and if $\mathrm{A}: \mathrm{V}^{\mathrm{n}} \rightarrow \mathrm{A}_{\mathrm{N}}^{\mathrm{n}}$ is a bijection defined by the rule, for any vector x $=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{F}_{\mathrm{q}^{\mathrm{v}}}^{\mathrm{n}}$, the associated matrix denoted by,

$$
A(x)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{\mathrm{N} 1} & a_{\mathrm{N} 2} & \ldots & a_{\mathrm{Nn}}
\end{array}\right]
$$

where the $\mathrm{i}^{\text {th }}$ column represents the $\mathrm{i}^{\text {th }}$ coordinate x_{i} of x over F_{q}.
Now we proceed on to define the rank of an element $\mathrm{x} \in \mathrm{V}^{\mathrm{n}}$.
DEFINITION 1.1: The rank of a vector $x \in F_{q^{*}}^{n}$ is the rank of the associated matrix $A(x)$. Let $r(x)$ denote the rank of the vector x $\in F_{q^{n}}^{n}$, over F_{q}.

By the usual properties of the rank of a matrix, it is easy to prove the following inequalities.

1. $r(x) \geq 0$ for every $x \in V^{n}$.
2. $r(x)=0$ if and only if $x=0$.
3. $\mathrm{r}(\mathrm{x}+\mathrm{y}) \leq \mathrm{r}(\mathrm{x})+\mathrm{r}(\mathrm{y})$ for every $\mathrm{x}, \mathrm{y} \in \mathrm{V}^{\mathrm{n}}$.
4. $r(a x)=|a| r(x)$ for every $a \in G F(2)$ and $x \in V^{n}$.

Thus the function $\mathrm{x} \rightarrow \mathrm{r}(\mathrm{x})$ defines a norm on $\mathrm{V}^{\mathrm{n}},(\mathrm{x} \rightarrow \mathrm{r}(\mathrm{x})$ defines a norm on $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}}$) and is called the rank norm. In this book we denote the rank norm by $\mathrm{r}(\mathrm{x})$ or $\mathrm{wt}(\mathrm{x})$ or by $\|\mathrm{x}\|$. The rank norm induces a metric called rank metric (or rank distance) on $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}}$.

DEFINITION 1.2: The metric induced by the rank norm is defined as the rank metric on $V^{n}\left(F_{q^{v}}^{n}\right)$ and it is denoted by d_{R}. The rank distance between $x, y \in V^{n}$ is the rank of their difference : $d_{R}(x, y)=r(x-y)$. The vector space $V^{n}\left(F_{q^{v}}^{n}\right)$ over $F_{q^{v}}$ equipped with the rank metric d_{R} is defined as a rank distance space.

Definition 1.3: A linear space V^{n} over $G F\left(2^{N}\right), N>1$ of dimension n such that $n \leq N$, equipped with the rank metric is defined as a rank space or rank distance space.

Now we proceed on to recall the definition of Rank Distance (RD) codes.

DEFINITION 1.4: A Rank Distance code (RD-code) of length n over $G F\left(2^{N}\right)$ is a subset of the rank space V^{n} over $G F\left(2^{N}\right)$. A linear $[n, k] R D$ code is a linear subspace of dimension k in the rank space V^{n}. By $C[n, k]$ we denote a linear $[n, k] R D$-code.

DEFINITION 1.5: A generator matrix of a linear [$n, k] R D$ code C is a $k \times n$ matrix over $G F\left(2^{N}\right)$ whose rows form a basis for C. A generator matrix G of a linear $R D$ code $C[n, k]$ can be brought into the form $G=\left[I_{k}, A_{k, n-k}\right]$ where I_{k} is the identity matrix and $A_{k, n-k}$ is some matrix over $G F\left(2^{n}\right)$. This form is called the standard form.

DEFINITION 1.6: Let G be a generator matrix of the linear $R D$ code $C[n, k]$, then a matrix H of order $(n-k) \times n$ over $G F\left(2^{N}\right)$ such that $G H^{T}=(0)$ is called a parity check matrix of $C[n, k]$. Suppose C is a linear [n, k] RD code with G and H as its generator and parity check matrices respectively, then C has two representations

1. C is the row space of G and
2. C is the solution space of H.

We shall illustrate this situation by an example.

Example 1.1: Let

$$
\mathrm{G}=\left[\begin{array}{llll}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{15} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{25} \\
\alpha_{31} & \alpha_{32} & \ldots & \alpha_{35}
\end{array}\right]_{3 \times 5}
$$

be a generator matrix of the linear [5, 3] Rank Distance code C; over $\operatorname{GF}\left(2^{5}\right)$, here $\left(\alpha_{11}, \alpha_{12}, \ldots, \alpha_{15}\right),\left(\alpha_{21}, \alpha_{22}, \ldots, \alpha_{25}\right),\left(\alpha_{31}, \alpha_{32}\right.$, \ldots, α_{35}) forms a basis of C ; $\alpha_{\mathrm{ij}} \in \operatorname{GF}\left(2^{5}\right) ; 1 \leq \mathrm{i} \leq 3$ and $1 \leq \mathrm{j} \leq 5$.

Now as in case of linear codes with Hamming metric, we in case of Rank Distance codes have the concept of minimum distance. We just recall the definition.

DEFINITION 1.7: Let C be a rank distance code, the minimum rank distance d is defined by $d=\min \left\{d_{R}(x, y) \mid x, y \in C, x \neq y\right\}$. In other words, $d=\min \{r(x-y) \mid x, y \in C, x \neq y\}$. i.e., $d=$ $\min \{r(x) \mid x \in C$ and $x \neq 0\}$.

If an RD code C has the minimum - rank distance d then it can correct all errors $e \in F_{q^{v}}^{n}$ with rank

$$
r(e)=\left\lfloor\frac{d-1}{2}\right\rfloor .
$$

Let C denote an $[n, k] R D$ - code over $F_{q^{N}}$. A generator matrix G of C is a $k \times n$ matrix with entries from $F_{q^{n}}^{n}$ whose rows form
a basis for C. Then an $(n-k) \times n$ matrix H with entries from $F_{q^{v}}^{n}$ such that $G H^{T}=(0)$ is called the parity check matrix of C.

Result (singleton - style bound) The minimum - rank distance d of any linear $[\mathrm{n}, \mathrm{k}] \mathrm{RD}$ code $\mathrm{C} \subseteq F_{q^{n}}^{n}$ satisfies the following bound: $\mathrm{d} \leq \mathrm{n}-\mathrm{k}+1$.

Now based on this, the notion of Maximum Rank Distance; MRD codes were defined in [24, 27].

Definition 1.8: An [$n, k, d] R D$ code C is called Maximum Rank Distance (MRD) code if the singleton - style bound is reached; i.e., if d $=n-k+1$.

Now we just briefly recall the construction of MRD code.
Let $[s]=q^{s}$ for any integer s. Let g_{1}, \ldots, g_{n} be any set of elements in $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$ that are linearly independent over F_{q}.

A generator matrix G of an MRD code C is defined by

$$
\mathrm{G}=\left[\begin{array}{cccc}
\mathrm{g}_{1} & \mathrm{~g}_{2} & \ldots & \mathrm{~g}_{\mathrm{n}} \\
\mathrm{~g}_{1}^{[1]} & \mathrm{g}_{2}^{[1]} & \ldots & \mathrm{g}_{n}^{[1]} \\
\mathrm{g}_{1}^{[2]} & \mathrm{g}_{2}^{[2]} & \ldots & \mathrm{g}_{\mathrm{n}}^{[2]} \\
\vdots & \vdots & & \vdots \\
\mathrm{g}_{1}^{[\mathrm{k}-1]} & \mathrm{g}_{2}^{[\mathrm{k}-1]} & \ldots & \mathrm{g}_{\mathrm{n}}^{[\mathrm{k}-1]}
\end{array}\right] .
$$

It can be shown that the code C given by the above generator matrix G has the rank distance $\mathrm{d}=\mathrm{n}-\mathrm{k}+1$.

Any matrix of the above form is called a Frobenius matrix with generating vector $g_{c}=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$.

Gabidulin has proved the following theorem.

Theorem 1.1: Let $C[n, k]$ be a linear (n, k, d) MRD-code with $d=2 t+1$. Then $C[n, k]$ corrects all errors of rank atmost t and detects all errors of rank greater than t.

Circulant Rank codes were defined by [61].
Consider the Galois field $\operatorname{GF}\left(2^{\mathrm{N}}\right)$ where $\mathrm{N}>1$. An element $\alpha \in \operatorname{GF}\left(2^{\mathrm{N}}\right)$ can be denoted by a N-tuple ($\left.\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{N}-1}\right)$ as well as by a polynomial $a_{0}+a_{1} \mathrm{X}+\ldots+a_{\mathrm{N}-1} \mathrm{x}^{\mathrm{N}-1}$ over GF(2).

DEFINITION 1.9: The circulant transpose (T_{c}) of a vector $\alpha=$ $\left(a_{0}, a_{l}, \ldots, a_{N-1}\right) \in G F\left(2^{N}\right)$ is defined as $\alpha^{T_{c}}=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$. If $\alpha \in G F\left(2^{N}\right)$ has polynomial representation $a_{0}+a_{1} x+\ldots+$ $a_{N-1} x^{N-1}$ in $\frac{[G F(2)](x)}{\left(x^{N}+1\right)}$ then by α_{i}, we denote the vector corresponding to the polynomial $\left[\left(a_{0}+a_{1} x+\ldots+a_{N-1} x^{N-1}\right) \cdot x^{i}\right]$ $\left(\bmod x^{N}+1\right)$, for $i=0$ to $N-1$. (Note $\left.\alpha_{0}=\alpha\right)$.

DEFINITION 1.10: Let $f: G F\left(2^{N}\right) \rightarrow\left[G F\left(2^{N}\right)\right]^{N}$ be defined as $f(\alpha)=\left(\alpha_{0}^{T_{C}}, \alpha_{1}^{T_{C}}, \ldots, \alpha_{N-1}^{T_{C}}\right)$; we call $f(\alpha)$ as the 'word' generated by α.

MacWilliams F.J. and Sloane N.J.A., [61] defined circulant matrix associated with a vector in $\operatorname{GF}\left(2^{\mathrm{N}}\right)$ as follows.

DEFINITION 1.11: A matrix of the form

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{N-1} \\
a_{N-1} & a_{0} & \ldots & a_{N-2} \\
\vdots & \vdots & & \vdots \\
a_{1} & a_{2} & \ldots & a_{0}
\end{array}\right]
$$

is called the circulant matrix associated with the vector (a_{0}, a_{1}, $\left.\ldots, a_{N-l}\right) \in G F\left(2^{N}\right)$. Thus with each $\alpha \in G F\left(2^{N}\right)$ we can associate a circulant matrix whose $i^{\text {th }}$ column represents $\alpha_{i}^{T_{C}}, i$ $=0,1,2, \ldots, N-1 . f$ is nothing but a mapping of $G F\left(2^{N}\right)$ on to
the algebra of all $N \times N$ circulant matrices over GF(2). Denote the space $f\left(G F\left(2^{N}\right)\right)$ by V^{N}.

We define norm of a word $v \in V^{N}$ as follows:
DEFINITION 1.12: The 'norm' of a word $v \in V^{N}$ is defined as the 'rank' of v over GF(2) (By considering it as a circulant matrix over $G F(2)$).

We denote the 'norm' of v by $\mathrm{r}(\mathrm{v})$. We just prove the following theorem.

THEOREM 1.2: Suppose $\alpha \in G F\left(2^{N}\right)$ has the polynomial representation $g(x)$ over $G F(2)$ such that the $\operatorname{gcd}\left(g(x), x^{N}+1\right)$ has degree $N-k$, where $0 \leq k \leq N$. Then the 'norm' of the word generated by α is ' k '.

Proof: We know the norm of the word generated by α is the rank of the circulant matrix $\left(\alpha_{0}^{\mathrm{T}_{\mathrm{C}}}, \alpha_{1}^{\mathrm{T}_{\mathrm{C}}}, \ldots, \alpha_{\mathrm{N}-1}^{\mathrm{T}_{\mathrm{C}}}\right)$, where $\alpha_{i}^{\mathrm{T}_{\mathrm{C}}}$ represents the polynomial $\left[x^{i} g(x)\right]\left(\bmod x^{N}+1\right)$ over $G F(2)$.

Suppose the $\operatorname{gcd}\left(g(x), x^{N}+1\right)$ is a polynomial of degree ' $N-$ k ', $(0 \leq k \leq N-1)$. To prove that the word generated by ' α ' has rank ' k '. It is enough to prove that the space generated by the N polynomials $\quad g(x)\left(\bmod x^{N}+1\right), \quad[x \cdot g(x)]\left(\bmod x^{N}+1\right), \quad \ldots$, $\left[x^{N-1} \cdot g(x)\right]\left(\bmod x^{N}+1\right)$ has dimension ' k '. We will prove that the set of k-polynomials $g(x)\left(\bmod x^{N}+1\right),[x \cdot g(x)]\left(\bmod x^{N}\right.$ $+1), \ldots,\left[x^{\mathrm{N}-1} \cdot \mathrm{~g}(\mathrm{x})\right]\left(\bmod \mathrm{x}^{\mathrm{N}}+1\right)$ forms a basis for this space.

If possible, let $a_{0}(g(x))+a_{1}(x \cdot g(x))+a_{2}\left(x^{2} \cdot g(x)\right)+\ldots+a_{k-}$ ${ }_{1}\left(x^{k-1} \cdot g(x)\right) \equiv 0\left(\bmod \left(x^{N}+1\right)\right)$, where $a_{i} \in G F(2)$. This implies x^{N} +1 divides $\left(a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}\right) \cdot g(x)$.

Now if $g(x)=h(x) a(x)$ where $h(x)$ is the $\operatorname{gcd}\left(g(x), x^{N}+1\right)$, then $\left(a(x), x^{N}+1\right)=1$. Thus $x^{N}+1$ divides $\left(a_{0}+a_{1} x+\ldots+a_{k-1}\right.$ $\left.\mathrm{x}^{\mathrm{k}-1}\right) \cdot \mathrm{g}(\mathrm{x})$ implies that the quotient

$$
\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{h}(\mathrm{x})}
$$

divides $\left(a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}\right) \cdot a(x)$. That is

$$
\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{h}(\mathrm{x})}\right]
$$

divides $\left(a_{0}+a_{1} x+\ldots a_{k-1} x^{k-1}\right)$ which is a contradiction as

$$
\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{h}(\mathrm{x})}\right]
$$

has degree k where as the polynomial $\left(a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}\right)$ has degree atmost $\mathrm{k}-1$.

Hence the polynomials $g(x) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right),[\mathrm{x} \cdot \mathrm{g}(\mathrm{x})] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)$, $\ldots,\left[\mathrm{x}^{\mathrm{k}-1} \cdot \mathrm{~g}(\mathrm{x})\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)$ are linearly independent over $\mathrm{GF}(2)$. We will prove that the polynomials $g(x) \bmod \left(x^{N}+1\right)$, $[x \cdot g(x)] \bmod \left(x^{N}+1\right), \quad \ldots, \quad\left[x^{k-1} \cdot g(x)\right] \bmod \left(x^{N}+1\right) \quad$ generate the space. For this, it is enough to prove that $\mathrm{x}^{\mathrm{i}} \cdot \mathrm{g}(\mathrm{x})$ is a linear combination of these polynomials for $\mathrm{k} \leq \mathrm{i} \leq \mathrm{N}-1$.

Let $\mathrm{x}^{\mathrm{N}}+1=\mathrm{h}(\mathrm{x}) \mathrm{b}(\mathrm{x})$, where $\mathrm{b}(\mathrm{x})=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$ (Note that here $b_{0}=b_{k}=1$, since $b(x)$ divides $\left.x^{N}+1\right)$.

Also, we have $g(x)=h(x) \cdot a(x)$. Thus

$$
x^{\mathrm{N}}+1=\frac{(\mathrm{g}(\mathrm{x}) \cdot \mathrm{b}(\mathrm{x}))}{\mathrm{a}(\mathrm{x})}
$$

i.e.,

$$
\frac{\mathrm{g}(\mathrm{x})\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}\right)}{\mathrm{a}(\mathrm{x})}=0 \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right),
$$

that is

$$
\frac{\mathrm{g}(\mathrm{x}) \cdot\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}-1}\right)}{\mathrm{a}(\mathrm{x})}=\left[\frac{\left(\mathrm{g}(\mathrm{x}) \cdot \mathrm{x}^{\mathrm{k}}\right)}{\mathrm{a}(\mathrm{x})}\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right) .
$$

(Since $b_{k}=1$). That is

$$
\begin{aligned}
& x^{k} \cdot g(x)=\left(b_{0}+b_{1} x+\ldots+b_{k-1} x^{k-1} \cdot g(x)\right) \bmod \left(x^{N}+1\right) \text {. Hence } \\
& x^{k} g(x)=b_{0} g(x)+b_{1}[x \cdot g(x)]+\ldots+b_{k-1}\left[x^{k-1} \cdot g(x)\right]\left(\operatorname { m o d } \left(x^{N}+\right.\right.
\end{aligned}
$$

1)), is a linear combination of $g(x) \bmod \left(x^{N}+1\right),[x \cdot g(x)] \bmod \left(x^{N}\right.$ $+1), \ldots,\left[\mathrm{x}^{\mathrm{k}-1} \cdot \mathrm{~g}(\mathrm{x})\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)$ over GF(2).

Now it can be easily proved that $x^{i} g(x)$ is a linear combination of $g(x) \bmod \left(x^{N}+1\right),[x \cdot g(x)] \bmod \left(x^{N}+1\right), \ldots,\left[x^{k-}\right.$ $\left.{ }^{1} \cdot g(x)\right] \bmod \left(x^{N}+1\right)$ for $\mathrm{i}>\mathrm{k}$.

Hence the space generated by the polynomial $g(x) \bmod \left(x^{N}+\right.$ 1), $[x \cdot g(x)] \bmod \left(x^{N}+1\right), \ldots,\left[x^{k-1} \cdot g(x)\right] \bmod \left(x^{N}+1\right)$ has dimension k; i.e., the rank of the word generated by α is k.

The following two corollaries are obvious.
Corollary 1.1: If $\alpha \in G F\left(2^{N}\right)$ is such that its polynomial representation $g(x)$ is relatively prime to $x^{N}+1$, then the norm of the word generated by α is N and hence $f(\alpha)$ is invertible.

Proof: Follows from the theorem as $\operatorname{gcd}\left(\mathrm{g}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right)=1$ has degree 0 and hence rank of $f(\alpha)$ is N.

Corollary 1.2: The norms of the vectors corresponding to the polynomials $x+1$ and $x^{N-1}+x^{N-2}+\ldots+x+1$ are respectively $N-1$ and 1 .

Now we proceed on to define the distance function on V^{N}.
DEFINITION 1.13: The distance between two words v, u. in V^{N} is defined as $d(u, v)=r(u+v)$.

Now we define circulant code of length N .
DEFINITION 1.14: A circulant rank code of length N is defined as a subspace of V^{N} equipped with the above defined distance function.

DEFINITION 1.15: A circulant rank code of length N is called cyclic if, whenever ($v_{1}, v_{2}, \ldots, v_{N}$) is a codeword, then it implies $\left(v_{2}, v_{3}, \ldots, v_{N}, v_{l}\right)$ is also a codeword.

Now we proceed on to recall the definition of the new class of codes, Almost Maximum Rank Distance codes (AMRD-codes).

DEFINITION 1.16: A linear [n, k] RD code over $G F\left(2^{N}\right)$ is called Almost Maximum Rank Distance (AMRD) code if its minimum distance is greater than or equal to $n-k$.

An AMRD code whose minimum distance is greater than n - k is an MRD code and hence the class of MRD codes is a subclass of the class of AMRD codes.

We recall the following theorem.
Theorem 1.3: When $n-k$ is an odd integer,

1. The error correcting capability of an [n,k] AMRD code is equal to that of an [n, k] MRD code.
2. An [n, k] AMRD code is better than any [n,k] code in Hamming metric for error correction.

Proof: (1) Suppose C be an [n, k] AMRD code such that ' $\mathrm{n}-\mathrm{k}$ ' is an odd integer. The maximum number of errors corrected by C is given by $\frac{(\mathrm{n}-\mathrm{k}-1)}{2}$. But $\frac{(\mathrm{n}-\mathrm{k}-1)}{2}$ is equal to the error correcting capability of an [n, k] MRD code (since $\mathrm{n}-\mathrm{k}$ is odd). Thus when $n-k$ is odd an [n, k] AMRD code is as good as an [$\mathrm{n}, \mathrm{k}]$ MRD code.
(2) Suppose C be an [n, k] AMRD code such that ' $\mathrm{n}-\mathrm{k}$ ' is odd, then, each codeword of C can correct $L_{r}(n)$ error vectors where

$$
\mathrm{r}=\frac{(\mathrm{n}-\mathrm{k}-1)}{2}
$$

and

$$
\mathrm{L}_{\mathrm{r}}(\mathrm{n})=1+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\begin{array}{l}
\mathrm{n} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{i}-1}\right) .
$$

Consider the same [n, k] code in Hamming metric. Let it be C_{1}, then the minimum distance of C_{1} is atmost $(\mathrm{n}-\mathrm{k}+1)$. The error correcting capability of C_{1} is

$$
\left\lfloor\frac{(\mathrm{n}-\mathrm{k}+1-1)}{2}\right\rfloor=\frac{(\mathrm{n}-\mathrm{k}-1)}{2}=\mathrm{r}
$$

(since $n-k$ is odd).

Hence the number of error vectors corrected by a codeword is given by

$$
\sum_{\mathrm{i}=0}^{\mathrm{r}}\binom{\mathrm{n}}{\mathrm{i}}\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}}
$$

which is clearly less than $L_{r}(n)$. Thus the number of error vectors that can be corrected by the [n, k] AMRD code is much greater than that of the same code considered in Hamming metric.

For any given length ' n ', a single error correcting AMRD code is one having dimension $n-3$ and minimum distance greater than or equal to ' 3 '. We give a characterization for a single error correcting AMRD codes in terms of its parity check matrix. This characterization is based on the condition for the minimum distance proved by Gabidulin in [24, 27].

We just recall the main theorem for more about these properties one can refer [82].

THEOREM 1.4: Let $H=\left(\alpha_{i j}\right)$ be a $3 \times n$ matrix of rank 3 over $G F\left(2^{N}\right), n \leq N$ which satisfies the following condition. For any two distinct, non empty subsets P_{1}, P_{2} of $\{1,2, \ldots, n\}$ there exists $i_{1}, i_{2} \in\{1,2,3\}$ such that

$$
\left(\sum_{j \in P_{1}} \alpha_{i_{1} j} \cdot \sum_{k \in P_{2}} \alpha_{i_{2} k}\right) \neq\left(\sum_{j \in P_{1}} \alpha_{i_{2} j} \cdot \sum_{k \in P_{2}} \alpha_{i_{1} k}\right)
$$

then, H as a parity check matrix defines a $[n, n-3]$ single error correcting AMRD code over $G F\left(2^{N}\right)$.

Proof: Given H is a $3 \times n$ matrix of rank 3 over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$, so H as a parity check matrix defines a $[\mathrm{n}, \mathrm{n}-3$] RD code C over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$; where $\mathrm{C}=\left\{\mathrm{x} \in \mathrm{V}^{\mathrm{n}} \mid \mathrm{xH}^{\mathrm{T}}=0\right\}$.

It remains to prove that the minimum distance of C is greater than or equal to 3 . We will prove that no non-zero codeword of C has rank less than ' 3 '. The proof is by the method of contradiction.

Suppose there exists a non-zero codeword x such that $\mathrm{r}(\mathrm{x}) \leq$ 2; then, x can be written as $\mathrm{x}=\mathrm{y} \cdot \mathrm{M}$ where $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$; $\mathrm{y}_{\mathrm{i}} \in \mathrm{GF}\left(2^{\mathrm{N}}\right)$ and $\mathrm{M}=\left(\mathrm{m}_{\mathrm{ij}}\right)$ is a $2 \times \mathrm{n}$ matrix of rank 2 over GF(2).

Thus $(y \cdot M) H^{T}=0$ implies $y\left(M H^{T}\right)=0$. Since y is non zero $\mathrm{y}\left(\mathrm{M} \cdot \mathrm{H}^{\mathrm{T}}\right)=0$ implies that the 2×3 matrix MH^{T} has rank less than 2 over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$. Now let $\mathrm{P}_{1}=\left\{\mathrm{j}\right.$ such that $\left.\mathrm{m}_{1 \mathrm{j}}=1\right\}$ and $\mathrm{P}_{2}=$ $\left\{j\right.$ such that $\left.\mathrm{m}_{2 \mathrm{j}}=1\right\}$. Since $\mathrm{M}=\left(\mathrm{m}_{\mathrm{ij}}\right)$ is a $2 \times \mathrm{n}$ matrix of rank 2 , P_{1} and P_{2} are disjoint nonempty subsets of $\{1,2, \ldots, n\}$, and

$$
\mathrm{MH}^{\mathrm{T}}=\left(\begin{array}{lll}
\sum_{j \in P_{1}} \alpha_{1 j} & \sum_{j \in P_{1}} \alpha_{2 \mathrm{j}} & \sum_{j \in P_{1}} \alpha_{3 j} \\
\sum_{j \in P_{2}} \alpha_{1 j} & \sum_{j \in P_{2}} \alpha_{2 j} & \sum_{j \in P_{2}} \alpha_{3 j}
\end{array}\right) .
$$

But the selection of H is such that there exists $\mathrm{i}_{1}, \mathrm{i}_{2} \in\{1,2,3\}$ such that

$$
\left(\sum_{j \in P_{1}} \alpha_{i, j} \cdot \sum_{k \in P_{2}} \alpha_{i_{2} k}\right) \neq\left(\sum_{j \in P_{1}} \alpha_{i_{2} j} \cdot \sum_{k \in P_{2}} \alpha_{i, k}\right) .
$$

Hence in MH^{T} there exists a 2×2 submatrix whose determinant is nonzero; i.e., $\mathrm{r}\left(\mathrm{MH}^{\mathrm{T}}\right)=2$ over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$, this contradicts the fact that rank $\left(\mathrm{MH}^{\mathrm{T}}\right)<2$. Hence the result.

Analogous to the constant weight codes in Hamming metric, we define the constant rank codes in rank metric. A constant weight code C of length n over a Galois field F is a subset of F^{n} with the property that all codewords in C have the same Hamming weight [61]. A(n, d, w) denotes the maximum number of vectors in F^{n}, distance atleast d apart from each other and constant Hamming weight ' w '.

Obtaining bounds for $\mathrm{A}(\mathrm{n}, \mathrm{d}, \mathrm{w})$ is one of the problems in the study of constant weight codes. A number of important bounds on $A(n, d, w)$ were obtained in [61].

Here we just define the constant rank codes in rank metric and analyze the function $\mathrm{A}(\mathrm{n}, \mathrm{r}, \mathrm{d})$ which is the analog of the $\mathrm{A}(\mathrm{n}, \mathrm{d}, \mathrm{w})$ and obtain some interesting results.

DEFINITION 1.17: A constant rank code of length n is a subset of a rank space V^{n} with the property that every codeword has same rank.

DEFINITION 1.18: $A(n, r, d)$ is defined as the maximum number of vectors in V^{n}, constant rank r and the distance between any two vectors is atleast d.
(By a ($\mathrm{n}, \mathrm{r}, \mathrm{d}$) set, we mean a subset of vectors in V^{n} having constant rank r and distance between any two vectors is at least d).

We analyze the function $A(n, r, d)$.

THEOREM 1.5:

1. $A(n, r, 1)=L_{r}(n)$, the number of vectors of rank r in V^{n}.
2. $A(n, r, d)=0$ if $r>0$ or $d>n$ or $d>2 r$.

Proof. (1) is obvious from the fact that $\mathrm{L}_{\mathrm{r}}(\mathrm{n})$ is the number of vectors of length n , constant rank r and the distance between any two distinct vectors in the rank space V^{n} is always greater than or equal to one.
(2) Follows immediately from the definition of A($n, r, d)$.

Theorem 1.6: $A(n, 1,2)=2^{n}-1$ over any Galois field $G F\left(2^{N}\right)$.
Proof: Let V_{1} denote the set of vectors of rank 1 in V^{n}. We know for each non zero element $\alpha \in \operatorname{GF}\left(2^{\mathrm{N}}\right)$ there exists $\left(2^{\mathrm{n}}-1\right)$ vectors of rank one having α as a coordinate. Thus the cardinality of V_{1} is $\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{n}}-1\right)$.

Now divide V_{1} into $\left(2^{\mathrm{n}}-1\right)$ blocks of $\left(2^{\mathrm{N}}-1\right)$ vectors such that each block consists of the same pattern of all non-zero elements of $\operatorname{GF}\left(2^{\mathrm{N}}\right)$.

Thus from each block atmost one vector can be chosen such that the selected vectors are atleast rank 2 apart from each other. Such a set we call as a ($\mathrm{n}, 1,2$) set. Also it is always possible to construct such a set. Hence $A(n, 1,2)=2^{n}-1$.

We give an example of $\mathrm{A}(\mathrm{n}, 1,2)$ set for a fixed N and n as follows.

Example 1.2: Let $\mathrm{N}=3$, we use the following notation to define $\operatorname{GF}\left(2^{3}\right)$. Let $0,1,2,3$ be the basic symbols. Then $\operatorname{GF}\left(2^{3}\right)=\{0,1$, $2,3,(12),(13),(23),(123)\}$ (Note that by (ijk), we denote the linear combination of $i+j+k$ over $\operatorname{GF}(2))$.

Suppose $\mathrm{n}=3$, divide F^{3} into $2^{3}-1$ blocks of $2^{3}-1$ vectors as follows:

001	010	100	110
002	020	200	220
\vdots	\vdots	\vdots	\vdots
$(00)(123)$	$0(123) 0$	$(123) 00$	$(123)(123) 0$

101	011	111
202	022	222
\vdots	\vdots	\vdots
$(123) 0(123)$	$0(123)(123)$	$(123)(123)(123)$

It is clear from this arrangement that atmost one vector from each block can be selected to form a $(3,1,2)$ set. Also, the following set is a $(3,1,2)$ set. $\{001,020,300,(12)(12) 0$, $(13) 0(13), 0(23)(23),(123)(123)(123)\}$. Thus $\mathrm{A}(3,1,2)=7=2^{3}$ -1 .

Now we prove another interesting theorem.

THEOREM 1.7: $A(n, n, n)=2^{N}-1$ over any $G F\left(2^{N}\right)$.
Proof: Denote by V_{n} the set of vectors of rank n in the space V^{n}. We know that the cardinality of V_{n} is $\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots\left(2^{\mathrm{N}}-\right.$ $2^{\mathrm{n}-1}$). By definition in a ($\mathrm{n}, \mathrm{n}, \mathrm{n}$) set the distance between any two vectors should be n. Thus no two vectors can have a common symbol at a coordinate place $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{n})$. This implies that $\mathrm{A}(\mathrm{n}, \mathrm{n}, \mathrm{n}) \leq 2^{\mathrm{N}}-1$.

Now we construct a (n, n, n) set as follows:
Select N vectors from V_{n} such that,

1. Each basis element of $\operatorname{GF}\left(2^{\mathrm{n}}\right)$ should occur (can be as a combination) atleast once in each vector.
2. If the $\mathrm{i}^{\text {th }}$ vector is choosen $(\mathrm{i}+1)^{\text {th }}$ vector should be selected such that its rank distance from any linear combination of the previous i vectors is n.

Now the set of all linear combinations of these N vectors over $\mathrm{GF}(2)$ will be such that the distance between any two vectors is n.

Hence it is a ($\mathrm{n}, \mathrm{n}, \mathrm{n}$) set. Also the cardinality of this ($\mathrm{n}, \mathrm{n}, \mathrm{n}$) set is $2^{\mathrm{N}}-1$. (We do not count the all zero linear combination). Thus $\mathrm{A}(\mathrm{n}, \mathrm{n}, \mathrm{n})=2^{\mathrm{N}}-1$.

We illustrate this by the following example.
Example 1.3: Consider $\mathrm{GF}\left(2^{\mathrm{N}}\right)$ for any $\mathrm{N}>1$. As in example 1.2 , we represent $\mathrm{GF}\left(2^{\mathrm{N}}\right)$ as a linear combination of the symbols $1,2, \ldots, \mathrm{~N}$ over GF(2).

Let $\mathrm{n}=2$. We construct a $(2,2,2)$ set by taking the set of all linear combinations of the N vectors choosen as follows:

We have two cases to be considered separately, when N is an odd integer say $2 \mathrm{k}+1$ and when N is an even integer say 2 k .

Case $1 . \mathrm{N}$ is an odd integer say $2 \mathrm{k}+1$. In this case choose the N vectors as $12,23,34, \ldots,(2 k+1)(12)$.

Case $2 . \mathrm{N}$ is an even integer say 2 k .
In this case choose the N vectors as $1(12), 21,3(34), 43, \ldots$, $(2 \mathrm{k}-1)((2 \mathrm{k}-1) 2 \mathrm{k}),(2 \mathrm{k})(2 \mathrm{k}-1)$.

Consider the set of linear combinations of the N -vectors. It can be verified easily that this set is a $(2,2,2)$ set.

Now we obtain the value of $A(n, r, d)$ for a particular triple, when $\mathrm{n}=4, \mathrm{r}=2$ and $\mathrm{d}=4$ in the following theorem.

THEOREM 1.8: $A(4,2,4)=5$ over any Galois field $G F\left(2^{N}\right)$.
Proof: Consider V^{4}, the 4 -dimensional space over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$. We denote the elements of V^{4} as 4-tuples (abc d) where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in$ $\mathrm{GF}\left(2^{\mathrm{N}}\right)$.

Denote by V_{2}, the set of vectors of rank 2 in V^{4}. The cardinality of V_{2} is $35 \times\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right)$. (since

$$
\left.\left|\mathrm{V}_{2}\right|=\mathrm{L}_{2}(4)=\frac{\left(2^{4}-1\right)\left(2^{4}-2\right)\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right)}{\left(2^{2}-1\right)\left(2^{2}-2\right)}\right)
$$

Thus for each distinct non-zero pair of elements of $\operatorname{GF}\left(2^{N}\right)$ there are 35 vectors in V_{2}.

Let $\mathrm{a}, \mathrm{b} \in \mathrm{GF}\left(2^{\mathrm{N}}\right)$ be such that $\mathrm{a} \neq 0, \mathrm{~b} \neq 0$ and $\mathrm{a} \neq \mathrm{b}$. Divide the set of 35 vectors containing a, b and the linear combination (ab) into six blocks as follows:

I	II	III	IV	V	VI
00ab 0a0b 0ab0 0aab 0aba 0baa $0 \mathrm{ab}(\mathrm{ab})$	$\begin{gathered} \text { a00b } \\ \text { ab00 } \\ \text { aa0b } \\ \text { ab0a } \\ \text { ab0b } \\ \text { ab0(ab) } \end{gathered}$	$\begin{gathered} a 0 a b \\ a b a(a b) \\ a b(a b) a \\ a b(a b)(a b) \\ \text { a0ba } \\ \text { a0bb } \end{gathered}$	aaab abab abba aaab aaba abaa abbb	$\begin{gathered} \text { aab0 } \\ \text { aba00 } \\ \text { abb0 } \\ \text { aab(ab) } \\ \text { abbab } \end{gathered}$	$a b(a b) b$ a0b(ab) $a b(a b) 0$ a0b0

From the arrangement of these six blocks it can be verified easily that atmost 5 vectors can be chosen to form any (4, 2, 4) set.

For example if we choose a vector of pattern 00ab then no vector of any other pattern from block I can be chosen (otherwise distance between the two is <4).

Now, move to block II. The first pattern in block II cannot be chosen. So select a vector in the second pattern ab00. No other pattern can be selected from block II.

Now move to block III. Here also the first pattern cannot be chosen. So choose a vector of the pattern aba(ab). Similarly from block IV select the pattern abab. In the block V, the first four pattern cannot be selected. Hence select the pattern abb(ab).

Now move to block VI. But no pattern can be selected from block VI since each pattern is at a distance less than four from one of the already selected patterns. Similarly we can exhaust all the possibilities. Hence a $(4,2,4)$ set in this space can have atmost five vectors.

Also it is always possible to choose five vectors in different patterns to form a set $(4,2,4)$ set. Thus $\mathrm{A}(4,2,4)=5$.

Now we proceed on to give a general bound for $\mathrm{A}(\mathrm{n}, \mathrm{n}, \mathrm{d})$.
THEOREM 1.9: $A(n, n, d) \leq\left(2^{N}-1\right)\left(2^{N}-2\right) \ldots\left(2^{N}-2^{n-d}\right)$ over any field $G F\left(2^{N}\right)$.

Proof: Let V_{n} be the set of vectors of rank n in the space V^{n}. The cardinality of V_{n} is given by

$$
\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{n}-1}\right)
$$

Now for a ($\mathrm{n}, \mathrm{n}, \mathrm{d}$) set two vectors should be different atleast by d coordinate places.

Thus the cardinality of any ($\mathrm{n}, \mathrm{n}, \mathrm{d}$) set is less than or equal to

$$
\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{n}-\mathrm{d}}\right)
$$

This proves,

$$
A(n, n d) \leq\left(2^{N}-1\right)\left(2^{N}-2\right) \ldots\left(2^{N}-2^{n-d}\right)
$$

These AMRD codes are useful for error correction in data storage systems.

Chapter Two

Rank Distance Bicodes and their Properties

In this chapter we define for the first time the notion of Rank Distance Bicodes; RD-Bicodes and derive some interesting results about them. The properties of bivector spaces and bimatrices can be had from the books [91-93].

As the error correcting capability of a code depends mainly on the distance between codewords, not only choosing an appropriate metric is important but also simultaneous working of a pair of system would be advantageous in this computerized world. This is done by introducing the concepts of rank distance bicodes, maximum rank distance bicodes, circulant rank bicodes, RD-MRD bicodes, RD-circulant bicodes, MRD circulant bicodes, RD-AMRD bicodes, AMRD bicodes and so on. We aim to give certain classes of new bicodes with rank metric.

Let V^{n} and V^{m} be n -dimensional and m -dimensional vector spaces over the field $\mathrm{F}_{\mathrm{q}^{\mathrm{*}}} ; \mathrm{n} \leq \mathrm{N}$ and $\mathrm{m} \leq \mathrm{N}(\mathrm{m} \neq \mathrm{n})$. That is $\mathrm{V}^{\mathrm{n}}=$ $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}}$ and $\mathrm{V}^{\mathrm{m}}=\mathrm{F}_{\mathrm{q}^{\mathrm{n}}}^{\mathrm{m}}$.

We know $\mathrm{V}=\mathrm{V}^{\mathrm{n}} \cup \mathrm{V}^{\mathrm{m}}$ is a (m, n) dimensional vector bispace (or bivector space) over the field $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$. By fixing a bibasis of $V=V^{n} \cup V^{n}$ over $F_{q^{N}}$ we can represent any element x $\cup \mathrm{y} \in \mathrm{V}=\left(\mathrm{V}^{\mathrm{n}} \cup \mathrm{V}^{\mathrm{m}}\right)$ as a (n, m)-tuple; $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \cup\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right)$ where $\mathrm{x}_{\mathrm{i},} \mathrm{y}_{\mathrm{j}} \in \mathrm{F}_{\mathrm{q}^{\mathrm{N}}} ; 1 \leq \mathrm{i} \leq \mathrm{n}$ and $1 \leq \mathrm{j} \leq \mathrm{m}$. Again $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$ can be considered as a pseudo false linear bispace of dimension (N, N) over F_{q} (we say a linear vector bispace $\mathrm{V}=\mathrm{V}^{\mathrm{n}} \cup \mathrm{V}^{\mathrm{n}}$ to be a pseudo false linear bispace if $\mathrm{m}=\mathrm{n}=\mathrm{N}$). Hence the elements x_{i}, $\mathrm{y}_{\mathrm{j}} \in \mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$ has a representation as N-bituple $\left(\alpha_{1 \mathrm{i}}, \ldots, \alpha_{\mathrm{Ni}}\right) \cup\left(\beta_{1 \mathrm{j}}\right.$, $\ldots, \beta_{\mathrm{Nj}}$) over F_{q} with respect to some fixed bibasis. Hence associated with each $x \cup y \in V^{\mathrm{n}} \cup \mathrm{V}^{\mathrm{m}}(\mathrm{n} \neq \mathrm{m})$ there is a bimatrix

$$
m(x) \cup m(y)=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & & \vdots \\
a_{\mathrm{N} 1} & \ldots & a_{\mathrm{Nn}}
\end{array}\right] \cup\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 m} \\
b_{21} & \ldots & b_{2 m} \\
\vdots & & \vdots \\
b_{\mathrm{N} 1} & \ldots & b_{\mathrm{Nm}}
\end{array}\right]
$$

where the $\mathrm{i}^{\text {th }} \cup \mathrm{j}^{\text {th }}$ column represents the $\mathrm{i}^{\text {th }} \cup \mathrm{j}^{\text {th }}$ coordinate of x_{i} $\cup y_{j}$ of $x \cup y$ over F_{q}.

Remark: In order to develop the new notion of rank distance bicodes and trying to give the bimatrices and biranks associated with them we are forced to define the notion of pseudo false bivector spaces.

For example; $V=Z_{2}^{5} \cup Z_{2}^{5}$ is a false pseudo bivector space over Z_{2}. Likewise $Z_{3}^{7} \cup Z_{3}^{7}$ is a pseudo false bivector space over Z_{3}. Also $\mathrm{V}=\mathrm{Z}_{7^{8}}^{5} \cup \mathrm{Z}_{7^{8}}^{5}$ is a pseudo false bivector space over $\mathrm{Z}_{7^{8}}$.

However throughout this book we will be using only vector bispaces over Z_{2} or $Z_{2^{\mathrm{N}}}$ unless otherwise specified.

Now we see to every $\mathrm{x} \cup \mathrm{y}$ in the bivector space $\mathrm{V}^{\mathrm{n}} \cup \mathrm{V}^{\mathrm{m}}$ we have an associated bimatrix $m(x) \cup m(y)$.

We now proceed on to define the birank of the bimatrix $\mathrm{m}(\mathrm{x}) \cup \mathrm{m}(\mathrm{y})$ over F_{q} or $\mathrm{GF}(2)$.

DEFINITION 2.1: The birank of an element $x \cup y \in\left(V^{n} \cup V^{m}\right)$ is defined as the birank of the bimatrix $m(x) \cup m(y)$ over GF(2) or F_{q}. (the birank of the bimatrix $m(x) \cup m(y)$ is the rank of $m(x) \cup$ rank of m(y)).

We shall denote the birank of $x \cup y$ by $r_{1}(x) \cup r_{2}(y)=r(x \cup$ y), we see analogous to the properties of rank we can in case of the birank of a bimatrix prove the following:
(i) For every $x \cup y \in\left(V^{n} \cup V^{m}\right)\left(x \in V^{n}\right.$ and $\left.y \in V^{m}\right)$ we have $r(x \cup y)=r_{1}(x) \cup r_{2}(y) \geq 0 \cup 0$ (i.e., each $r_{1}(x) \geq 0$ and each $r_{2}(y) \geq 0$ for every $x \in V^{n}$ and $\left.y \in V^{m}\right)$.

$$
\begin{equation*}
r(x \cup y)=r_{1}(x) \cup r_{2}(y)=0 \cup 0 \text { if and only if } x \cup y=0 \tag{ii}
\end{equation*}
$$ $\cup 0$ i.e., $x=0$ and $y=0$.

$r\left(\left(x_{1}+x_{2}\right) \cup\left(y_{1}+y_{2}\right)\right) \leq\left\{r_{1}\left(x_{1}\right)+r_{1}\left(x_{2}\right)\right\} \cup r_{2}\left(y_{1}\right)+$ $r_{2}\left(y_{2}\right)$ for every $x_{1}, x_{2} \in V^{n}$ and $y_{1}, y_{2} \in V^{n}$. That is we have $r\left(\left(x_{1}+x_{2}\right) \cup\left(y_{1}+y_{2}\right)\right)=r_{1}\left(x_{1}+x_{2}\right) \cup r_{2}\left(y_{1}+y_{2}\right) \leq$ $r_{1}\left(x_{1}\right)+r_{1}\left(x_{2}\right) \cup r_{2}\left(y_{1}\right)+r_{2}\left(y_{2}\right) ;\left(\right.$ as we have for every x_{1}, $x_{2} \in V^{n}, r\left(x_{1}+x_{2}\right) \leq r_{1}\left(x_{1}\right)+r_{1}\left(x_{2}\right)$ and for every $y_{1}, y_{2} \in$ $\left.V^{m} ; r_{2}\left(y_{l}+y_{2}\right) \leq r_{2}\left(y_{l}\right)+\left(y_{2}\right)\right)$.
(iv) $\quad r_{1}\left(a_{1} x\right) \cup r_{2}\left(a_{2} y\right)=\left|a_{1}\right| r_{1}(x) \cup\left|a_{2}\right| r_{2}(y)$ for every a_{1}, a_{2}, $\in F_{q}$ or $G F(2)$ and $x \in V^{n}$ and $y \in V^{m}$.

Thus the bifunction $x \cup y \rightarrow r_{1}(x) \cup r_{2}(y)$ defines a binorm on $V^{n} \cup V^{m}$.

DEFINITION 2.2: The bimetric induced by the birank binorm is defined as the birank bimetric on $V^{n} \cup V^{m}$ and is denoted by
$d_{R_{1}} \cup d_{R_{2}}$. If $x_{1} \cup y_{1}, x_{2} \cup y_{2} \in V^{n} \cup V^{m}$ then the birank bidistance between $x_{1} \cup y_{1}$ and $x_{2} \cup y_{2}$ is

$$
d_{R_{1}}\left(x_{1}, x_{2}\right) \cup d_{R_{2}}\left(y_{1}, y_{2}\right)=r_{1}\left(x_{1}-x_{2}\right) \cup r_{2}\left(y_{1}-y_{2}\right)
$$

(here $d_{R_{1}}\left(x_{1}, x_{2}\right)=r_{1}\left(x_{1}-x_{2}\right)$ for every x_{1}, x_{2} in V^{n}, the rank distance between x_{1} and x_{2} likewise for $\left.y_{1}, y_{2} \in V^{m}\right)$.

DEFINITION 2.3: A linear bispace $V^{n} \cup V^{m}$ over $G F\left(2^{N}\right), N>1$ of bidimension $n \cup m$ such that $n \leq N$ and $m \leq N$ equipped with the birank bimetric is defined as the birank bispace.

DEFINITION 2.4: A birank bidistance RD bicode of bilength $n \cup$ m over $G F\left(2^{N}\right)$ is a bisubset of the birank bispace $V^{n} \cup V^{m}$ over $G F\left(2^{N}\right)$.

DEFINITION 2.5: A linear $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] R D$ bicode is a linear bisubspace of bidimension $k_{1} \cup k_{2}$ in the birank bispace $V^{n} \cup V^{m}$. By $C_{1}\left[n_{1}, k_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right]$, we denote a linear $\left[n_{1}, k_{1}\right]$ $\cup\left[n_{2}, k_{2}\right] R D$ bicode.

We can equivalently define a RD bicode as follows:
DEFINITION 2.6: Let V^{n} and $V^{m}, m \neq n$ be rank spaces over $G F\left(2^{N}\right), N>1$. Suppose $P \subset V^{n}$ and $Q \subset V^{m}$ be subsets of the rank spaces over $G F\left(2^{N}\right)$. Then $P \cup Q \subseteq V^{n} \cup V^{m}$ is a rank distance bicode of bilength (n, m) over $G F\left(2^{N}\right)$.

Definition 2.7: Let $C_{l}\left[n_{l}, k_{l}\right]$ be $\left[n_{l}, k_{l}\right] R D$ code (i.e., a linear subspace of dimension k_{1}, in the rank space V^{n}) and $C_{2}\left[n_{2}, k_{2}\right]$ be $\left[n_{2}, k_{2}\right] R D$ code (i.e., a linear subspace of dimension k_{2} in the rank space $\left.V^{m}\right)(m \neq n)$; then $C_{1}\left[n_{1}, k_{1}\right] \cup$ $C_{2}\left[n_{2}, k_{2}\right]$ is defined as the linear $R D$ bicode of the linear bisubspace of dimension $\left(k_{1}, k_{2}\right)$ in the rank bispace $V^{n} \cup V^{m}$.

Now we proceed onto define the notion of the generator bimatrix of a linear $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ RD bicode.

DEFINITION 2.8: A generator bimatrix of a linear $\left[n_{l}, k_{l}\right] \cup\left[n_{2}\right.$, $\left.k_{2}\right]$ RD-bicode $C_{1} \cup C_{2}$ is a $k_{1} \times n_{1} \cup k_{2} \times n_{2}$ bimatrix over $G F\left(2^{N}\right)$ whose birows form a bibasis for $C_{1} \cup C_{2}$. A generator bimatrix $G=G_{l} \cup G_{2}$ of a linear $R D$ bicode $C_{l}\left[n_{l}, k_{l}\right] \cup C_{2}\left[n_{2}\right.$, $\left.k_{2}\right]$ can be brought into the form $G=G_{l} \cup G_{2}=\left[I_{k_{1}}, A_{k_{1}, n_{1}-k_{1}}\right] \cup$ [$I_{k_{2}}, A_{k_{2} \times n_{2}-k_{2}}$] where $I_{k_{1}}, I_{k_{2}}$ is the identity matrix and $A_{k_{i} \times n_{i}-k_{i}}$, $i=1,2$ is some matrix over $G F\left(2^{N}\right)$. This form of $G=G_{l} \cup G_{2}$ is called the standard form.

DEFINITION 2.9: If $G=G_{l} \cup G_{2}$ is a generator bimatrix of $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right]$ then a bimatrix $H=H_{1} \cup H_{2}$ of order $\left(n_{1}\right.$ $\left.-k_{1} \times n_{1}, n_{2}-k_{2} \times n_{2}\right)$ over $G F\left(2^{N}\right)$ such that

$$
\begin{gathered}
G H^{T}=\left(G_{1} \cup G_{2}\right)\left(H_{1} \cup H_{2}\right)^{T} \\
=\left(G_{I} \cup G_{2}\right)\left(H_{1}^{T} \cup H_{2}^{T}\right) \\
=G_{1} H_{1}^{T} \cup G_{2} H_{2}^{T} \\
=0 \cup 0
\end{gathered}
$$

is called a parity check bimatrix of $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right]$.
Suppose $C=C_{I} \cup C_{2}$ is a linear $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] R D$ code with $G=G_{l} \cup G_{2}$ and $H=H_{l} \cup H_{2}$ as its generator and parity check bimatrices respectively, then $C=C_{1} \cup C_{2}$ has two representation,
(i) $C=C_{1} \cup C_{2}$ is a row bispace of $G=G_{1} \cup G_{2}$ (i.e., C_{1} is the row space of G_{1} and C_{2} is the row space of G_{2})
(ii) $C=C_{1} \cup C_{2}$ is the solution bispace of $H=H_{l} \cup H_{2}$; i.e., C_{l} is the solution space of H_{1} and C_{2} is the solution space of H_{2}.

Now we proceed on to define the notion of minimum rank bidistance of a rank distance bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$.

DEFINITION 2.10: Let $C=C_{I} \cup C_{2}$ be a rank distance bicode, the minimum-rank bidistance is defined by $d=d_{1} \cup d_{2}$ where,

$$
d_{l}=\min \left\{d_{R}(x, y) \mid x, y \in C_{l}, x \neq y\right\}
$$

and

$$
d_{2}=\min \left\{d_{R}(x, y) \mid x, y \in C_{1}, x \neq y\right\}
$$

i.e.,

$$
d=d_{1} \cup d_{2}
$$

$$
\begin{aligned}
= & \min \left\{r_{1}(x) \mid x \in C_{1} \text { and } x \neq 0\right\} \\
& \min \left\{r_{2}(x) \mid x \in C_{2} \text { and } x \neq 0\right\}
\end{aligned}
$$

If an $R D$ bicode $C=C_{1} \cup C_{2}$ has the minimum rank bidistance $d=d_{1} \cup d_{2}$ then it can correct all bierrors

$$
d=d_{1} \cup d_{2} \in F_{q^{N}}^{n} \cup F_{q^{N}}^{m}
$$

with birank

$$
\begin{gathered}
r(e)=\left(r_{1} \cup r_{2}\right)\left(e_{1} \cup e_{2}\right) \\
=r_{1}\left(e_{1}\right) \cup r_{2}\left(e_{2}\right) \leq\left\lfloor\frac{d_{1}-1}{2}\right\rfloor \cup\left\lfloor\frac{d_{2}-1}{2}\right\rfloor .
\end{gathered}
$$

Let $C=C_{1} \cup C_{2}$ denote an $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] R D$-bicode over $F_{q^{N}}$. A generator bimatrix $G=G_{1} \cup G_{2}$ of $C=C_{1} \cup C_{2}$ is a k_{1} $\times n_{1} \cup k_{2} \times n_{2}$ bimatrix with entries from $F_{q^{N}}$ whose rows form a bibasis for $C=C_{1} \cup C_{2}$. Then an $\left(n_{1}-k_{1}\right) \times n_{1} \cup\left(n_{2}-k_{2}\right) \times n_{2}$ bimatrix $H=H_{1} \cup H_{2}$ with entries from $F_{q^{N}}$ such that

$$
\begin{gathered}
G H^{T}=\left(G_{1} \cup G_{2}\right)\left(H_{1} \cup H_{2}\right)^{T} \\
=\left(G_{1} \cup G_{2}\right)\left(H_{1}^{T} \cup H_{2}^{T}\right) \\
=G_{1} H_{1}^{T} \cup G_{2} H_{2}^{T} \\
=0 \cup 0
\end{gathered}
$$

is called the parity check bimatrix of $C=C_{1} \cup C_{2}$.
The result analogous to singleton-style bound in case of RD bicode is given in the following:
Result (singleton-style bound) The minimum rank bidistance d $=\mathrm{d}_{1} \cup \mathrm{~d}_{2}$ of any linear $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ RD bicode $\mathrm{C}=\mathrm{C}_{1} \cup$ $\mathrm{C}_{2} \subseteq F_{q^{N}}^{n} \cup F_{q^{N}}^{m}$ satisfies the following bounds.

$$
\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2} \leq \mathrm{n}_{1}-\mathrm{k}_{1}+1 \cup \mathrm{n}_{2}-\mathrm{k}_{2}+1
$$

Based on this notion we now proceed on to define the new notion of Maximum Rank Distance (MRD) bicodes.

DEFINITION 2.11: An $\left[n_{1}, k_{1}, d_{1}\right] \cup\left[n_{2}, k_{2}, d_{2}\right] R D$ bicode $C=$ $C_{1} \cup C_{2}$ is called a Maximum Rank Distance (MRD) bicode if the singleton-style bound is reached, that is $d=d_{1} \cup d_{2}=n_{1}-$ $k_{1}+1 \cup n_{2}-k_{2}+1$.

Now we proceed on to briefly give the construction of MRD bicode.

Let $[\mathrm{s}]=\left[\mathrm{s}_{1}\right] \cup\left[\mathrm{s}_{2}\right]=\mathrm{q}^{\mathrm{s}_{1}} \cup \mathrm{q}^{\mathrm{s}_{2}}$ for any two integers s_{1} and s_{2}. Let $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right\} \cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{m}}\right\}$ be any set of elements in $\mathrm{F}_{\mathrm{q}^{N}}$ that are linearly independent over over F_{q}. A generator bimatrix $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ of an MRD bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ is defined by $\mathrm{G}=$ $\mathrm{G}_{1} \cup \mathrm{G}_{2}$

$$
=\left[\begin{array}{cccc}
\mathrm{g}_{1} & \mathrm{~g}_{2} & \ldots & \mathrm{~g}_{\mathrm{n}} \\
\mathrm{~g}_{1}^{[1]} & \mathrm{g}_{2}^{[1]} & \ldots & \mathrm{g}_{\mathrm{n}}^{[1]} \\
\mathrm{g}_{1}^{[2]} & \mathrm{g}_{2}^{[2]} & \ldots & \mathrm{g}_{\mathrm{n}}^{[2]} \\
\vdots & \vdots & & \vdots \\
\mathrm{g}_{\mathrm{n}}^{\left[\mathrm{k}_{1}-1\right]} & \mathrm{g}_{\mathrm{n}}^{\left[k_{1}-1\right]} & \ldots & \mathrm{g}_{\mathrm{n}}^{\left[\mathrm{k}_{1}-1\right]}
\end{array}\right] \cup\left[\begin{array}{cccc}
\mathrm{h}_{1} & \mathrm{~h}_{2} & \ldots & \mathrm{~h}_{\mathrm{m}} \\
\mathrm{~h}_{1}^{[1]} & \mathrm{h}_{2}^{[1]} & \ldots & \mathrm{h}_{\mathrm{m}}^{[1]} \\
h_{1}^{[2]} & \mathrm{h}_{2}^{[2]} & \ldots & h_{\mathrm{m}}^{[2]} \\
\vdots & \vdots & & \vdots \\
h_{\mathrm{m}}^{\left[\mathrm{k}_{2}-1\right]} & \mathrm{h}_{\mathrm{m}}^{\left[\mathrm{k}_{2}-1\right]} & \ldots & \mathrm{h}_{\mathrm{m}}^{\left[\mathrm{k}_{2}-1\right]}
\end{array}\right]
$$

It can be easily proved that the bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ given by the generator bimatrix $G=G_{1} \cup G_{2}$, has the rank bidistance $d=d_{1}$ $\cup \mathrm{d}_{2}=\left(\mathrm{n}_{1}-\mathrm{k}_{1}+1\right) \cup\left(\mathrm{n}_{2}-\mathrm{k}_{2}+1\right)$. Any bimatrix of the above from is called a Frobenius bimatrix with generating bivector

$$
\begin{gathered}
\mathrm{g}_{\mathrm{C}}=\mathrm{g}_{\mathrm{C}_{1}} \cup \mathrm{~h}_{\mathrm{C}_{2}} \\
=\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right) \cup\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{m}}\right) .
\end{gathered}
$$

One can prove the following theorem:
Theorem 2.1: Let $C[n, k]=C_{1}\left(n_{1}, k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right)$ be the linear $\left(n_{1}, k_{1}, d_{1}\right) \cup\left(n_{2}, k_{2}, d_{2}\right)$ MRD bicode with $d_{1}=2 t_{1}+1$ and $d_{2}=2 t_{2}+1$. Then $C[n, k]=C_{1}\left(n_{1}, k_{1}\right) \cup C_{2}\left(n_{2}, k_{2}\right)$, bicode corrects all bierrors of birank atmost $t=t_{1} \cup t_{2}$ and detects all bierrors of birank greater than $t=t_{1} \cup t_{2}$.

Consider the Galois field $\operatorname{GF}\left(2^{\mathrm{N}}\right), \mathrm{N}>1$. An element $\alpha_{1} \cup \beta_{2} \in$ $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$ can be denoted by a biN-tuple $\left(\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{N}-1}\right) \cup$ $\left(b_{0}, b_{1}, \ldots, b_{\mathrm{N}-1}\right)$ as well as by the bipolynomial

$$
a_{0}+a_{1} x+\ldots+a_{N-1} x^{N-1} \cup b_{0}+b_{1} x+\ldots+b_{N-1} x^{N-1}
$$

over GF(2).
We now proceed on to define the new notion of circulant bitranspose.

DEFINITION 2.12: The circulant bitranspose $T_{C}=T_{C_{1}}^{1} \cup T_{C_{2}}^{2}$ of a bivector $\alpha=\alpha_{1} \cup \beta_{2}=\left(a_{0}, \ldots, a_{N-1}\right) \cup\left(b_{0}, b_{1}, \ldots, b_{N-1}\right) \in$ $G F\left(2^{N}\right)$ is defined as

$$
\alpha^{T_{C}}=\alpha_{1}^{T_{c_{1}}^{1}} \cup \beta_{2}^{T_{c_{2}}^{2}}=\left(a_{0}, a_{1}, \ldots, a_{N-l}\right) \cup\left(b_{0}, b_{l}, \ldots, b_{N-l}\right)
$$

If $\alpha=\alpha_{1} \cup \beta_{2} \in G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$ has the bipolynomial representation

$$
a_{0}+a_{1} x+\ldots+a_{N-1} x^{N-1} \cup b_{0}+b_{1} x+\ldots+b_{N-1} x^{N-1}
$$

in

$$
\left[\frac{G F(2)(x)}{\left\langle x^{N}+1\right\rangle}\right] \cup\left[\frac{G F(2)(x)}{\left\langle x^{N}+1\right\rangle}\right]
$$

then by; $\alpha_{i}=\alpha_{1 i} \cup \beta_{2 i}$ we denote the bivector corresponding to the bipolynomial

$$
\begin{aligned}
& {\left[\left(a_{0}+a_{1} x+\ldots+a_{N-1} x^{N-1}\right) \cdot x^{i}\right] \bmod \left(x^{n}+1\right)} \\
& \cup\left[\left(b_{0}+b_{1} x+\ldots+b_{N-1} x^{N-1}\right) \cdot x^{i}\right] \bmod \left(x^{n}+1\right)
\end{aligned}
$$

for $i=0,1,2, \ldots, N-1 .\left(\right.$ Note $\left.\alpha_{0}=\alpha_{1} \cup \beta_{2}=\alpha\right)$.
Now we proceed on to define the biword generated by $\alpha=\alpha_{1} \cup$ β_{2}.

DEFINITION 2.13: Let $f=f_{1} \cup f_{2}: G F\left(2^{N}\right) \cup G F\left(2^{N}\right) \rightarrow$ $\left[G F\left(2^{N}\right)\right]^{N} \cup\left[G F\left(2^{N}\right)\right]^{N}$ be defined as,

$$
\begin{gathered}
f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\beta_{2}\right) \\
=\left(\alpha_{0}^{T_{c_{1}}^{1}}, \alpha_{1}^{T_{1}^{1}}, \ldots, \alpha_{N-1}^{T_{c_{1}}}\right) \cup\left(\beta_{0}^{T_{c_{2}}}, \beta_{1}^{T_{c_{2}}^{2}}, \ldots, \beta_{N-1}^{T_{C_{2}}^{2}}\right) .
\end{gathered}
$$

We call $f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\beta_{2}\right)$ as the biword generated by $\alpha=\alpha_{I}$ $\cup \beta_{2}$.

We analogous to the definition given in MacWilliams and Sloane [61] define circulant bimatrix associated with a bivector in $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$.

DEFINITION 2.14: A bimatrix of the from

$$
=\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{N-1} \\
a_{N-1} & a_{0} & \ldots & a_{N-2} \\
\vdots & \vdots & & \vdots \\
a_{1} & a_{2} & \ldots & a_{0}
\end{array}\right] \cup\left[\begin{array}{cccc}
b_{0} & b_{1} & \ldots & b_{N-1} \\
b_{N-1} & b_{0} & \ldots & b_{N-2} \\
\vdots & \vdots & & \vdots \\
b_{1} & b_{2} & \ldots & b_{0}
\end{array}\right]
$$

is called the circulant bimatrix associated with the bivector (a_{0}, $\left.a_{l}, \ldots, a_{N-l}\right) \cup\left(b_{0}, b_{l}, \ldots, b_{N-1}\right) \in G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$. Thus with each $\alpha=\alpha_{1} \cup \beta_{2} \in G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$, we can associate a circulant bimatrix whose $i^{\text {th }}$ bicolumn represents $\alpha_{i}^{T_{c_{1}}} \cup \beta_{i}^{T_{c_{2}}}$; i $=0,1,2, \ldots, N-1 . f=f_{1} \cup f_{2}$ is nothing but a bimapping of $G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$ on to the pseudo false bialgebra of all $N \times N$ circulant bimatrices over GF(2). Denote the bispace $f\left(G F\left(2^{N}\right)\right)=f_{1}\left(G F\left(2^{N}\right)\right) \cup f_{2}\left(G F\left(2^{N}\right)\right)$ by $V^{N} \cup V^{N}$.

We define binorm of a biword $\mathrm{v}=\mathrm{v}_{1} \cup \mathrm{v}_{2} \in \mathrm{~V}^{\mathrm{N}} \cup \mathrm{V}^{\mathrm{N}}$ as follows.

DEFINITION 2.15: The binorm of a biword $v=v_{1} \cup v_{2} \in V^{N} \cup$ V^{N} is defined as the birank of $v=v_{1} \cup v_{2}$ over $G F\left(2^{N}\right)$ (by considering it as a circulant bimatrix over GF(2)).

We denote the binorm of $v=v_{1} \cup v_{2}$ by $r(v)=r_{1}\left(v_{1}\right) \cup r_{2}\left(v_{2}\right)$, we prove the following theorem:

THEOREM 2.2: Suppose $\alpha=\alpha_{1} \cup \beta_{2} \in G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$ has the bipolynomial representation $g_{1}(x) \cup h_{2}(x)$ over $G F(2)$ such that $\operatorname{gcd}\left(g_{1}(x), x^{N}+1\right)$ has degree $N-k_{1}$ and $\operatorname{gcd}\left(h_{2}(x), x^{N}+1\right)$
has degree $N-k_{2}$ where $1 \leq k_{1}, k_{2} \leq N$; then the binorm of the biword generated by $\alpha=\alpha_{1} \cup \beta_{2}$ is $k_{1} \cup k_{2}$.

Proof: We know the binorm of the biword generated by $\alpha=\alpha_{1}$ $\cup \beta_{2}$ is the birank of the circulant bimatrix

$$
=\left(\alpha_{0}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}, \alpha_{1}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}, \ldots, \alpha_{\mathrm{N}-1}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}\right) \cup\left(\beta_{0}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}, \beta_{1}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}, \ldots, \beta_{\mathrm{N}-1}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}\right)
$$

where $\alpha_{i}^{T_{C}}=\alpha_{1 i}^{T_{C_{1}}^{1}} \cup \beta_{2 i}^{T_{C_{2}}^{2}}$ represents the bipolynomial $\left[x^{i} g_{1}(x)\right]$ $\left[\bmod x^{N}+1\right] \cup\left[x^{i} h_{2}(x)\right]\left[\bmod x^{N}+1\right]$ over $G F(2)$. Suppose the $\operatorname{bigcd}\left(g_{1}(x), x^{N}+1\right) \cup\left(h_{2}(x), x^{N}+1\right)$ has bidegree $N-k_{1} \cup N-$ $\mathrm{k}_{2},\left(0 \leq \mathrm{k}_{1}, \mathrm{k}_{2} \leq \mathrm{N}-1\right)$.

To prove that the biword generated by $\alpha=\alpha_{1} \cup \beta_{2}$ has birank k_{1} $\cup \mathrm{k}_{2}$. It is enough to prove that the bispace generated by the N bipolynomials

$$
\begin{gathered}
\left\{g_{1}(x) \bmod \left(x^{N}+1\right),\left(\operatorname{xg}_{1}(x)\right)\left[\bmod x^{N}+1\right], \ldots,\right. \\
\left.\left[x^{N-1} g_{1}(x)\right] \bmod \left[x^{N}+1\right]\right\} \cup \\
\left\{h_{2}(x) \bmod \left(x^{N}+1\right),\left(x_{2}(x)\right)\left[\bmod x^{N}+1\right], \ldots,\right. \\
\left.\left[x^{N-1} h_{2}(x)\right] \bmod \left(x^{N}+1\right)\right\}
\end{gathered}
$$

has bidimension $k_{1} \cup k_{2}$. We will prove that the biset of $k_{1} \cup$ k_{2} bipolynomials

$$
\begin{gathered}
\left\{g_{1}(x) \bmod \left(x^{N}+1\right),\left(x_{1}(x)\right) \bmod \left(x^{N}+1\right), \ldots,\right. \\
\left.\left(x^{N-1} g_{1}(x)\right) \bmod \left(x^{N}+1\right)\right\} \\
\cup\left\{h_{2}(x) \bmod \left(x^{N}+1\right),\left(x_{2}(x)\right)\left(\bmod x^{N}+1\right), \ldots,\right. \\
\left.\left(x^{N-1} h_{2}(x)\right)\left(\bmod x^{N}+1\right)\right\}
\end{gathered}
$$

forms a bibasis for this bispace.
If possible let

$$
\begin{gathered}
a_{0}\left(g_{1}(x)\right)+a_{1}\left(x_{1}(x)\right)+\ldots+a_{k_{1}-1}\left(x^{k_{1}-1} g_{1}(x)\right) \cup b_{0}\left(h_{2}(x)\right) \\
+b_{1}\left(x_{2}(x)\right)+\ldots+b_{k_{2}-1}\left(x^{k_{2}-1} h_{2}(x)\right) \\
\equiv 0 \cup 0\left(\bmod x^{N}+1\right)
\end{gathered}
$$

where $a_{i}, b_{i} \in G F(2)$.
This implies $x^{N+1} \cup x^{N+1}$ bidivides

$$
\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1}\right) g_{1}(x)
$$

$$
\cup\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}_{2}-2} \mathrm{x}^{\mathrm{k}_{2}-1}\right) \mathrm{h}_{2}(\mathrm{x})
$$

Now if

$$
\mathrm{g}_{1}(\mathrm{x}) \cup \mathrm{h}_{2}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x}) \mathrm{a}_{1}(\mathrm{x}) \cup \mathrm{p}_{2}(\mathrm{x}) \mathrm{b}_{2}(\mathrm{x})
$$

where, $\mathrm{p}_{1}(\mathrm{x}) \cup \mathrm{p}_{2}(\mathrm{x})$ is the $\operatorname{bigcd}\left\{\left(\mathrm{g}_{1}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right) \cup\left(\mathrm{h}_{2}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+\right.\right.$ 1) t then $\left(a_{1}(x), x^{N}+1\right) \cup\left(b_{2}(x), x^{N}+1\right)=1 \cup 1$. Thus $x^{N}+1$ bidivides

$$
\begin{gathered}
\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1}\right) g_{1}(x) \\
\cup\left(b_{0}+b_{1} x+\ldots+b_{k_{2}-2} x^{k_{2}-1}\right) h_{2}(x)
\end{gathered}
$$

which inturn implies that the biquotient

$$
\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{1}(\mathrm{x})\right) \cup\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{2}(\mathrm{x})\right)
$$

bidivides

$$
\begin{gathered}
\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1}\right) a_{1}(x) \\
\cup\left(b_{0}+b_{1} x+\ldots+b_{k_{2}-2} x^{k_{2}-1}\right) b_{2}(x)
\end{gathered}
$$

That is

$$
\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{1}(\mathrm{x})\right) \cup\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{2}(\mathrm{x})\right)
$$

bidivides

$$
\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1}\right) \cup\left(b_{0}+b_{1} x+\ldots+b_{k_{2}-2} x^{k_{2}-1}\right)
$$

which is a contradiction as

$$
\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{1}(\mathrm{x})\right) \cup\left(\mathrm{x}^{\mathrm{N}}+1 / \mathrm{p}_{2}(\mathrm{x})\right)
$$

has bidegree $\mathrm{k}_{1} \cup \mathrm{k}_{2}$ where as the bipolynomial $\left(\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{X}+\ldots+\right.$ $\left.a_{k_{1}-1} x^{k_{1}-1}\right) \cup\left(b_{0}+b_{1} x+\ldots+b_{k_{2}-2} x^{k_{2}-1}\right)$ has bidegree atmost k_{1} $-1 \cup k_{2}-1$. Hence the bipolynomials

$$
\left\{g_{1}(x) \bmod \left(x^{N}+1\right), x_{1}(x) \bmod \left(x^{N}+1\right), \ldots\right.
$$

$$
\begin{gathered}
\left.\mathrm{x}^{\mathrm{k}_{1}-1} \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup \\
\left\{\mathrm{h}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{xh}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \ldots,\right. \\
\left.\mathrm{x}^{\mathrm{k}_{2}-1} \mathrm{~h}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\}
\end{gathered}
$$

are bilinearly independent over $\mathrm{GF}(2) \cup \mathrm{GF}(2)$, i.e.;

$$
\begin{gathered}
\left\{g_{1}(x) \bmod \left(x^{N}+1\right), x g_{1}(x) \bmod \left(x^{N}+1\right), \ldots,\right. \\
\left.x^{k_{1}-1} g_{1}(x) \bmod \left(x^{N}+1\right)\right\} \\
\cup\left\{h_{2}(x) \bmod \left(x^{N}+1\right), x h_{2}(x) \bmod \left(x^{N}+1\right), \ldots,\right. \\
\left.x^{k_{2}-1} h_{2}(x) \bmod \left(x^{N}+1\right)\right\}
\end{gathered}
$$

bigenerate the bispace. For this it is enough to prove that $\mathrm{x}^{\mathrm{i}} \mathrm{g}_{1}(\mathrm{x})$ $\cup \mathrm{x}^{\mathrm{i}} \mathrm{h}_{2}(\mathrm{x})$ is a linear bicombination of these bipolynomials for k_{1} $\leq \mathrm{i} \leq \mathrm{N}-1$ and $\mathrm{k}_{2} \leq \mathrm{i} \leq \mathrm{N}-1$. Let $\mathrm{x}^{\mathrm{N}}+1 \cup \mathrm{x}^{\mathrm{N}}+1=\mathrm{p}_{1}(\mathrm{x}) \mathrm{q}_{1}(\mathrm{x})$ $\cup \mathrm{p}_{2}(\mathrm{x}) \mathrm{q}_{2}(\mathrm{x})$ where

$$
\begin{gathered}
\mathrm{q}_{1}(\mathrm{x}) \cup \mathrm{q}_{2}(\mathrm{x})= \\
\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{x}+\ldots+\mathrm{c}_{\mathrm{k}_{\mathrm{i}}} \mathrm{x}^{\mathrm{k}_{1}} \cup \mathrm{~d}_{0}+\mathrm{d}_{1} \mathrm{x}+\ldots+\mathrm{d}_{\mathrm{k}_{2}} \mathrm{x}^{\mathrm{k}_{2}}
\end{gathered}
$$

(Note: $\mathrm{c}_{0}=\mathrm{c}_{\mathrm{k}_{1}}=1$ and $\mathrm{d}_{0}=\mathrm{d}_{\mathrm{k} 2}=1$, since $\mathrm{q}_{1}(\mathrm{x}) \cup \mathrm{q}_{2}(\mathrm{x})$ bidivides $\mathrm{x}^{\mathrm{N}}+1 \cup \mathrm{x}^{\mathrm{N}}+1$, i.e., $\mathrm{g}_{1}(\mathrm{x})$ divides $\mathrm{x}^{\mathrm{N}}+1$ and $\mathrm{g}_{2}(\mathrm{x})$ divides $\mathrm{x}^{\mathrm{N}}+$ 1). Also we have

$$
\mathrm{g}_{1}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x}) \mathrm{a}_{1}(\mathrm{x})
$$

and

$$
\mathrm{h}_{2}(\mathrm{x})=\mathrm{p}_{2}(\mathrm{x}) \mathrm{b}_{2}(\mathrm{x})
$$

i.e.,

$$
\mathrm{g}_{1}(\mathrm{x}) \cup \mathrm{h}_{2}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x}) \mathrm{a}_{1}(\mathrm{x}) \cup \mathrm{p}_{2}(\mathrm{x}) \mathrm{b}_{2}(\mathrm{x})
$$

Thus

$$
x^{N}+1 \cup x^{N}+1=\left(g_{1}(x) \cdot \frac{p_{1}(x)}{a_{1}(x)}\right) \cup\left(h_{2}(x) \cdot \frac{p_{2}(x)}{b_{2}(x)}\right)
$$

that is

$$
\mathrm{g}_{1}(\mathrm{x}) \cdot \frac{\mathrm{p}_{1}(\mathrm{x})}{\mathrm{a}_{1}(\mathrm{x})} \equiv 0 \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)
$$

and

$$
\mathrm{h}_{2}(\mathrm{x}) \cdot \frac{\mathrm{p}_{2}(\mathrm{x})}{\mathrm{b}_{2}(\mathrm{x})} \equiv 0 \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)
$$

$$
x^{N}+1 \cup x^{N}+1=\left(g_{1}(x) \cdot \frac{p_{1}(x)}{a_{1}(x)}\right) \cup\left(h_{2}(x) \cdot \frac{p_{2}(x)}{b_{2}(x)}\right)
$$

Now

$$
\begin{gathered}
\frac{g_{1}(x)\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1}\right)}{a_{1}(x)} \\
=\left[\frac{g_{1}(x) x^{k_{1}}}{a_{1}(x)}\right] \bmod \left(x^{N}+1\right)\left(\text { since } a_{k}=1\right)
\end{gathered}
$$

That is

$$
x^{k_{1}} g_{1}(x)=\left(a_{0}+a_{1} x+\ldots+a_{k_{1}-1} x^{k_{1}-1} g_{1}(x)\right) \bmod \left(x^{N}+1\right)
$$

Hence,

$$
\begin{gathered}
x^{k_{1}} g_{1}(x)=\left(a_{0} g_{1}(x)+a_{1}\left(x_{1}(x)\right)+\ldots+\right. \\
\left.a_{k_{1}-1}\left[x^{k_{1}-1} g_{1}(x)\right]\right) \bmod \left(x^{N}+1\right)
\end{gathered}
$$

a linear combination of

$$
\begin{gathered}
g_{1}(x) \bmod \left(x^{N}+1\right),\left[\operatorname{xg}_{1}(x)\right] \bmod \left(x^{N}+1\right), \ldots, \\
{\left[x^{k_{1}-1} g_{1}(x)\right] \bmod \left(x^{N}+1\right)}
\end{gathered}
$$

over GF(2).
Now it can be easily proved that $x^{i} g_{1}(x)$ is a linear combination of

$$
\begin{gathered}
g_{1}(x) \bmod \left(x^{N}+1\right), x g_{1}(x) \bmod \left(x^{N}+1\right), \ldots \\
x^{k_{1}-1} g_{1}(x) \bmod \left(x^{N}+1\right)
\end{gathered}
$$

for $\mathrm{i}>\mathrm{k}_{1}$.
Similar argument holds good for $\mathrm{x}^{\mathrm{i}} \mathrm{h}_{2}(\mathrm{x})$ where $\mathrm{i}>\mathrm{k}_{2}$. Hence the bispace generated by the bipolynomial $\left\{g_{1}(x) \bmod \left(x^{N}+1\right)\right.$, $\left.\mathrm{xg}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \ldots, \mathrm{x}^{\mathrm{k}_{1}-1} \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup \cup\left\{\mathrm{h}_{2}(\mathrm{x})\right.$ $\left.\bmod \left(x^{N}+1\right), x_{2}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{2}-1} h_{2}(x) \bmod \left(x^{N}+1\right)\right\}$ has bidimension $k_{1} \cup \mathrm{k}_{2}$; i.e., the birank of the biword generated by $\alpha=\alpha_{1} \cup \beta_{2}$ is $k_{1} \cup \mathrm{k}_{2}$.

Now we have the two corollaries to be true.
COROLLARY 2.1: If $\alpha=\alpha_{1} \cup \beta_{2} \in G F\left(2^{N}\right) \cup G F\left(2^{N}\right)$ is such that its bipolynomial representation $g_{1}(x) \cup h_{2}(x)$ is relatively prime to $x^{N}+1 \cup x^{N}+1$ (i.e. $g_{1}(x)$ is relatively prime to $x^{N}+1$ and
$h_{2}(x)$ is relatively prime to $x^{N}+1$) then the binorm of the biword generated by $\alpha=\alpha_{1} \cup \beta_{2}$ is (N, N) and $f(\alpha)=f_{l}\left(\alpha_{1}\right) \cup f_{2}\left(\beta_{2}\right)$ is invertible.

Proof: Follows from the theorem $\operatorname{bigcd}\left(\mathrm{g}_{1}(\mathrm{x}) \cup \mathrm{h}_{2}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1 \cup\right.$ $\mathrm{x}^{\mathrm{N}}+1$)
$=\operatorname{bigcd}\left(\mathrm{g}_{1}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right) \cup\left(\mathrm{h}_{2}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right)$
$=1 \cup 1$
has bidegree $0 \cup 0$ and hence birank of $f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\beta_{2}\right)$ is (N, N).

Corollary 2.2: The binorms of the bivectors corresponding to the bipolynomials $x+1 \cup x+1$ and $x^{N-1}+x^{N-2}+\ldots+x+$ $1 \cup x^{N-1}+x^{N-2}+\ldots+x+1$ are respectively $(N-1, N-1)$ and (1, 1).

Now we proceed on to define the bidistance bifunction on $\mathrm{V}^{\mathrm{N}} \cup$ V^{N}.

DEFINITION 2.16: The bidistance between two biwords $u=u_{l}$ $\cup u_{2}$ and $v=v_{1} \cup v_{2}$ in $V^{N} \cup V^{N}$ is defined as

$$
\begin{gathered}
d(u, v)=d_{1}\left(u_{1}, v_{l}\right) \cup d_{2}\left(u_{2}, v_{2}\right) \\
=r(u+v) \\
=r_{1}\left(u_{1}+v_{1}\right) \cup r_{2}\left(u_{2}+v_{2}\right) .
\end{gathered}
$$

Now we proceed on to define the new notion of circulant rank bicodes of bilength $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$.

DEFINITION 2.17: Let C_{l} be a circulant rank code of length N_{l} which is a subspace of $V^{N_{1}}$ equipped with the distance function $d_{l}\left(u_{l}, v_{l}\right)=r_{l}\left(u_{l}, v_{l}\right)$ and C_{2} be a circulant rank code of length N_{2} which is the subspace of $V^{N_{2}}$ equipped with distance function $d_{2}\left(u_{2}, v_{2}\right)=r_{2}\left(u_{2}, v_{2}\right)$ where $V^{N_{1}}$ and $V^{N_{2}}$ are spaces defined over $G F\left(2^{N}\right)$ with $N_{1} \neq N_{2} . C=C_{1} \cup C_{2}$ is defined as the circulant birank bicode of bilength $N=N_{1} \cup N_{2}$ defined as a bisubsapce of $V^{N_{1}} \cup V^{N_{2}}$ equipped with the bidistance bifunction

$$
d_{1}\left(u_{1}, v_{1}\right) \cup d_{2}\left(u_{2}, v_{2}\right)=r_{1}\left(u_{1}+v_{1}\right) \cup r_{2}\left(u_{2}+v_{2}\right) .
$$

DEFINITION 2.18: A circulant birank bicode of bilength $N=N_{I}$ $\cup N_{2}$ is called bicyclic if whenever $\left(v_{1}^{1} \ldots v_{N_{1}}^{1}\right) \cup\left(u_{1}^{2} \ldots u_{N_{2}}^{2}\right)$ is a bicodeword then it implies $\left(v_{2}^{1} v_{3}^{1} \ldots v_{N_{1}}^{1} v_{1}^{1}\right) \cup\left(u_{2}^{2} u_{3}^{2} \ldots u_{N_{2}}^{2} u_{1}^{2}\right)$ is also a bicodeword.

Now we proceed on to define semi MRD bicode.
DEFINITION 2.19: Let $C_{l}\left[n_{l}, k_{l}\right]$ be a $\left[n_{l}, k_{l}\right] R D$ code and $C_{2}\left[n_{2}, k_{2}, d_{2}\right]$ be a MRD code. $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}, d_{2}\right]$ is defined as the semi MRD bicode if $n_{1} \neq n_{2}$ and $k_{1} \neq k_{2}$ and $C_{1}\left[n_{1}\right.$, $\left.k_{1}\right]$ is only a RD-code and not a MRD code.

These bicodes will be useful in application where one set of code never attains the singleton-style bound were as the other code attains the singleton style bound.

The special nature of these codes will be very useful in applications were two types of RD codes are used simultaneously. Next we proceed on to define the notion of semi circulant rank bicode of type I and type II.

DEFINITION 2.20: Let $C_{I}=C_{1}\left[n_{1}, k_{1}\right]$ be a $R D$-code and C_{2} be a circulant rank code both are subspaces of rank spaces defined over the same field $G F\left(2^{N}\right)$. Then $C_{1} \cup C_{2}$ is defined as the semi circulant rank bicode of type I.

These codes find their application where one RD-code which does not attain its single style bound and another need is a circulant rank code. Now we proceed on to define the new concept of semi circulant rank bicode of type II.

DEFINITION 2.21: Let $\left[n_{1}, k_{l}, d_{l}\right]=C_{1}$ be a MRD code and C_{2} be a circulant rank code both are subspaces or rank spaces defined over the same field $G F\left(2^{N}\right)$ or $F_{q^{N}} . C_{1} \cup C_{2}$ is defined to be semi circulant bicode of type II.

We see in semi circulant rank bicodes of type I, we use only RD codes which are not MRD codes and in semi circulant rank bicodes of type II, we use only MRD codes which are never RD codes. These rank bicodes will find their applications in special situations. Next we proceed on to define semicyclic circulant rank bicode of type I and type II.

Definition 2.22: Let $C_{l}\left[n_{1}, k_{l}\right]$ be a $R D$-code which is not a MRD code and C_{2} be a cyclic circulant rank code, both take entries from the same field $G F\left(2^{N}\right) . C_{1} \cup C_{2}$ is defined to be a semicyclic circulant rank bicode of type I.

These also can be used when simultaneous use of two different types of rank codes are needed. Next we proceed on to define the notion of semicyclic circulant rank bicode of type II.

DEFINITION 2.23: Let $\left[n_{l}, k_{1}, d_{l}\right]=C_{1}$ be a MRD-code which is a subspace of V^{N}, V^{N} defined over $G F\left(2^{N}\right) . C_{2}$ be a cyclic circulant rank code with entries from $G F\left(2^{N}\right) . C_{1} \cup C_{2}$ is defined to be the semicyclic circulant rank bicode.

These bicodes also find their applications when two types of codes are needed simultaneously. Next we proceed on to define semicyclic circulant rank bicode.

DEFINITION 2.24: Let C_{1} be a circulant rank code and C_{2} be a cyclic circulant rank code, $C_{1} \cup C_{2}$ is defined as the semicyclic circulant rank bicode, both C_{1} and C_{2} take entries from the same field.

The special semicyclic circulant rank bicodes can be used in communication bichannel having very high error probability for error correction.

Now we proceed on to define yet another class of rank bicodes.
Definition 2.25: Let $C_{1}\left[n_{1}, k_{1}\right]$ and $C_{2}\left[n_{2}, k_{2}\right]$ be any two distinct Almost Maximum Rank Distance (AMRD) codes with the minimum distances greater than or equal to $n_{1}-k_{1}$ and $n_{2}-$
k_{2} respectively defined over $G F\left(2^{N}\right)$. Then $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}\right.$, $\left.k_{2}\right]$ is defined as the Almost Maximum Rank Distance bicode (AMRD-bicode) over GF $\left(2^{N}\right)$.

An AMRD bicode whose minimum bidistance is greater than n_{1} $-\mathrm{k}_{1} \cup \mathrm{n}_{2}-\mathrm{k}_{2}$ is an MRD bicode and hence the class of MRD bicodes is a subclass of the class of AMRD bicode.

We have an interesting property about these AMRD bicodes.
THEOREM 2.3: When $n_{1}-k_{1} \cup n_{2}-k_{2}$ is an odd pair of biintegers (i.e., $n_{1}-k_{1}$ and $n_{2}-k_{2}$ are odd integers);
(i) The error correcting capability of the $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ AMRD bicode is equal to that of an $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ MRD bicode.
(ii) An $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ AMRD bicode is better than any $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ bicode in Hamming metric for error correction.

Proof: (i) Suppose $C=C_{1} \cup C_{2}$ is a $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ AMRD bicode such that $n_{1}-k_{1} \cup n_{2}-k_{2}$ is an odd biinteger (i.e., $n_{1}-$ $\mathrm{k}_{1} \neq \mathrm{n}_{2}-\mathrm{k}_{2}$ are odd integers). The maximum number of bierrors corrected by $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ is given by

$$
\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2} .
$$

But

$$
\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2}
$$

is equal to the error correcting capability of an $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ MRD bicode (Since $n_{1}-k_{1}$ and $n_{2}-k_{2}$ are odd). Thus when $n_{1}-$ $\mathrm{k}_{1} \cup \mathrm{n}_{2}-\mathrm{k}_{2}$ is biodd (i.e., both $\mathrm{n}_{1}-\mathrm{k}_{1}$ and $\mathrm{n}_{2}-\mathrm{k}_{2}$ are odd) the $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ AMRD bicode is as good as an $\left[n_{1}, k_{1}\right] \cup\left[n_{2}\right.$, k_{2}] MRD bicode.
(ii) Suppose $C=C_{1} \cup C_{2}$ is a $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ AMRD bicode such that $n_{1}-k_{1}$ and $n_{2}-k_{2}$ are odd. Then, each bicodeword of C can correct $L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right)=L_{r}(n)$ error bivectors where

$$
\mathrm{r}=\mathrm{r}_{1} \cup \mathrm{r}_{2}=\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2}
$$

and

$$
\begin{gathered}
L_{r}(n)=L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right) \\
=1+\sum_{i=1}^{n_{1}}\left[\begin{array}{c}
n_{1} \\
i
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{i-1}\right) \cup \\
1+\sum_{i=1}^{n_{2}}\left[\begin{array}{c}
n_{2} \\
i
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{i-1}\right) .
\end{gathered}
$$

Consider the same $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ bicode in Hamming metric. Let it be $D_{1} \cup D_{2}=D$, then the minimum bidistance of D is atmost $\left(\mathrm{n}_{1}-\mathrm{k}_{1}+1\right) \cup\left(\mathrm{n}_{2}-\mathrm{k}_{2}+1\right)$. The error correcting capability of D is

$$
\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}+1-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}+1-1\right)}{2}=\mathrm{r}_{1} \cup \mathrm{r}_{2}
$$

($\left[\mathrm{n}_{1}-\mathrm{k}_{1}\right]$ and $\left[\mathrm{n}_{2}-\mathrm{k}_{2}\right]$ are odd).
Hence the number of error bivectors corrected by a codeword is given by

$$
\sum_{i=0}^{\mathrm{r}_{1}}\left[\begin{array}{c}
\mathrm{n}_{1} \\
i
\end{array}\right]\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}} \cup \sum_{\mathrm{i}=0}^{\mathrm{r}_{2}}\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}}
$$

which is clearly less than $L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right)$.
Thus the number of error bivectors that can be corrected by the $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right]$ AMRD bicode is much greater than that of the same bicode considered in Hamming metric.

For a given bilength $\mathrm{n}=\mathrm{n}_{1} \cup \mathrm{n}_{2}$, a single error correcting AMRD bicode is one having bidimension $n_{1}-3 \cup n_{2}-3$ and the minimum distance greater than or equal to $3 \cup 3$. We now proceed on to give a characterization of a single error correcting AMRD bicode in terms of its parity check bimatrices. The characterization is based on the condition for the minimum distance proved by Gabidulin in [24, 27].

Theorem 2.4: Let $H=H_{l} \cup H_{2}=\left(\alpha_{i j}^{1}\right) \cup\left(\alpha_{i j}^{2}\right)$ be a $3 \times n_{l} \cup 3$ $\times n_{2}$ bimatrix of birank 3 over $\operatorname{GF}\left(2^{N}\right) ; n_{1} \leq N$ and $n_{2} \leq N$ which satisfies the following condition. For any two distinct, non empty bisubsets P_{1}, P_{2} where $P_{1}=P_{1}^{1} \cup P_{2}^{1}$ and $P_{2}=P_{1}^{2} \cup P_{2}^{2}$ of $\left\{1,2, \ldots, n_{1}\right\}$ and $\left\{1,2,3, \ldots, n_{2}\right\}$ respectively there exists $i_{1}=i_{1}^{1} \cup i_{2}^{1}, i_{2}=i_{1}^{2} \cup i_{2}^{2} \in\{1,2,3\} \cup\{1,2,3\}$
such that,

$$
\begin{aligned}
& \left(\sum_{j_{1} \in P_{1}^{1}} \alpha_{i_{1}^{1} j_{1}^{1}}^{1} \cdot \sum_{k_{1}^{1} \in P_{2}^{1}} \alpha_{i_{2}^{1} k_{1}^{1}}^{1}\right) \cup\left(\sum_{i_{1}^{2} \in P_{1}^{2}} \alpha_{i_{1}^{2} j_{1}^{2}}^{2} \cdot \sum_{k_{2}^{2} \in P_{1}^{2}} \alpha_{i_{2}^{2} k_{2}^{2}}^{2}\right) \neq \\
& \left(\sum_{j_{1}^{\prime} \in P_{1}^{1}} \alpha_{i_{2}^{1} j_{1}^{1}}^{1} \cdot \sum_{k_{1}^{1} \in P_{2}^{1}} \alpha_{i_{1}^{1} k_{1}^{1}}^{1}\right) \cup\left(\sum_{j_{1}^{\prime} \in P_{1}^{2}} \alpha_{i_{2}^{2} j_{1}^{2}}^{2} \cdot \sum_{k_{2}^{2} \in P_{1}^{2}} \alpha_{i_{1}^{2} k_{2}^{2}}^{2}\right) .
\end{aligned}
$$

then, $H=H_{1} \cup H_{2}$ as a parity check bimatrix defines a $\left[n_{1}, n_{1-}\right.$ 3] $\cup\left[n_{2}, n_{2}-3\right]$ single bierror correcting AMRD bicode over $G F\left(2^{N}\right)$.

Proof: Given $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ is a $3 \times \mathrm{n}_{1} \cup 3 \times \mathrm{n}_{2}$ bimatrix of birank $3 \cup 3$ over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$, so $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ as a parity check bimatrix defines a $\left[\mathrm{n}_{1}, \mathrm{n}_{1}-3\right] \cup\left[\mathrm{n}_{2}, \mathrm{n}_{2}-3\right] \mathrm{RD}$ bicode $\mathrm{C}=\mathrm{C}_{1} \cup$ C_{2} over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$ where,

$$
\mathrm{C}_{1}=\left\{\mathrm{x} \in \mathrm{~V}^{\mathrm{n}_{1}} \mid \mathrm{xH}_{1}^{\mathrm{T}}=0\right\}
$$

and

$$
\mathrm{C}_{2}=\left\{\mathrm{x} \in \mathrm{~V}^{\mathrm{n}_{2}} \mid \mathrm{xH}_{2}^{\mathrm{T}}=0\right\} .
$$

It remains to prove that the minimum bidistance of $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ is greater than or equal to $3 \cup 3$. We will prove that no non zero bicodeword of $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ has birank less than $3 \cup 3$. The proof is by method of contradiction.

Suppose there exists a non zero bicodeword $x=x_{1} \cup x_{2}$ such that $r_{1}\left(x_{1}\right) \leq 2$ and $r_{2}\left(x_{2}\right) \leq 2$, then $x=x_{1} \cup x_{2}$ can be written as $x=x_{1} \cup x_{2}=\left(y_{1} \cup y_{2}\right)\left(M_{1} \cup M_{2}\right)$ where $\mathrm{y}_{1}=\left(\mathrm{y}_{1}^{1}, \mathrm{y}_{2}^{1}\right)$ and $\mathrm{y}_{2}=\left(\mathrm{y}_{1}^{2}, \mathrm{y}_{2}^{2}\right) ; \mathrm{y}_{1}^{1}, \mathrm{y}_{2}^{1}, \mathrm{y}_{1}^{2}, \mathrm{y}_{2}^{2} \in \mathrm{GF}\left(2^{\mathrm{N}}\right)$ and $\mathrm{M}=$ $\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left(\mathrm{m}_{\mathrm{ij}}^{1}\right) \cup\left(\mathrm{m}_{\mathrm{ij}}^{2}\right)$ is a $2 \times \mathrm{n}_{1} \cup 2 \times \mathrm{n}_{2}$ bimatrix of birank $2 \cup 2$ over GF(2). Thus

$$
(\mathrm{yM}) \mathrm{H}^{\mathrm{T}}=\mathrm{y}_{1} \mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{y}_{2} \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}=0 \cup 0
$$

implies that

$$
\mathrm{y}\left(\mathrm{MH}^{\mathrm{T}}\right)=\mathrm{y}_{1}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right) \cup \mathrm{y}_{2}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right)=0 \cup 0
$$

Since $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2}$ is non zero; $\mathrm{y}\left(\mathrm{MH}^{\mathrm{T}}\right)=0 \cup 0$; implies $\mathrm{y}_{1}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right)=0$ and $\mathrm{y}_{2}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right)=0$ that is the 2×3 bimatrix $\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}$ has birank less than 2 over $\mathrm{GF}\left(2^{\mathrm{N}}\right)$.

Now let
$\mathrm{P}_{1}=\mathrm{P}_{1}^{1} \cup \mathrm{P}_{2}^{1}=\left\{\mathrm{j}_{1}^{1}\right.$ such that $\left.\mathrm{m}_{\mathrm{j}_{1}}^{1}=1\right\} \cup\left\{\mathrm{j}_{2}^{2}\right.$ such that $\left.\mathrm{m}_{1 \mathrm{j}_{2}^{2}}^{2}=1\right\}$
and

$$
\mathrm{P}_{2}=\mathrm{P}_{1}^{2} \cup \mathrm{P}_{2}^{2}=\left\{\mathrm{j}_{1}^{1} \text { such that } \mathrm{m}_{\mathrm{j}_{1} 1}^{1}=1\right\} \cup\left\{\mathrm{j}_{2}^{2} \text { such that } \mathrm{m}_{\mathrm{j}_{2}^{2}}^{2}=1\right\} .
$$

Since $M=M_{1} \cup M_{2}=\left(m_{i j}^{1}\right) \cup\left(m_{i j}^{2}\right)$ is a 2×2 bimatrix of birank $2 \cup 2 . \mathrm{P}_{1}$ and P_{2} are disjoint non empty bisubsets of $\{1$, $\left.2, \ldots, \mathrm{n}_{1}\right\} \cup\left\{1,2, \ldots, \mathrm{n}_{2}\right\}$ respectively and

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{H}^{\mathrm{T}}=\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}} \\
& =\left(\begin{array}{lll}
\sum_{j_{i} \in P_{1}^{1}} \alpha_{1 j_{1}^{1}}^{1} & \sum_{j_{1} \in P_{1}^{1}} \alpha_{2 j_{1}^{1}}^{1} & \sum_{j_{i} \in P_{1}^{1}} \alpha_{3 j_{1}^{1}}^{1} \\
\sum_{\mathrm{i}_{i} \in P_{2}^{1}} \alpha_{1 j_{1}^{1}}^{1} & \sum_{\mathrm{j}_{1} \in P_{2}^{1}} \alpha_{2 j_{1}^{1}}^{1} & \sum_{\mathrm{j}_{i} \in P_{2}^{1}} \alpha_{3 j_{1}^{1}}^{1}
\end{array}\right) \cup \\
& \left(\begin{array}{ccc}
\sum_{j_{2} \in \mathbb{P}_{1}^{2}} \alpha_{1 j_{2}^{2}}^{2} & \sum_{j_{2} \in \mathbb{P}_{1}^{2}} \alpha_{2 j_{2}^{2}}^{2} & \sum_{j_{2} \in \mathbb{P}_{1}^{2}} \alpha_{3 j_{2}^{2}}^{2} \\
\sum_{i_{2} \in P_{2}^{2}} \alpha_{1 j_{2}^{2}}^{2} & \sum_{j_{2} \in P_{2}^{2}} \alpha_{2 j_{2}^{2}}^{2} & \sum_{j_{2} \in P_{2}^{2}} \alpha_{3 j_{2}^{2}}^{2}
\end{array}\right) .
\end{aligned}
$$

But the selection of $H=H_{1} \cup \mathrm{H}_{2}$ is such that their exists $\mathrm{i}_{1}^{1}, \mathrm{i}_{2}^{1}, \mathrm{i}_{2}^{2}, \mathrm{i}_{1}^{2} \in\{1,2,3\}$ such that

$$
\begin{aligned}
& \sum_{\mathrm{j}_{1} \in P_{1}^{1}} \alpha_{\mathrm{i}_{1}^{1} \mathrm{j}_{1}^{1} \mathrm{j}_{1}}^{1} \cdot \sum_{\mathrm{k}_{1} \in P_{2}^{1}} \alpha_{\mathrm{i}_{2}^{1} \mathrm{k}_{1}}^{1} \cup \sum_{\mathrm{j}_{2}^{2} \in P_{1}^{2}} \alpha_{\mathrm{i}_{1}^{2} \mathrm{j}_{2}^{2}}^{2} \cdot \sum_{\mathrm{k}_{2} \in P_{2}^{2}} \alpha_{\mathrm{i}_{2}^{2} \mathrm{k}_{2}}^{2} \\
& \neq \sum_{j_{i} \in P_{1}^{1}} \alpha_{i_{2}^{1} j_{1}^{1}}^{1} \cdot \sum_{k_{1} \in P_{2}^{1}} \alpha_{i_{1}^{1} k_{1}}^{1} \cup \sum_{j_{2}^{2} \in P_{1}^{2}} \alpha_{i_{2}^{2} j_{2}^{2}}^{2} \cdot \sum_{k_{2} \in P_{2}^{2}} \alpha_{i_{1}^{2} k_{2}}^{2} .
\end{aligned}
$$

Hence in $\mathrm{MH}^{\mathrm{T}}=\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}$, there exists a 2×2 subbimatrix whose determinant is non zero;
i.e.,

$$
\begin{gathered}
\mathrm{r}\left(\mathrm{MH}^{\mathrm{T}}\right)=\mathrm{r}_{1}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right) \cup \mathrm{r}_{2}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right) \\
=2 \cup 2
\end{gathered}
$$

over $\mathrm{GF}(2)$; this contradicts the fact that birank of

$$
\mathrm{MH}^{\mathrm{T}}=\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}<2 \cup 2 .
$$

Hence the result.
Now using constant rank code, we proceed on to define the notion of constant rank bicodes of bilength $\mathrm{n}_{1} \cup \mathrm{n}_{2}$.

DEFINITION 2.26: Let $C=C_{1} \cup C_{2}$ be a rank bicode, where C_{1} is a constant rank code of length n_{1} (a subset of rank space $V^{n_{1}}$) and C_{2} is a constant rank code of length n_{2} (a subset of rank space $V^{n_{2}}$) then C is a constant rank bicode of bilength $n_{1} \cup n_{2}$; that is every bicodeword has same birank.

DEFINITION 2.27: $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right)$ is defined as the maximum number of bivectors in $V^{n_{1}} \cup V^{n_{2}}$, constant birank $r_{1} \cup r_{2}$ and bidistance between any two bivectors is atleast $d_{1} \cup d_{2}$.
(By a $\left(n_{1}, r_{1}, d_{1}\right) \cup\left(n_{2}, r_{2}, d_{2}\right)$ biset we mean a bisubset of bivectors of $V^{n_{1}} \cup V^{n_{2}}$ having constant birank $r_{1} \cup r_{2}$ and bidistance between any two bivectors is atleast $d_{1} \cup d_{2}$).

We analyze the bifunction $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right)$ by the following theorem.

THEOREM 2.5:

(i) $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right)=L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right)$, the number of bivectors of birank $r_{1} \cup r_{2}$ in $V^{n_{1}} \cup V^{n_{2}}$.
(ii) $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right)=0 \cup 0$ if $r_{1}>0$ and $r_{2}>0$ or d_{1} $>n_{1}$ and $d_{2}>n_{2}$ or $d_{1}>2 r_{1}$ and $d_{2}>2 r_{2}$.

Proof: (i) Follows from the fact that $\mathrm{L}_{\mathrm{r}_{1}}\left(\mathrm{n}_{1}\right) \cup \mathrm{L}_{\mathrm{r}_{2}}\left(\mathrm{n}_{2}\right)$ is the number of bivectors of bilength $n_{1} \cup n_{2}$, constant birank $r_{1} \cup r_{2}$ and bidistance between any two distinct bivectors in a rank bispace $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$, is always greater than or equal to $1 \cup 1$.
(ii) Follows immediately from the definition of $A\left(n_{1}, r_{1}, d_{1}\right) \cup$ $\mathrm{A}\left(\mathrm{n}_{2}, \mathrm{r}_{2}, \mathrm{~d}_{2}\right)$.

THEOREM 2.6: $A\left(n_{1}, 1,2\right) \cup A\left(n_{2}, 1,2\right)=2^{n_{l}}-1 \cup 2^{n_{2}}-1$ over any Galois field $G F\left(2^{N}\right)$.

Proof: Denote by $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ the set of bivectors of birank $1 \cup 1$ in $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$. We know for each non zero element $\alpha_{1} \cup \alpha_{2} \in$ $\mathrm{GF}\left(2^{\mathrm{N}}\right)$ there exists $\left(2^{n_{1}}-1\right) \cup\left(2^{n_{2}}-1\right)$ bivectors of birank $1 \cup$ 1 having $\alpha_{1} \cup \alpha_{2}$ as a coordinate. Thus the cardinality of $V_{1} \cup V_{2}$ is $\left(2^{N}-1\right)\left(2^{n_{1}}-1\right) \cup\left(2^{N}-1\right)\left(2^{n_{2}}-1\right)$. Now bidivide $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\left(2^{\mathrm{n}_{1}}-1\right) \cup\left(2^{\mathrm{n}_{2}}-1\right)$ blocks of $\left(2^{\mathrm{N}}-1\right) \cup\left(2^{\mathrm{N}}-1\right)$ bivectors such that each block consists of the same pattern of all nonzero bielements of $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$.

Then from each biblock almost one bivector can be chosen such that the selected bivectors are atleast rank 2 apart from each other. Such a biset we call as a $\left(\mathrm{n}_{1}, 1,2\right) \cup\left(\mathrm{n}_{2}, 1,2\right)$ biset. Also it is always possible to construct such a biset. Thus A(n_{1}, $1,2) \cup \mathrm{A}\left(\mathrm{n}_{2}, 1,2\right)=2^{\mathrm{n}_{1}}-1 \cup 2^{\mathrm{n}_{2}}-1$.

Theorem 2.7: $A\left(n_{1}, n_{1}, n_{1}\right) \cup A\left(n_{2}, n_{2}, n_{2}\right)=2^{N}-1 \cup 2^{N}-1$ (i.e. $A\left(n_{i}, n_{i}, n_{i}\right)=2^{N}-1 ; i=1,2$); over any $G F\left(2^{N}\right)$.

Proof: Denote by $V_{n_{1}} \cup V_{n_{2}}$; the biset of all bivectors of birank $\mathrm{n}_{1} \cup \mathrm{n}_{2}$ in the bispace $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$. We know the bicardinality of $V_{n_{1}} \cup V_{n_{2}}$ is $\left(2^{N}-1\right)\left(2^{N}-2\right) \ldots\left(2^{N}-2^{n_{1}-1}\right) \cup\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right)$ $\ldots\left(2^{\mathrm{N}}-2^{\mathrm{n}_{2}-1}\right)$, by the definition of $\mathrm{a}\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right)$ biset the bidistance between any two bivectors should be $\mathrm{n}_{1} \cup \mathrm{n}_{2}$. Thus no two bivectors can have a common symbol at a coordinate place $i_{1} \cup i_{2} ;\left(1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}\right)$. This implies that $\mathrm{A}\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup \mathrm{A}\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \leq 2^{\mathrm{N}}-1 \cup 2^{\mathrm{N}}-1$.

Now we construct a $\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right)$ biset as follows. Select N bivectors from $V_{n_{1}} \cup V_{n_{2}}$ such that

1. Each bibasis bielement of $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \operatorname{GF}\left(2^{\mathrm{N}}\right)$ should occur (can be as a bicombination) atleast once in each bivector.
2. If the $\left(\mathrm{i}_{1}^{\text {th }}, \mathrm{i}_{2}^{\text {th }}\right)$ bivector is chosen $\left[\left(\mathrm{i}_{1}+1\right)^{\text {th }},\left(\mathrm{i}_{2}+1\right)^{\text {th }}\right]$ bivector should be selected such that its birank bidistance from any bilinear combination of the previous (i_{1}, i_{2}) bivectors is $n_{1} \cup n_{2}$. Now the set of all bilinear combination of these $\mathrm{N} \cup \mathrm{N}$ bivectors over $\mathrm{GF}(2) \cup \mathrm{GF}(2)$, will be such that the bidistance between any two bivectors is $n_{1} \cup n_{2}$. Hence it is a (n_{1}, $\left.n_{1}, n_{1}\right) \cup\left(n_{2}, n_{2}, n_{2}\right)$ biset. Also the bicardinality of this $\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right)$ biset is $2^{\mathrm{N}}-1 \cup 2^{\mathrm{N}}-1$ (we do not count all zero bilinear combination); thus $\mathrm{A}\left(\mathrm{n}_{1}, \mathrm{n}_{1}\right.$, $\left.\mathrm{n}_{1}\right) \cup \mathrm{A}\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right)=2^{\mathrm{N}}-1 \cup 2^{\mathrm{N}}-1$.
Recall a [$\mathrm{n}, 1$ 1] repetition RD code is code generated by the matrix $G=\left(\begin{array}{llll}1 & 1 & 1 & \ldots\end{array}\right)$ over $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$. Any non zero codeword has rank 1 .

DEFINITION 2.28: $A\left[n_{1}, 1\right] \cup\left[n_{2}, 1\right]$ repetition RD bicode is a bicode generated by the bimatrix $G=G_{1} \cup G_{2}=(11 \ldots l) \cup(1$ 1... 1) $\left(G_{1} \neq G_{2}\right)$ over $F_{2^{*}}$. Any non zero bicodeword has birank $1 \cup 1$.

We proceed onto define the notion of covering biradius.
DEFINITION 2.29: Let $C=C_{1} \cup C_{2}$ be a linear $\left[n_{1}, k_{1}\right] \cup\left[n_{2}\right.$, $\left.k_{2}\right] R D$ bicode defined over $F_{2^{N}}$. The covering biradius of $C=C_{1} \cup C_{2}$ is defined as the smallest pair of integers (r_{1}, r_{2}) such that all bivectors in the rank bispace $F_{2^{v}}^{n_{1}} \cup F_{2^{v}}^{n_{2}}$ are within the rank bidistance $r_{1} \cup r_{2}$ of some bicodeword. The covering biradius of $C=C_{1} \cup C_{2}$ is denoted by $t\left(C_{1}\right) \cup t\left(C_{2}\right)$. In notation, $t(C)=t\left(C_{1}\right) \cup t\left(C_{2}\right)$

$$
\begin{aligned}
& =\max _{x_{1} \in F_{2^{N}}^{n_{1}}}\left\{\min _{c_{1} \in C_{1}}\left\{r_{1}\left(x_{1}+c_{1}\right)\right\}\right\} \\
& \cup \quad \max _{x_{2} \in F_{2^{*}}^{n_{2}}}^{n_{2}}\left\{\min _{c_{2} \in C_{2}}\left\{r_{2}\left(x_{2}+c_{2}\right)\right\}\right\} .
\end{aligned}
$$

ThEOREM 2.8: The linear $\left[n_{1}, k_{l}\right] \cup\left[n_{2}, k_{2}\right] R D$ bicode $C=C_{1} \cup C_{2}$ satisfies $t(C)=t\left(C_{1}\right) \cup t\left(C_{2}\right) \leq n_{1}-k_{1} \cup n_{2}-k_{2}$.

Proof is direct.

Theorem 2.9: The covering biradius of $a\left[n_{1}, 1\right] \cup\left[n_{2}, 1\right]$ repetition $R D$-bicode over $F_{2^{N}}$ is $\left[n_{1}-1\right] \cup\left[n_{2}-1\right]$.

Direct from theorem 2.8 as $k_{1}=k_{2}=1$. Next we proceed on to define the Cartesian biproduct of two linear RD-bicodes.

The Cartesian biproduct of two linear RD-bicodes $\mathrm{C}=\mathrm{C}_{1}\left[\mathrm{n}_{1}^{1}, \mathrm{k}_{1}^{1}\right] \cup \mathrm{C}_{2}\left[\mathrm{n}_{2}^{1}, \mathrm{k}_{2}^{1}\right]$ and $\mathrm{D}=\mathrm{D}_{1}\left[\mathrm{n}_{1}^{2}, \mathrm{k}_{1}^{2}\right] \cup \mathrm{D}_{2}\left[\mathrm{n}_{2}^{2}, \mathrm{k}_{2}^{2}\right]$ over $\mathrm{F}_{2^{\mathrm{N}}}$ is given by

$$
\begin{aligned}
& C \times D=C_{1} \times D_{1} \cup C_{2} \times D_{2} . \\
&=\left\{\left(\mathrm{a}_{1}^{1}, \mathrm{~b}_{1}^{1}\right) \mid \mathrm{a}_{1}^{1} \in \mathrm{C}_{1}, \mathrm{~b}_{1}^{1} \in \mathrm{D}_{1}\right\} \cup\left\{\left(\mathrm{a}_{1}^{2}, \mathrm{~b}_{1}^{2}\right) \mid \mathrm{a}_{1}^{2} \in \mathrm{C}_{2}, \mathrm{~b}_{1}^{2} \in \mathrm{D}_{2}\right\} . \\
& \mathrm{C} \times \mathrm{D} \text { is a }\left\{\left(\mathrm{n}_{1}^{1}+\mathrm{n}_{1}^{2}\right) \cup\left(\mathrm{n}_{2}^{1}+\mathrm{n}_{2}^{2}\right),\left(\mathrm{k}_{1}^{1}+\mathrm{k}_{1}^{2}\right) \cup\left(\mathrm{k}_{2}^{1}+\mathrm{k}_{2}^{2}\right)\right\} \text { linear }
\end{aligned}
$$ RD bicode $\left(\mathrm{We}\right.$ assume $=\left(\mathrm{n}_{1}^{1}+\mathrm{n}_{1}^{2}\right) \leq \mathrm{N}$ and $\left.\left(\mathrm{n}_{2}^{1}+\mathrm{n}_{2}^{2}\right) \leq \mathrm{N}\right)$.

Now the reader is left with the task of proving the following theorem:

THEOREM 2.10: If $C=C_{1} \cup C_{2}$ and $D=D_{1} \cup D_{2}$ be two linear $R D$ bicodes then $t(C \times D) \leq\left(t\left(C_{1}\right)+t\left(D_{l}\right) \cup t\left(C_{2}\right)+t\left(D_{2}\right)\right)$.

Hint for the proof. If $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ and $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2}$ then $\mathrm{C} \times \mathrm{D}$ $=\left\{\mathrm{C}_{1} \times \mathrm{D}_{1}\right\} \cup\left\{\mathrm{C}_{2} \times \mathrm{D}_{2}\right\}$ and

$$
\mathrm{t}(\mathrm{C} \times \mathrm{D})=\left(\mathrm{C}_{1} \times \mathrm{D}_{1}\right) \cup\left(\mathrm{C}_{2} \times \mathrm{D}_{2}\right)
$$

$$
\leq\left\{\mathrm{t}\left(\mathrm{C}_{1}\right)+\mathrm{t}\left(\mathrm{D}_{1}\right)\right\} \cup\left\{\mathrm{t}\left(\mathrm{C}_{2}\right)+\mathrm{t}\left(\mathrm{D}_{2}\right)\right\} .
$$

Now we proceed on to define notion of bidivisble linear RD bicodes.

We just recall the definition of divisible linear RD codes. Let $\mathrm{C}(\mathrm{n}, \mathrm{k}, \mathrm{d})$ be a linear RD code over $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}, \mathrm{n} \leq \mathrm{N}$ and $\mathrm{N}>1$ with length n , dimension k and minimum distance d . If there exists m >1 an integer such that $\mathrm{m} / \mathrm{r}(\mathrm{c} ; \mathrm{q})$ for all $0 \neq \mathrm{c} \in \mathrm{C}$ then the code C is defined to be divisible. $(\mathrm{r}(\mathrm{x} ; \mathrm{q})$ denotes the rank norm of x over the field F_{q}).

DEFINITION 2.30: Let $C=C_{1}\left(n_{1}, k_{1}, d_{1}\right) \cup C_{2}\left(n_{2}, k_{2}, d_{2}\right)$ be a linear $R D$ bicode over $F_{q^{N}}, n_{1} \leq N, n_{2} \leq N$ and $N>1$. If there exists $\left(m_{1}, m_{2}\right)\left(m_{1}>1\right.$ and $\left.m_{2}>1\right)$ such that

$$
m_{1} / r\left(c_{1} ; q\right) \text { and } m_{2} / r\left(c_{2} ; q\right)
$$

for all $c_{1} \in C_{1}$ and for all $c_{2} \in C_{2}$ then we say the bicode C is bidivisible.

Theorem 2.11: Let $C=\left[n_{1}, l_{1}, n_{l}\right] \cup\left[n_{2}, 1_{2}, n_{2}\right]\left(n_{1} \neq n_{2}\right)$ be a MRD-bicode for all $n_{1} \leq N$ and $n_{2} \leq N$; C is a bidivisible bicode.

Proof: Since there cannot exist bicodewords of birank greater than $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ in an $\left[\mathrm{n}_{1}, 1, \mathrm{n}_{1}\right] \cup\left[\mathrm{n}_{2}, 1, \mathrm{n}_{2}\right]$ MRD-bicode.

Definition 2.31: Let $C_{I}=\left[n_{l}, k_{l}\right]$ be a linear $R D$-code and C_{2} $=\left(n_{2}, k_{2}, d_{2}\right)$ linear divisible $R D$-code defined over $G F\left(2^{N}\right)$. Then the RD-bicode $C=C_{1} \cup C_{2}$ is defined to be a semidivisible RD-bicode.

DEFINITION 2.32: Let $C_{1}=\left(n_{l}, k_{1}, d_{l}\right)$ be a MRD code which is not divisible and $C_{2}=\left(n_{2}, k_{2}, d_{2}\right)$ a divisible $R D$ code defined over $G F\left(2^{N}\right)$; then the bicode $C=C_{1} \cup C_{2}$ is defined to be a semidivisible MRD bicode.

DEFINITION 2.33: Let C_{1} be a circulant rank code and $C_{2}=\left(n_{2}\right.$, $\left.k_{2}, d_{2}\right)$ a divisible $R D$ code defined over $G F\left(2^{N}\right)$ then $C=C_{1} \cup C_{2}$ is defined to be semidivisible circulant bicode.

DEFINITION 2.34: Let C_{1} be a AMRD code and $C_{2}=\left(n_{2}, k_{2}, d_{2}\right)$ be a divisible RD code defined over $G F\left(2^{N}\right)$ then $C=C_{1} \cup C_{2}$ is defined as a semidivisible AMRD bicode.

To show the existence of non divisible MRD bicodes, we proceed on to define certain concepts analogous to the ones used in MRD codes.

DEFINITION 2.35: Let C_{1} be a (n_{2}, k_{2}, d_{2}) MRD code and $C_{2}=\left(n_{2}, k_{2}, d_{2}\right) M R D$ code over $F_{q^{n}} ; n_{1} \leq N$ and $n_{2} \leq N ;\left(n_{2} \neq\right.$ n_{2}). $A_{s_{1}}\left(n_{1}, d_{1}\right) \cup A_{s_{2}}\left(n_{2}, d_{2}\right)$ be the number of bicodewords with rank norms s_{1} and s_{2} in the linear (n_{1}, k_{1}, d_{1}) MRD code and (n_{2}, $\left.k_{2}, d_{2}\right)$ MRD code respectively. Then the bispectrum of the MRD bicode $C_{1} \cup C_{2}$ is described by the formulae;

$$
\begin{gathered}
A_{0}\left(n_{2}, d_{2}\right) \cup A_{0}\left(n_{2}, d_{2}\right)=1 \cup 1 \\
A_{d_{1}+m_{1}}\left(n_{1}, d_{1}\right) \cup A_{d_{2}+m_{2}}\left(n_{2}, d_{2}\right)= \\
{\left[\begin{array}{c}
n_{1} \\
d_{1}+m_{1}
\end{array}\right] \sum_{j_{1}=0}^{m_{1}}(-1)^{j_{1}+m_{1}}\left[\begin{array}{c}
d_{1}+m_{1} \\
d_{1}+j_{1}
\end{array}\right] q \frac{\left(m_{1}-j_{l}\right)\left(m_{1}-j_{l}-1\right)}{2}\left(Q^{j_{1}+1}-1\right)}
\end{gathered}
$$

$\cup\left[\begin{array}{c}n_{2} \\ d_{2}+m_{2}\end{array}\right] \sum_{j_{2}=0}^{m_{2}}(-1)^{j_{2}+m_{2}}\left[\begin{array}{c}d_{2}+m_{2} \\ d_{2}+j_{2}\end{array}\right] q \frac{\left(m_{2}-j_{2}\right)\left(m_{2}-j_{2}-1\right)}{2}\left(Q^{j_{2}+1}-1\right)$
$m_{1}=0,1, \ldots, n_{1}-d_{1}, m_{2}=0,1, \ldots, n_{2}-d_{2}$,
where

$$
\left[\begin{array}{c}
n_{1} \\
m_{1}
\end{array}\right]=\frac{\left(q^{n_{1}}-1\right)\left(q^{n_{1}}-q\right) \cdots\left(q^{n_{1}}-q^{m_{1}-1}\right)}{\left(q^{m_{1}}-1\right)\left(q^{m_{1}}-q\right) \cdots\left(q^{m_{1}}-q^{m_{1}-1}\right)}
$$

and

$$
\left[\begin{array}{l}
n_{2} \\
m_{2}
\end{array}\right]=\frac{\left(q^{n_{2}}-1\right)\left(q^{n_{2}}-q\right) \ldots\left(q^{n_{2}}-q^{m_{2}-1}\right)}{\left(q^{m 2}-1\right)\left(q^{m 2}-q\right) \ldots\left(q^{m 2}-q^{m-1}\right)}
$$

with $Q=q^{N}$.
Using the bispectrum of a MRD bicode we prove the following theorem:

THEOREM 2.12: All $C_{l}\left[n_{1}, k_{1}, d_{l}\right] \cup C_{2}\left[n_{2}, k_{2}, d_{2}\right]$ MRD bicodes with $d_{1}<n_{1}$ and $d_{2}<n_{2}$ (i.e., with $k_{1} \geq 2$ and $k_{2} \geq 2$) are non bidivisible.

Proof: This is proved by making use of the bispectrum of the MRD bicodes. Clearly $\mathrm{A}_{\mathrm{d}_{1}}\left(\mathrm{n}_{1}, \mathrm{~d}_{1}\right) \cup \mathrm{A}_{\mathrm{d}_{2}}\left(\mathrm{n}_{2}, \mathrm{~d}_{2}\right) \neq 0 \cup 0$.

If the existence of a bicodeword with birank $\mathrm{d}_{1}+1 \cup \mathrm{~d}_{2}+1$ is established then the proof is complete as $\operatorname{bigcd}\left\{\left(\mathrm{d}_{1}, \mathrm{~d}_{1}+1\right) \cup\right.$ $\left.\left(\mathrm{d}_{2}, \mathrm{~d}_{2}+1\right)\right\}=1 \cup 1$.

So the proof is to show that $A_{d_{1}+1}\left(n_{1}, d_{1}\right) \cup A_{d_{2}+1}\left(n_{2}, d_{2}\right)$ is non zero (i.e., $A_{d_{1}+1}\left(n_{1}, d_{1}\right) \neq 0$ and $\left.A_{d_{2}+1}\left(n_{2}, d_{2}\right) \neq 0\right)$.
Now

$$
\begin{gathered}
\mathrm{A}_{\mathrm{d}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{~d}_{1}\right) \cup \mathrm{A}_{\mathrm{d}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{~d}_{2}\right)= \\
{\left[\begin{array}{c}
\mathrm{n}_{1} \\
\mathrm{~d}_{1}+1
\end{array}\right]\left(-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right]\left[(\mathrm{Q}-1)+\left(\mathrm{Q}^{2}-1\right)\right] \cup\right.}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{~d}_{2}+1
\end{array}\right]\left(-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right]\left[(\mathrm{Q}-1)+\left(\mathrm{Q}^{2}-1\right)\right]=\right.} \\
{\left[\begin{array}{c}
\mathrm{n}_{1} \\
\mathrm{~d}_{1}+1
\end{array}\right](\mathrm{Q}-1)+\left(\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right]\right)} \\
\cup\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{~d}_{2}+1
\end{array}\right](\mathrm{Q}-1)+\left(\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right]\right)
\end{gathered}
$$

Suppose that

$$
(\mathrm{Q}+1)-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right] \cup(\mathrm{Q}+1)-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right]=0 \cup 0 .
$$

i.e.,

$$
q^{\mathrm{N}}+1=\frac{\mathrm{q}^{\mathrm{d}_{\mathrm{i}}+1}-1}{\mathrm{q}-1}
$$

i.e.,

$$
\mathrm{q}-1=\frac{\mathrm{q}^{\mathrm{d}_{\mathrm{i}}}-1}{\mathrm{q}^{\mathrm{N}-1}}
$$

Clearly

$$
\frac{q^{d_{i}}-1}{q^{\mathrm{N}-1}}<1 .
$$

For if

$$
\frac{q^{d_{i}}-1}{q^{N-1}} \geq 1
$$

then $\mathrm{q}^{\mathrm{N}-1}<\mathrm{q}^{\mathrm{d}_{\mathrm{i}}}-1$, which is not possible as $\mathrm{d}_{\mathrm{i}}<\mathrm{n}_{\mathrm{i}} \leq \mathrm{N} ; \mathrm{i}=1,2$. Thus $\mathrm{q}-1<1$ which implies $\mathrm{q}<2$ a contradiction.

Hence $A_{d_{1}+1}\left(n_{1}, d_{1}\right) \cup A_{d_{2}+1}\left(n_{2}, d_{2}\right)$ is non zero. Thus except $\mathrm{C}_{1}\left(\mathrm{n}_{1}, 1, \mathrm{n}_{1}\right) \cup \mathrm{C}_{2}\left(\mathrm{n}_{2}, 1, \mathrm{n}_{2}\right)$ MRD bicodes all $\mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right] \cup$ $\mathrm{C}_{2}\left[\mathrm{n}_{2}, \mathrm{k}_{2}, \mathrm{~d}_{2}\right]$ MRD bicodes with $\mathrm{d}_{1}<\mathrm{n}_{1}$ and $\mathrm{d}_{2}<\mathrm{n}_{2}$ are non divisible.

Now we finally define the notion of fuzzy rank distance bicodes. Recall von Kaenel [99] introduced the idea of fuzzy codes with Hamming metric. He analysed the distance properties for symmetric error model. Hall and Gur Dial [41] did it for asymmetric and unidirectional error models. Here we define fuzzy RD bicodes.

The study of coding theory resulted from the encounter of noise in communication channels which transmit binary digital data. If a signal 0 or 1 is transmitted electronically it may be distorted into the other signal. A problem occurs when a message in the form of an n-tuple is transmitted, distorted in the channel and received as a new n -tuple representing a different message.

If both $1 \rightarrow 0$ and $0 \rightarrow 1$ transitions (or errors) appear in a received word with equal probability then the channel is called symmetric channel and the errors are called symmetric error. In an ideal asymmetric channel only one type of error can occur and the error type is know as apriori. Such errors are known as asymmetric. If both $1 \rightarrow 0$ and $0 \rightarrow 1$ errors can occur in the received words, but in any particular word all error are of one type, then they are called unidirectional errors.

DEFINITION [41, 99]: Let F_{2}^{n} denote the n-dimensional vector space of n-tuples over F_{2}. Let $u, v \in F_{2}^{n}$ where $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{l}, \ldots, v_{n}\right)$. Let p represent the probability that no transition is made and q represent the probability that a transition of the specified type occurs, so that $p+q=1$. A fuzzy word f_{u} is the fuzzy subset of F_{2}^{n} defined by $f_{u}=\left\{\left(v, f_{u}(v)\right) \mid v \in\right.$ $\left.F_{2}^{n}\right\}$ where $f_{u}(v)$ is the membership function.
(i) For the symmetric error model with the Hamming distance, $d=\sum_{i=1}\left|u_{i}-v_{i}\right|, f_{u}(v)=p^{n-d} q^{d}$.
(ii) For unidirectional error model,

$$
f_{u}(v)=\left\{\begin{array}{c}
0 \text { if } \min \left(k_{1}, k_{2}\right) \neq 0 \\
p^{m-d} q^{d} \text { otherwise }
\end{array}\right.
$$

where,

$$
k_{1}=\sum_{i=1}^{n} \max \left(0, u_{i}-v_{i}\right)
$$

and

$$
\begin{gathered}
k_{2}=\sum_{i=1}^{n} \max \left(0, v_{i}-u_{i}\right) \\
d=\left\{\begin{array}{l}
k_{1} \text { if } k_{2}=0 \\
k_{2} \text { if } k_{1}=0
\end{array}\right. \\
m=\left\{\begin{array}{l}
\sum_{i=1}^{n} u_{i} \text { if } k_{2}=0 \\
n-\sum_{i=1}^{n} u_{i} \text { if } k_{1}=0 \\
\max \left(\Sigma u_{i}, n-\Sigma u_{i}\right) \text { if } k_{1}=k_{2}=0
\end{array}\right.
\end{gathered}
$$

For the asymmetric error model

$$
f_{u}(v)=\left\{\begin{array}{c}
0 \text { if } \min \left(k_{1}, k_{2}\right) \neq 0 \\
p^{m-d} q^{d} \text { otherwise }
\end{array}\right.
$$

where $d=k_{1}$ and $m=\Sigma u_{i}$ for asymmetric $1 \rightarrow 0$ error model and $d=k_{2}$ and $m=n-\Sigma u_{i}$ for asymmetric $0 \rightarrow 1$ error model.

DEFINITION 2.36: Asymmetric distance d_{a} between u and v is defined as $d_{a}(u, v)=\max \left(k_{1}, k_{2}\right)$, for $u, v \in F_{2}^{n}$.

Definition 2.37: The generalized Hamming distance between fuzzy sets is a metric in the set $f^{n}=\left\{f_{u}: u \in F_{2}^{n}\right\}$ that is $d\left(f_{u}, f_{v}\right)=\sum_{z \in F_{2}^{n}}\left|f_{u}(z)-f_{v}(z)\right|$ for $f_{u}, f_{v} \in f^{n}$.

Note that if $u \in F_{2}^{n}$ represents a received word and C is a codeword then $\mathrm{f}_{\mathrm{c}}(\mathrm{u})$ is the probability that c was transmitted.

Theorem 2.13: Let $u, v \in F_{2}^{n}$ be such that $d_{H}(u, v)=d$. If p $\neq q$ and $p \neq 0$, 1 then $d\left(f_{u}, f_{v}\right)=\sum_{i=0}^{d}\binom{d}{i}\left|p^{i} q^{d-i}-p^{d-i} q^{i}\right|$ for a symmetric error model.

Theorem 2.14: Let $u, v \in F_{2}^{n}$ be such that $d_{a}(u, v)=d_{a}$. If $p \neq$ q and $p \neq 0,1$ then $d\left(f_{u}, f_{v}\right)=2\left(1-q^{d_{a}}\right)$ for an asymmetric error model.

These two theorems show that the distance between the fuzzy words is dependent only on the Hamming or asymmetric distance (as the case may be) between the base codewords and not on the dimension of the code space. On the other hand it is not so with the unidirectional error model.

Now, we proceed onto recall the definition of fuzzy RD codes and their properties. For more please refer [77, 96].

DEFINITION 2.38: Let V^{n} denote the n-dimensional vector space of n-tuples over $F_{2^{N}}, n \leq N$ and $N>1$. Let $u, v \in V^{n}$ where $u=$ $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ with each $u_{i}, v_{i} \in F_{2}^{n} . A$ fuzzy $R D$ word f_{u} is the fuzzy subset of V^{n} defined by $f_{u}=\{(v$, $\left.\left.f_{u}(v)\right) \mid v \in V^{n}\right\}$ where $f_{u}(v)$ is the membership function.

DEFINITION 2.39: For the symmetric error model, assume p to represent the probability that no transition (i.e., error) is made and q to represent the probability that a rank error occurs so that $p+q=1$. Then $f_{u}(v)=p^{n-r} q^{r}$ where $r=r(u-v ; 2)=\| u-$ $v \|$.

DEFINITION 2.40: For the unidirectional and asymmetric error models assume q to represent the probability that $l \rightarrow 0$ transition or $0 \rightarrow 1$ transition occurs.

Then $f_{u}(v)=\prod_{i=1}^{n} f_{u_{i}}\left(v_{i}\right)$ where $f_{u_{i}}\left(v_{i}\right)$ inherits its definition from the above equation for unidirectional and asymmetric
error models respectively, since each u_{i} or v_{i} itself in an N-tuple over F_{2}. That is since $u_{i}, v_{i} \in F_{2^{N}}$ each u_{i} or v_{i} itself is an N tuple from F_{2}.

Let $u_{i}=\left(u_{i l}, u_{i 2}, \ldots, u_{i N}\right)$ and $v_{j}=\left(v_{j j}, v_{j 2}, \ldots, v_{j N}\right)$ where $u_{i s}$, $v_{j t} \in F_{2}, l \leq s, t \leq N$.

Then for unidirectional error model,

$$
f_{u_{i}}\left(v_{i}\right)=\left\{\begin{array}{l}
0 \text { if } \min \left(k_{i 1}, k_{i 2}\right) \neq 0 \\
p^{m_{i}-d_{i}} q^{d_{i}} \text { otherwise }
\end{array}\right.
$$

where,

$$
k_{i 1}=\sum_{s=1}^{n} \max \left(0, u_{i s}-v_{i s}\right)
$$

and

$$
\begin{gathered}
k_{i 2}=\sum_{s=1}^{n} \max \left(0, v_{i s}-u_{i s}\right) \\
d_{i}=\left\{\begin{array}{l}
k_{i 1} \text { if } k_{i 2}=0 \\
k_{i 2} \text { if } k_{i 1}=0
\end{array}\right. \\
m_{i}=\left\{\begin{array}{l}
\sum_{s=1}^{n} u_{i s} \text { if } k_{i 2}=0 \\
n-\sum_{s=1}^{n} u_{i s} \text { if } k_{i 1}=0 \\
\max \left(\sum u_{i s}, n-\sum u_{i s}\right) \text { if } k_{i 1}=k_{i 2}=0 .
\end{array} .\right.
\end{gathered}
$$

For the asymmetric error model

$$
f_{u_{i}}\left(v_{i}\right)=\left\{\begin{array}{l}
0 \text { if } \min \left(k_{i 1}, k_{i 2}\right) \neq 0 \\
p^{m_{i}-d_{i}} q^{d_{i}} \text { otherwise }
\end{array}\right.
$$

where $d_{i}=k_{i l}$ and

$$
m_{i}=\sum_{s=1}^{N} u_{i s}
$$

for asymmetric $0 \rightarrow 1$ error model $d_{i}=k_{i 2}$ and

$$
m_{i}=n-\sum_{s=1}^{n} u_{i s}
$$

for asymmetric $0 \rightarrow 1$ error model.
DEFINITION 2.41: Let $f^{n}=\left\{f_{u}: u \in V^{n}\right\}$. Let $\psi: V_{n} \rightarrow f^{n}$ be defined as $\psi(u)=f_{u}$. Clearly ψ is a bijection. Let $C[n, k, d]$ be an RD code which is a subspace of V^{n} of dimension k and minimum rank distance d. Then $\psi(C) \subseteq f^{n}$ is a fuzzy $R D$ code. If $c \in C$ then f_{c} is a fuzzy $R D$ codeword of $\psi(C)$. For any $R D$ code $\psi(C)$ its minimum distance is defined as,

$$
d_{\min }(\psi(C))=\min _{f_{a}, f_{b} \in \psi(C)}\left\{d\left(f_{a}, f_{b}\right): f_{a} \neq f_{b}\right\}
$$

where $d\left(f_{a}, f_{b}\right)=\sum_{z \in V^{n}}\left|f_{a}(z)-f_{b}(z)\right|$ is a metric in f^{n}.
DEFINITION 2.42: If $u \in V^{n}$ represents a received codeword and $c \in C$ then $f_{c}(u)$ gives the probability that c was transmitted. Let $\theta(u)=\left\{f_{a} \mid a \in C, f_{a}(u) \geq f_{b}(u), b \in C\right\}$. A code for which $|\theta(u)|=1$ for all $u \in V^{n}$ is said to be uniquely decodable. In such a case u is decoded as $\psi^{-1}(\theta(u))$.

Now we proceed on to define the notion of fuzzy RD bicodes.
DEFINITION 2.43: Let $V^{n_{1}} \cup V^{n_{2}}$ denote (n_{1}, n_{2}) dimensional vector bispace of $\left(n_{1}, n_{2}\right)$-tuples over $F_{2^{N}} ; n_{1} \leq N$ and $n_{2} \leq N, N$ > 1. Let $u_{1}, v_{1} \in V^{n_{1}}, u_{2}, v_{2} \in V^{n_{2}}$ where

$$
\begin{gathered}
u_{1}=\left(u_{1}^{1}, \ldots, u_{n_{1}}^{1}\right), v_{1}=\left(v_{1}^{1}, \ldots, v_{n_{1}}^{1}\right), \\
u_{2}=\left(u_{1}^{2}, \ldots, u_{n_{2}}^{2}\right) \text { and } v_{2}=\left(v_{1}^{2}, \ldots, v_{n_{2}}^{2}\right)
\end{gathered}
$$

with $u_{i}^{1}, u_{i}^{2}, v_{i}^{1}, v_{i}^{2} \in F_{2^{N}}$. A fuzzy $\quad R D$ bicodeword $f_{u_{1} \cup u_{2}}=f_{u_{1}}^{1} \cup f_{u_{2}}^{2}$ is a fuzzy bisubset of $V^{n_{1}} \cup V^{n_{2}}$ defined by,

$$
f_{u_{1} \cup u_{2}}=f_{u_{1}}^{1} \cup f_{u_{2}}^{2}
$$

$$
=\left\{\left(v_{1}, f_{u_{1}}^{1}\left(v_{1}\right)\right) \mid v_{1} \in V^{n_{1}}\right\} \cup\left\{\left(v_{2}, f_{u_{2}}^{2}\left(v_{2}\right)\right) \mid v_{2} \in V^{n_{2}}\right\}
$$

where $f_{u_{1}}^{1}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right)$ is the membership bifunction.

DEFINITION 2.44: For the symmetric error bimodel assume $p_{1} \cup p_{2}$ to represent the biprobability that no transition (i.e., error) is made and $q_{1} \cup q_{2}$ to represent the biprobability that a birank error occurs so that $p_{1}+q_{1} \cup p_{2}+q_{2}=1 \cup 1$.
Then

$$
f_{u_{1}}^{1}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right)=p_{1}^{n_{1}-r_{1}} q_{1}^{r_{1}} \cup p_{2}^{n_{2}-r_{2}} q_{2}^{r_{2}}
$$

where

$$
r_{l}=r_{l}\left(u_{l}-v_{l}, 2\right)=\left\|u_{l}-v_{l}\right\|
$$

and

$$
r_{2}=r_{2}\left(u_{2}-v_{2}, 2\right)=\left\|u_{2}-v_{2}\right\| .
$$

DEFINITION 2.45: For unidirectional and asymmetric error bimodels assume $q_{1} \cup q_{2}$ to represent the probability that $(1 \rightarrow$ $0) \cup(1 \rightarrow 0)$ bitransition or $(0 \rightarrow 1) \cup(0 \rightarrow 1)$ bitransition occurs. Then

$$
f_{u_{1}}^{1}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right)=\prod_{i=1}^{n_{1}} f_{u_{i}^{\prime}}^{1}\left(v_{i}^{1}\right) \cup \prod_{i=1}^{n_{2}} f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right)
$$

where $f_{u_{1}}^{1}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right)$ inherits its definition from the unidirectional and asymmetric bimodels respectively since each $u_{i}^{1} \cup u_{i}^{2}$ or $v_{i}^{1} \cup v_{i}^{2}$ itself is an N-bituple over F_{2}.
That is since $u_{i}^{1}, u_{i}^{2}, v_{i}^{1}, v_{i}^{2} \in F_{2^{N}}$ each $u_{i}^{1} \cup u_{i}^{2}$ or $v_{i}^{1} \cup v_{i}^{2}$ itself is an N -tuple from F_{2}.

$$
\begin{gathered}
u_{i}^{1}=\left(u_{i 1}^{1}, u_{i 2}^{1}, \ldots, u_{i N}^{1}\right), v_{j}^{1}=\left(v_{j 1}^{1}, v_{j 2}^{1}, \ldots, v_{j N}^{1}\right), \\
u_{i}^{2}=\left(u_{i 1}^{2}, u_{i 2}^{2}, \ldots, u_{i N}^{2}\right), \text { and } v_{j}^{2}=\left(v_{j 1}^{2}, v_{j 2}^{2}, \ldots, v_{j N}^{2}\right)
\end{gathered}
$$

where $u_{i s}^{1}, u_{i s}^{2}, v_{j t}^{1}, v_{j t}^{2} \in F_{2^{N}}, l \leq s, t \leq N$. Then for unidirectional error bimodel,
$f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right)=\left\{\begin{array}{l}0 \cup 0 \text { if } \min \left(k_{i 1}^{l}, k_{i 2}^{l}\right) \cup \min \left(k_{i 1}^{2}, k_{i 2}^{2}\right) \neq 0 \cup 0 \\ p_{1}^{m_{i}^{l}-d_{i}^{l}} q_{1}^{d_{i}^{l}} \cup p_{2}^{m_{i}^{2}-d_{i}^{2}} q_{2}^{d_{i}^{2}} \text { otherwise }\end{array}\right.$
where

$$
\begin{gathered}
k_{i l}^{l}=\sum_{s=1}^{N} \max \left(0, u_{i s}^{l}-v_{i s}^{l}\right), k_{i l}^{2}=\sum_{s=1}^{N} \max \left(0, v_{i s}^{l}-u_{i s}^{l}\right) \\
k_{i 2}^{l}=\sum_{s=1}^{N} \max \left(0, u_{i s}^{2}-v_{i s}^{2}\right)
\end{gathered}
$$

and

$$
k_{i 2}^{2}=\sum_{s=1}^{N} \max \left(0, v_{i s}^{2}-u_{i s}^{2}\right) ;
$$

where

$$
\begin{gathered}
d_{i}^{l}=\left\{\begin{array}{l}
k_{i 1}^{l} \text { if } k_{i 2}^{l}=0 \\
k_{i 2}^{l} \text { if } k_{i 1}^{l}=0
\end{array}\right. \\
d_{i}^{2}=\left\{\begin{array}{l}
k_{i 1}^{2} \text { if } k_{i 2}^{2}=0 \\
k_{i 2}^{2} \text { if } k_{i 1}^{2}=0
\end{array}\right. \\
m_{i}^{l}=\left\{\begin{array}{l}
\sum_{s=1}^{N} u_{i s}^{l} \text { if } k_{i 2}^{l}=0 \\
N-\sum_{s=1}^{N} u_{i s}^{l} \text { if } k_{i 1}^{l}=0 \\
\max \left(\sum u_{i s}^{l}, N-\sum u_{i s}^{l}\right) \text { if } k_{i 1}^{l}=k_{i 2}^{l}=0
\end{array}\right.
\end{gathered}
$$

and

$$
m_{i}^{2}=\left\{\begin{array}{l}
\sum_{s=1}^{N} u_{i s}^{2} \text { if } k_{i 2}^{2}=0 \\
N-\sum_{s=1}^{N} u_{i s}^{2} \text { if } k_{i l}^{2}=0 \\
\max \left(\Sigma u_{i s}^{2}, N-\Sigma u_{i s}^{2}\right) \text { if } k_{i l}^{2}=k_{i 2}^{2}=0
\end{array}\right.
$$

for the asymmetric error bimodel
$f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right)=\left\{\begin{array}{l}0 \cup 0 \text { if } \min \left(k_{i 1}^{1}, k_{i 2}^{l}\right) \cup \min \left(k_{i l}^{2}, k_{i 2}^{2}\right) \neq 0 \cup 0 \\ p_{1}^{m_{i}^{l}-d_{i}^{l}} q_{1}^{d_{i}^{l}} \cup p_{2}^{m_{i}^{2}-d_{i}^{2}} q_{2}^{d_{i}^{2}} \text { otherwise }\end{array}\right.$
where $d_{i}^{1}=k_{i 1}^{1}, d_{i}^{2}=k_{i 1}^{2}$ and

$$
m_{i}^{1}=\sum_{s=1}^{N} u_{i s}^{1}, \quad m_{i}^{2}=\sum_{s=1}^{N} u_{i s}^{2}
$$

for asymmetric $(1 \rightarrow 0) \cup(1 \rightarrow 0)$ error bimodel and $d_{i}^{l}=k_{i 1}^{l}, d_{i}^{2}=k_{i 1}^{2}$,

$$
m_{i}^{l}=N-\sum_{s=1}^{N} u_{i s}^{l}
$$

and

$$
m_{i}^{2}=N-\sum_{s=1}^{N} u_{i s}^{2}
$$

for the asymmetric $(1 \rightarrow 0) \cup(0 \rightarrow 1)$ error bimodel.
The minimum bidistance of a fuzzy RD bicode.

DEFINITION 2.46: Let

$$
f^{n_{1}} \cup f^{n_{2}}=\left\{f_{u_{1}}^{1} / u_{1} \in V^{n_{1}}\right\} \cup\left\{f_{u_{2}}^{2} / u_{2} \in V^{n_{2}}\right\}
$$

Let

$$
\psi=\psi_{1} \cup \psi_{2}: V^{n_{1}} \cup V^{n_{2}} \rightarrow f^{n_{1}} \cup f^{n_{2}}
$$

defined by $\psi\left(u_{1}\right) \cup \psi\left(u_{2}\right)=f_{u_{1}}^{l} \cup f_{u_{2}}^{2}$. Clearly ψ_{1} is a bijection and ψ_{2} is a bijection. Let $C_{1}\left[n_{1}, k_{1}, d_{1}\right] \cup C_{2}\left[n_{2}, k_{2}, d_{2}\right]$ be an $R D$ bicode which is a subbispace of $V^{n_{1}} \cup V^{n_{2}}$ of bidimension $k_{1} \cup$ k_{2} and minimum rank bidistance $d_{1} \cup d_{2}$. Then

$$
\psi_{1}\left(C_{1}\right) \cup \psi_{2}\left(C_{2}\right) \subseteq f^{n_{1}} \cup f^{n_{2}}
$$

is a fuzzy $R D$ bicode. If $c=c_{1} \cup c_{2} \in C_{1} \cup C_{2}$ then $f_{c_{1}} \cup f_{c_{2}}$ is a fuzzy bicodeword of $\psi_{1}\left(C_{1}\right) \cup \psi_{2}\left(C_{2}\right)$.

For any fuzzy RD bicode $\psi_{1}\left(C_{1}\right) \cup \psi_{2}\left(C_{2}\right)$, its minimum bidistance is defined as,

$$
\begin{gathered}
d_{\min } \psi_{l}\left(C_{l}\right) \cup d_{\min } \psi_{2}\left(C_{2}\right)= \\
\min \left\{d\left(f_{a_{l}}^{l}, f_{b_{1}}^{l}\right) / f_{a_{1}}^{l}, f_{b_{1}}^{1} \in \psi_{1}\left(C_{1}\right) ; f_{a_{l}}^{l} \neq f_{b_{l}}^{l}\right\} \cup \\
\min \left\{d\left(f_{a_{2}}^{2}, f_{b_{2}}^{2}\right) / f_{a_{2}}^{2}, f_{b_{2}}^{2} \in \psi_{2}\left(C_{2}\right) ; f_{a_{2}}^{2} \neq f_{b_{2}}^{2}\right\} .
\end{gathered}
$$

where

$$
\begin{gathered}
d\left(f_{a_{l}}^{l}, f_{b_{l}}^{l}\right) \cup d\left(f_{a_{2}}^{2}, f_{b_{2}}^{2}\right)= \\
\sum_{z_{l} \in V^{n_{l}}}\left|f_{a_{l}}^{l}\left(z_{l}\right)-f_{b_{l}}^{l}\left(z_{l}\right)\right| \cup \sum_{z_{2} \in V^{n_{2}}}\left|f_{a_{2}}^{2}\left(z_{2}\right)-f_{b_{2}}^{2}\left(z_{2}\right)\right|
\end{gathered}
$$

is a bimetric in $f^{n_{1}} \cup f^{n_{2}}$.

DEFINITION 2.47: If $u_{1} \cup u_{2} \in V^{n_{1}} \cup V^{n_{2}}$ represents a received biword and $c_{1} \cup c_{2} \in C_{1} \cup C_{2}$ then $f_{c_{1}}^{l}\left(u_{1}\right) \cup f_{c_{2}}^{2}\left(u_{2}\right)$ gives the biprobability that $\left(c_{1} \cup c_{2}\right)$ was transmitted.

$$
\begin{gathered}
\theta_{l}\left(u_{1}\right) \cup \theta_{2}\left(u_{2}\right)= \\
\left\{f_{a_{1}}^{1} \mid a_{1} \in C_{1} ; f_{a_{1}}^{1}\left(u_{1}\right) \geq f_{b_{1}}^{1}\left(u_{1}\right), b_{1} \in C_{1}\right\} \cup \\
\left\{f_{a_{2}}^{2} \mid a_{2} \in C_{2} ; f_{a_{2}}^{2}\left(u_{2}\right) \geq f_{b_{2}}^{2}\left(u_{2}\right), b_{2} \in C_{2}\right\} .
\end{gathered}
$$

A bicode for which

$$
\begin{gathered}
\left|\theta_{l}\left(u_{1}\right) \cup \theta_{2}\left(u_{2}\right)\right|=\left|\theta_{1}\left(u_{1}\right)\right| \cup\left|\theta_{2}\left(u_{2}\right)\right| \\
=1 \cup 1
\end{gathered}
$$

for all $u_{1} \in V^{n_{1}}$ and $u_{2} \in V^{n_{2}}$; is said to be uniquely bidecodable. In such a case $u_{I} \cup u_{2}$ is bicoded as

$$
\psi_{1}^{-1}\left(\theta_{1}\left(u_{1}\right)\right) \cup \psi_{2}^{-1}\left(\theta_{2}\left(u_{2}\right)\right) .
$$

The notions related to m-covering radius of RD-codes can be analogously transformed from the notion of RD-bicodes.

Proposition 2.1: If $C_{1}^{l} \cup C_{2}^{l}$ and $C_{1}^{2} \cup C_{2}^{2}$ are $R D$ bicodes with $C_{1}^{1} \cup C_{2}^{1} \subseteq C_{1}^{2} \cup C_{2}^{2}$ (i.e., $C_{1}^{1} \subseteq C_{1}^{2}$ and $C_{2}^{1} \subseteq C_{2}^{2}$) then

$$
\begin{aligned}
& t_{m_{1}}\left(C_{1}^{1}\right) \cup t_{m_{2}}\left(C_{2}^{1}\right) \geq t_{m_{1}}\left(C_{1}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{2}\right) \quad\left[t_{m_{1}}\left(C_{1}^{1}\right) \geq t_{m_{1}}\left(C_{1}^{2}\right)\right. \text { and } \\
& \left.t_{m_{2}}\left(C_{2}^{1}\right) \geq t_{m_{2}}\left(C_{2}^{2}\right)\right] .
\end{aligned}
$$

Proof: Let $\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}$ with $\left|\mathrm{S}_{1}\right|=\mathrm{m}_{1}$ and $\mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}$ with $\left|\mathrm{S}_{2}\right|=\mathrm{m}_{2}$

$$
\begin{gathered}
\operatorname{cov}\left(\mathrm{C}_{1}^{2}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{C}_{2}^{2}, \mathrm{~S}_{2}\right) \\
=\min \left\{\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{~S}_{1}\right) / \mathrm{x}_{1} \in \mathrm{C}_{1}^{2}\right\} \cup \min \left\{\operatorname{cov}\left(\mathrm{x}_{2}, \mathrm{~S}_{2}\right) / \mathrm{x}_{2} \in \mathrm{C}_{2}^{2}\right\} \leq \\
\min \left\{\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{~S}_{1}\right) / \mathrm{x}_{1} \in \mathrm{C}_{1}^{1}\right\} \cup \min \left\{\operatorname{cov}\left(\mathrm{x}_{2}, \mathrm{~S}_{2}\right) / \mathrm{x}_{2} \in \mathrm{C}_{2}^{1}\right\} \\
=\operatorname{cov}\left(\mathrm{C}_{1}^{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{C}_{2}^{1}, \mathrm{~S}_{2}\right) .
\end{gathered}
$$

Thus $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{2}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{2}\right) \leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1}\right)$.

PROPOSITION 2.2: For any $R D$ bicode $C_{1} \cup C_{2}$ and a pair of positive integers (m_{1}, m_{2}),

$$
t_{m_{1}}\left(C_{1}\right) \cup t_{m_{2}}\left(C_{2}\right) \leq t_{m_{1}+1}\left(C_{1}\right) \cup t_{m_{2}+1}\left(C_{2}\right)
$$

Proof: Let $\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}$ with $\left|\mathrm{S}_{1}\right|=\mathrm{m}_{1}$ and $\mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}$ with $\left|\mathrm{S}_{2}\right|=\mathrm{m}_{2}$, $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ is the rank bispace where $\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a bisubset of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$. Now
$\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$

$$
\begin{aligned}
= & \max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right)\left|\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ;\left|\mathrm{S}_{1}\right|=\mathrm{m}_{1}\right\} \cup\right. \\
& \max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right)\left|\mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ;\left|\mathrm{S}_{2}\right|=\mathrm{m}_{2}\right\} \leq\right. \\
& \max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right)\left|\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ;\left|\mathrm{S}_{1}\right|=\mathrm{m}_{1}+1\right\} \cup\right. \\
& \max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right)\left|\mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ;\left|\mathrm{S}_{2}\right|=\mathrm{m}_{2}+1\right\}\right. \\
= & \mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) .
\end{aligned}
$$

PROPOSITION 2.3: For any biset of positive integers $\left\{n_{1}, m_{1}, k_{1}\right.$, $\left.K_{1\}}\right\} \cup\left\{n_{2}, m_{2}, k_{2}, K_{2}\right\}$;

$$
t_{m_{1}}\left[n_{1}, k_{1}\right] \cup t_{m_{2}}\left[n_{2}, k_{2}\right] \leq t_{m_{1}+1}\left[n_{1}, k_{1}\right] \cup t_{m_{2}+1}\left[n_{2}, k_{2}\right]
$$

and

$$
t_{m_{1}}\left(n_{1}, K_{1}\right) \cup t_{m_{2}}\left(n_{2}, K_{2}\right) \leq t_{m_{1}+1}\left(n_{1}, K_{1}\right) \cup t_{m_{2}+1}\left(n_{2}, K_{2}\right)
$$

Proof: Given $\mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{C}_{2}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \mathrm{RD}$ bicode, with $\mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}$ and $\mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}$. Now

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]= \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ; \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ; \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}\right\} \leq \\
& \min \left\{\mathrm{t}_{\mathrm{t}_{1}+1}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ; \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ; \operatorname{dim~C}_{2}=\mathrm{k}_{2}\right\} \\
&=\mathrm{t}_{\mathrm{m}_{1}+1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] .
\end{aligned}
$$

Similarly we have

$$
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) \leq \mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) .
$$

That is

$$
\begin{aligned}
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup & \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right)= \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ;\left|\mathrm{C}_{1}\right|=\mathrm{K}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ;\left|\mathrm{C}_{2}\right|=\mathrm{K}_{2}\right\} \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ;\left|\mathrm{C}_{1}\right|=\mathrm{K}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ;\left|\mathrm{C}_{2}\right|=\mathrm{K}_{2}\right\} \\
& \leq \mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) .
\end{aligned}
$$

Proposition 2.4: For any biset of positive integers $\left\{n_{l}, m_{l}, k_{l}\right.$, $\left.K_{1}\right\} \cup\left\{n_{2}, m_{2}, k_{2}, K_{2}\right\}$;

$$
t_{m_{1}}\left[n_{1}, k_{1}\right] \cup t_{m_{2}}\left[n_{2}, k_{2}\right] \geq t_{m_{1}}\left[n_{1}, k_{1}+1\right] \cup t_{m_{2}}\left[n_{2}, k_{2}+1\right]
$$

and

$$
t_{m_{1}}\left(n_{1}, K_{1}\right) \cup t_{m_{2}}\left(n_{2}, K_{2}\right) \geq t_{m_{1}}\left(n_{1}, K_{1}+1\right) \cup t_{m_{2}}\left(n_{2}, K_{2}+1\right) .
$$

Proof: Given $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ is a RD bicode hence a bisubspace of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$.
Consider

$$
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}+1\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}+1\right]=
$$

$$
\begin{aligned}
& \min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ; \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}+1\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ; \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}+1\right\} \leq \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ; \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ; \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}\right\} .
\end{aligned}
$$

(since for each $\mathrm{C}_{1} \cup \mathrm{C}_{2} \subseteq \mathrm{C}_{12} \cup \mathrm{C}_{22}$;

$$
\begin{aligned}
& \left.\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{12}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{22}\right) \leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)\right) \\
& =\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{k}_{2}\right)
\end{aligned}
$$

Similarly,

$$
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{~K}_{1}+1\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{~K}_{2}+1\right] \leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) .
$$

Using these results and the fact $\mathrm{k}_{1 \mathrm{~m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right]$ denotes the smallest dimension of a linear RD code of length n_{1} and m_{1}-covering radius t_{1} and $k_{1 m_{1}}\left[n_{1}, t_{1}\right]$ denotes the least cardinality of the RD codes of length n_{1} and m_{1}-covering radius t_{1}.

The following results can be easily proved.
Result 1: For any biset of positive integers $\left\{\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{t}_{1}\right\} \cup\left\{\mathrm{n}_{2}\right.$, $\left.\mathrm{m}_{2}, \mathrm{t}_{2}\right\}$ and

$$
\mathrm{k}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{k}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \leq \mathrm{k}_{\mathrm{m}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{k}_{\mathrm{m}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right)
$$

and

$$
\mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \leq \mathrm{K}_{\mathrm{m}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) .
$$

Result 2: For any biset of positive integers $\left\{\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{t}_{1}\right\} \cup\left\{\mathrm{n}_{2}\right.$, $\left.\mathrm{m}_{2}, \mathrm{t}_{2}\right\}$ we have

$$
\mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \geq \mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}+1\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}+1\right]
$$

and

$$
\mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \geq \mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}+1\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}+1\right) .
$$

We say a bifunction $f_{1} \cup f_{2}$ is a non-decreasing function in some bivariable say ($x_{1} \cup x_{2}$) if both f_{1} and f_{2} happen to be a nondecreasing function in the same variable x_{1} and x_{2} respectively.

With this understanding we can say the ($\mathrm{m}_{1}, \mathrm{~m}_{2}$)- covering biradius of a fixed RD bicode $\mathrm{C}_{1} \cup \mathrm{C}_{2}$,

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right], \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right), \\
\mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \text { and } \mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right),
\end{gathered}
$$

are non decreasing bifunctions of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$. The relationship between the multicovering biradii of two RD bicodes and bicodes that are built using them are described.

Let $\mathrm{C}^{\mathrm{i}}=\mathrm{C}_{1}^{\mathrm{i}} \cup \mathrm{C}_{2}^{\mathrm{i}}, \mathrm{i}=1,2$ be a $\left[\mathrm{n}_{1}^{1}, \mathrm{k}_{1}^{1}, \mathrm{~d}_{1}^{1}\right] \cup\left[\mathrm{n}_{1}^{2}, \mathrm{k}_{1}^{2}, \mathrm{~d}_{1}^{2}\right]$, $\left[\mathrm{n}_{2}^{1}, \mathrm{k}_{2}^{1}, \mathrm{~d}_{2}^{1}\right] \cup\left[\mathrm{n}_{2}^{2}, \mathrm{k}_{2}^{2}, \mathrm{~d}_{2}^{2}\right] \quad \mathrm{RD} \quad$ bicodes over $\quad \mathrm{F}_{2^{\mathrm{N}}} \quad$ with $\mathrm{n}_{1}^{1}, \mathrm{n}_{1}^{2}, \mathrm{n}_{2}^{1}, \mathrm{n}_{2}^{2}, \mathrm{n}_{1}^{1}+\mathrm{n}_{2}^{1}, \mathrm{n}_{1}^{2}+\mathrm{n}_{2}^{2} \leq \mathrm{N}$.

Proposition 2.5: Let $C^{l}=C_{1}^{l} \cup C_{2}^{l}$ and $C^{2}=C_{1}^{2} \cup C_{2}^{2}$ be $R D$ bicodes described above.

$$
\begin{gathered}
C=C^{l} \times C^{2}=C_{1}^{l} \times C_{1}^{2} \cup C_{2}^{l} \times C_{2}^{2} \\
=\left\{\left(x_{l} \mid y_{1}\right) / x_{1} \in C_{1}^{l}, y_{l} \in C_{1}^{2}\right\} \cup\left\{\left(x_{2} \mid y_{2}\right) / x_{2} \in C_{2}^{l}, y_{2} \in C_{2}^{2}\right\} .
\end{gathered}
$$

Then $C^{l} \times C^{2}$ is a $\left[n_{l}^{l}+n_{2}^{l} \cup n_{1}^{2}+n_{2}^{2}, k_{l}^{l}+k_{2}^{l} \cup k_{1}^{2}+k_{2}^{2}\right.$, $\left.\min \left\{d_{1}^{1}, d_{2}^{1}\right\} \cup \min \left\{d_{1}^{2}, d_{2}^{2}\right\}\right]$ rank distance bicode over $F_{2^{v}}$ and

$$
\begin{gathered}
t_{m_{l}}\left(C_{1}^{l} \times C_{2}^{l}\right) \cup t_{m_{2}}\left(C_{1}^{2} \times C_{2}^{2}\right) \leq \\
t_{m_{l}}\left(C_{1}^{2}\right)+t_{m_{l}}\left(C_{2}^{l}\right) \cup t_{m_{2}}\left(C_{1}^{2}\right)+t_{m_{2}}\left(C_{2}^{2}\right) .
\end{gathered}
$$

Proof: Let

$$
\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}^{1}+\mathrm{n}_{2}^{1}} \text { and } \mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{1}^{2}+\mathrm{n}_{2}^{2}}
$$

and

$$
S_{1}=\left\{s_{1}^{1}, \ldots, \mathrm{~s}_{\mathrm{m}_{1}}^{1}\right\} \text { and } \mathrm{S}_{2}=\left\{\mathrm{s}_{1}^{2}, \ldots, \mathrm{~s}_{\mathrm{m}_{2}}^{2}\right\}
$$

with

$$
\begin{array}{r}
\mathrm{s}_{\mathrm{i}}^{1}=\left(\mathrm{x}_{1 \mathrm{i}} / \mathrm{y}_{1 \mathrm{i}}\right) \text { and } \mathrm{s}_{\mathrm{i}}^{2}=\left(\mathrm{x}_{2 \mathrm{i}} / \mathrm{y}_{2 \mathrm{i}}\right) \\
\mathrm{x}_{\mathrm{li}} \in \mathrm{~V}^{\mathrm{n}_{1}^{1}}, \mathrm{y}_{\mathrm{li}} \in \mathrm{~V}^{\mathrm{n}_{2}}, \mathrm{x}_{2 \mathrm{i}} \in \mathrm{~V}^{\mathrm{n}_{1}^{2}} \text { and } \mathrm{y}_{2 \mathrm{i}} \in \mathrm{~V}^{\mathrm{n}_{2}^{2}} .
\end{array}
$$

Let

$$
\begin{gathered}
\mathrm{S}_{1}^{1}=\left\{\mathrm{x}_{11} \ldots \mathrm{x}_{1 \mathrm{~m}_{1}}\right\}, \mathrm{S}_{1}^{2}=\left\{\mathrm{y}_{11} \ldots \mathrm{y}_{1 \mathrm{~m}_{1}}\right\}, \\
\mathrm{S}_{2}^{1}=\left\{\mathrm{x}_{21} \ldots \mathrm{x}_{1 \mathrm{~m}_{2}}\right\} \text { and } \mathrm{S}_{2}^{2}=\left\{\mathrm{y}_{21} \ldots \mathrm{y}_{2 \mathrm{~m}_{2}}\right\} .
\end{gathered}
$$

Now $t_{m_{1}}\left(C_{1}^{1}\right)$ being the m_{1}-covering radius of $\left(C_{1}^{1}\right)$ there exists $c_{1}^{1} \in C_{1}^{1}$ such that $S_{1}^{1} \subseteq B_{t_{m_{1}}\left(C_{1}^{1}\right)}^{1}\left(C_{1}^{1}\right)$. This implies $r_{1}\left(x_{1 i}+c_{1}^{1}\right) \leq$ $t_{m_{1}}\left(C_{1}\right)$ for all $x_{1 i} \in S_{1}^{1}$. The same argument is true for $\left(C_{1}^{2}\right)$. Now consider $\left(C_{2}^{1}\right)$, this code has m_{2} covering radius $t_{m_{2}}\left(C_{2}^{1}\right)$ such that there exists $c_{2}^{1} \in \mathrm{C}_{2}^{1}$ such that $\mathrm{S}_{2}^{1} \subseteq \mathrm{~B}_{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1}\right)}^{1}\left(\mathrm{C}_{2}^{1}\right)$. This implies $\mathrm{r}_{2}\left(\mathrm{x}_{2 \mathrm{i}}+\mathrm{c}_{2}^{1}\right) \leq \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$ for all $\mathrm{x}_{2 \mathrm{i}} \in \mathrm{S}_{2}^{1}$.
Now

$$
\mathrm{C}=\left(\mathrm{C}_{1}^{1} \mid \mathrm{C}_{2}^{1}\right) \cup\left(\mathrm{C}_{1}^{2} \mid \mathrm{C}_{2}^{2}\right)=\mathrm{C}^{1} \cup \mathrm{C}^{2} .
$$

Here

$$
\begin{gathered}
\mathrm{r}_{1}\left(\mathrm{~s}_{1 \mathrm{i}}+\mathrm{C}^{1}\right)=\mathrm{r}_{1}\left(\left(\mathrm{x}_{1 \mathrm{i}} \mid \mathrm{y}_{\mathrm{li}}\right)+\left(\mathrm{C}_{1}^{1} \mid \mathrm{C}_{2}^{1}\right)\right) \\
=\mathrm{r}_{1}\left(\mathrm{x}_{1 \mathrm{i}}+\mathrm{C}_{1}^{1} \mid \mathrm{y}_{1 \mathrm{i}}+\mathrm{C}_{2}^{1}\right) \leq \mathrm{r}_{1}\left(\mathrm{x}_{1 \mathrm{i}}+\mathrm{C}_{1}^{1}\right)+\mathrm{r}_{1}\left(\mathrm{y}_{1 \mathrm{i}}+\mathrm{C}_{2}^{1}\right) \\
\leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{2}\right) .
\end{gathered}
$$

Similarly we have,

$$
\begin{gathered}
\mathrm{r}_{2}\left(\mathrm{~s}_{2 \mathrm{i}}+\mathrm{C}^{2}\right)=\mathrm{r}_{2}\left(\left(\mathrm{x}_{2 \mathrm{i}} \mid \mathrm{y}_{2 \mathrm{i}}\right)+\left(\mathrm{C}_{1}^{2} \mid \mathrm{C}_{2}^{2}\right)\right) \\
=\mathrm{r}_{2}\left(\mathrm{x}_{2 \mathrm{i}}+\mathrm{C}_{1}^{2} \mid \mathrm{y}_{2 \mathrm{i}}+\mathrm{C}_{2}^{2}\right) \leq \mathrm{r}_{2}\left(\mathrm{x}_{2 \mathrm{i}}+\mathrm{C}_{1}^{2}\right)+\mathrm{r}_{2}\left(\mathrm{y}_{2 \mathrm{i}}+\mathrm{C}_{2}^{2}\right) \\
\leq \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1}\right)+\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{2}\right) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}}(\mathrm{C})=\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{1} \times \mathrm{C}_{1}^{2}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1} \times \mathrm{C}_{2}^{2}\right) \leq \\
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{2}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1}\right)+\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{2}\right)
\end{aligned}
$$

For any positive integer r , the r -fold repetition RD code C_{1} is the code $\mathrm{C}=\left\{(\mathrm{c}|\mathrm{c}| \ldots \mid \mathrm{c}) \mid \mathrm{c} \in \mathrm{C}_{1}\right\}$ where the code word c is concatenated r -times. This is a $\left[\mathrm{rn}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right]$ rank distance code. Note that here $\mathrm{n}_{1} \leq \mathrm{N}$ is choosen so that $\mathrm{rn}_{1} \leq \mathrm{N}$.

We proceed on to define (r, r)-fold repetition of RD bicode.
DEFINITION 2.48: For any (r, r) (r any positive integer), the (r, r) repetition of $R D$ bicode $C_{I} \cup D_{I}$ is the bicode $C=\{(c|c| \ldots$ |c) $\left.\mid c \in C_{l}\right\} \cup D=\left\{(d|d| \ldots \mid d) \mid d \in D_{l}\right\}$ where the bicode word $c \cup d$ is concatenated r-times this is a $\left[r n_{1}, k_{1}, d_{l}\right] \cup\left[r n_{2}\right.$, $\left.k_{2}, d_{2}\right]$ rank distance bicode word with $n_{i} \leq N$ and $r n_{i} \leq N ; i=1$,
2. Thus any bicode word in $C \cup D$ would be of the form ($c|c|$ $\ldots \mid c) \cup(d|d| \ldots \mid d)$ where $c \in C_{l}$ and $d \in D_{l}$.

We can also define $\left(r_{1}, r_{2}\right)$ fold repetition bicode $\left(r_{1} \neq r_{2}\right)$.
DEFINITION 2.49: Let $C_{1} \cup D_{1}$ be a $\left[n_{1}, k_{1}, d_{l}\right] \cup\left[n_{2}, k_{2}, d_{2}\right]$ $R D$-code. Let $C=\left\{(c|c| \ldots \mid c) \mid c \in C_{l}\right\}$ be a r_{1}-fold repetition $R D$ code C_{1} and $D=\left\{(d|d| \ldots \mid d) \mid d \in D_{l}\right\}$ be a r_{2}-fold repetition $R D$ code $C_{2}\left(r_{1} \neq r_{2}\right)$. Then $C \cup D$ is defined as the (r_{1}, r_{2})-fold repetition bicode.

We prove the following interesting result.
Proposition 2.6: For an (r, r) fold repetition $R D$-bicode

$$
C \cup D, t_{m_{l}}(C) \cup t_{m_{2}}(D)=t_{m_{l}}\left(C_{I}\right) \cup t_{m_{2}}\left(D_{l}\right)
$$

Proof: Let $\mathrm{S}_{1}=\left\{\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{m}_{1}}\right\} \subseteq \mathrm{V}^{\mathrm{n}_{1}}$ be such that $\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right)=$ $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)$. Let $\mathrm{S}_{2}=\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{m}_{2}}\right\} \subseteq \mathrm{V}^{\mathrm{n}_{2}}$ be such that $\operatorname{cov}\left(\mathrm{D}_{1}, \mathrm{~S}_{2}\right)=$ $\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{D}_{1}\right)$.

Let $v_{i}^{1}=\left(v_{i}\left|v_{i}\right| \ldots \mid v_{i}\right)$. Let $S_{1}^{1}=\left\{v_{1}^{1}\left|v_{2}^{1}\right| \ldots \mid v_{m_{1}}^{1}\right\}$ be a set of m_{1}-vectors of length rn_{1} each. A r-fold repetition of any RD code word retains the same rank weight.

Hence $\left(C, S_{1}^{1}\right)=t_{m_{1}}\left(C_{1}\right)$.
Since $t_{m_{1}}(C) \geq \operatorname{cov}\left(C, S_{1}^{1}\right)$, it follows that

$$
\mathrm{t}_{\mathrm{m}_{1}}(\mathrm{C}) \geq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \quad--\cdots--\quad \mathrm{I}
$$

Conversely let $\mathrm{S}_{1}=\left\{\begin{array}{llll}\mathrm{v}_{1} & \ldots & \mathrm{v}_{\mathrm{m}_{1}}\end{array}\right\}$ be a set of m-vectors of length rn_{1} with $\mathrm{v}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}^{1}\left|\mathrm{v}_{\mathrm{i}}^{1}\right| \ldots \mid v_{\mathrm{i}}^{1}\right) ; \mathrm{v}_{\mathrm{i}}^{1} \in \mathrm{~V}^{\mathrm{n}_{1}}$. Then there exists c $\in C_{1}$ such that $d_{R_{1}}\left(c, v_{i}^{1}\right) \leq t_{m_{1}}\left(C_{1}\right)$ for every $i\left(1 \leq i \leq m_{1}\right)$. This implies $d_{R_{1}}\left((c|c| \ldots \mid c), v_{i}\right) \leq t_{m_{1}}\left(C_{1}\right)$ for every $\mathrm{i}\left(1 \leq \mathrm{i} \leq \mathrm{m}_{1}\right)$.

Thus

$$
\mathrm{t}_{\mathrm{m}_{1}}(\mathrm{C}) \leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)
$$

II
From I and II,

$$
\mathrm{t}_{\mathrm{m}_{1}}(\mathrm{C})=\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) .
$$

On similar lines we can prove,

$$
\mathrm{t}_{\mathrm{m}_{2}}(\mathrm{D})=\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{D}_{1}\right)
$$

where $\operatorname{cov}\left(D_{1}, S_{2}\right)=t_{m_{2}}\left(D_{1}\right)$.
Hence

$$
\mathrm{t}_{\mathrm{m}_{1}}(\mathrm{C}) \cup \mathrm{t}_{\mathrm{m}_{2}}(\mathrm{D})=\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{D}_{1}\right)
$$

Multi-covering bibounds for RD-bicodes is discussed and a few interesting properties in this direction are given. The $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ covering biradius $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$ of a RD-bicode $\mathrm{C}=\mathrm{C}_{1} \cup$ C_{2} is a non-decreasing bifunction of $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ (proved earlier). Thus a lower bi-bound for $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$ implies a bibound for $t_{m_{1}+1}\left(C_{1}\right) \cup t_{m_{2}+1}\left(C_{2}\right)$. First bibound exhibits $m_{1} \cup m_{2} \geq 2 \cup$ 2 then situation of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$-covering biradii is quite different for ordinary covering radii.

Proposition 2.7: If $m_{1} \cup m_{2} \geq 2 \cup 2$ then the $\left(m_{1}, m_{2}\right)$ covering biradii of a RD bicode $C=C_{1} \cup C_{2}$ of bilength (n_{1}, n_{2}) is atleast $\left\lceil\frac{n_{1}}{2}\right\rceil \cup\left\lceil\frac{n_{2}}{2}\right\rceil$.

Proof: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ be a RD bicode of bilength $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$. Let $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \geq 2 \cup 2$, let $\mathrm{t}_{1}, \mathrm{t}_{2}$ be the 2 -covering biradii of the RD code $C=C_{1} \cup C_{2}$. Let $x=x_{1} \cup x_{2} \in V^{n_{1}} \cup V^{n_{2}}$.

Choose $y=y_{1} \cup y_{2} \in V^{n_{1}} \cup V^{n_{2}}$ such that all the $\left(n_{1}, n_{2}\right)$ coordinates of $\mathrm{x}-\mathrm{y}=\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right) \cup\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)$ are linearly independent, that is

$$
\begin{gathered}
\mathrm{d}_{\mathrm{R}}(\mathrm{x}, \mathrm{y})=\mathrm{d}_{\mathrm{R}}\left(\mathrm{x}_{1} \cup \mathrm{x}_{2}, \mathrm{y}_{1} \cup \mathrm{y}_{2}\right) \\
=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \\
\left(\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2} \text { and } \mathrm{d}_{\mathrm{R}_{1}}=\mathrm{d}_{\mathrm{R}_{1}} \cup \mathrm{~d}_{\mathrm{R}_{2}}\right) \\
=\mathrm{n}_{1} \cup \mathrm{n}_{2} .
\end{gathered}
$$

Then for any $c=c_{1} \cup c_{2} \in C=C_{1} \cup C_{2}$,

$$
d_{R}(x, c)+d_{R}(c, y)
$$

$$
\begin{gathered}
=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{c}_{1}\right)+\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{c}_{2}\right)+\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right) \\
\geq \mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \\
=\mathrm{n}_{1} \cup \mathrm{n}_{2} .
\end{gathered}
$$

This implies that one of

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{c}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{c}_{2}\right)
$$

and

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right)
$$

is at least $\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2}$ (that is one of $\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{c}_{1}\right)$ and $\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right)$ is atleast $\frac{\mathrm{n}_{1}}{2}$ and one of $\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{c}_{2}\right)$ and $\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right)$ is at least $\frac{\mathrm{n}_{2}}{2}$) and hence

$$
\mathrm{t}=\mathrm{t}_{1} \cup \mathrm{t}_{2} \geq\left\lceil\frac{\mathrm{n}_{1}}{2}\right\rceil \cup\left\lceil\frac{\mathrm{n}_{2}}{2}\right\rceil
$$

Since t is non decreasing bifunction of $m_{1} \cup m_{2}$ it follows that

$$
\mathrm{t}_{\mathrm{m}}(\mathrm{C})=\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \geq\left\lceil\frac{\mathrm{n}_{1}}{2}\right\rceil \cup\left\lceil\frac{\mathrm{n}_{2}}{2}\right\rceil
$$

for $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \geq 2 \cup 2$.

Bibounds of the multi-covering biradius of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ can be used to obtain bibounds on the multi covering biradii of arbitary bicodes. Thus a relationship between $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$-covering biradii of an RD bicode and that of its ambient bispace $V^{n_{1}} \cup V^{n_{2}}$ is established

THEOREM 2.15: Let $C=C_{1} \cup C_{2}$ be any RD-code of bilength $n_{1} \cup n_{2}$ over $F_{2^{N}} \cup F_{2^{N}}$. Then for any pair of positive integers (m_{1}, m_{2});

$$
t_{m_{l}}^{1}\left(C_{1}\right) \cup t_{m_{2}}^{2}\left(C_{2}\right) \leq t_{l}^{1}\left(C_{1}\right)+t_{m_{l}}^{l}\left(V^{n_{l}}\right) \cup t_{l}^{2}\left(C_{2}\right)+t_{m_{2}}^{2}\left(V^{n_{2}}\right)
$$

Proof: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ (i.e., $\mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}$ and $\mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}$) with $|S|=\left|S_{1}\right| \cup\left|S_{2}\right|=m_{1} \cup m_{2}$. Then there exists $u=u_{1} \cup u_{2} \in$ $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ such that

$$
\operatorname{cov}(\mathrm{u}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \leq \mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) .
$$

Also there is a $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2} \in \mathrm{C}_{1} \cup \mathrm{C}_{2}$
such that

$$
\mathrm{d}_{\mathrm{R}}(\mathrm{c}, \mathrm{u})=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right) \leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)
$$

Now

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \\
=\max \left\{\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) / \mathrm{y}_{1} \in \mathrm{~S}_{1}\right\} \cup \max \left\{\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right) / \mathrm{y}_{2} \in \mathrm{~S}_{2}\right\} \\
\leq \max \left\{\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{u}_{1}, \mathrm{y}_{1}\right) / \mathrm{y}_{1} \in \mathrm{~S}_{1}\right\} \cup \\
\max \left\{\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{u}_{2}, \mathrm{y}_{2}\right) / \mathrm{y}_{2} \in \mathrm{~S}_{2}\right\} \\
=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right)+\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right)+\operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \\
\leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) .
\end{gathered}
$$

Thus for every $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ with $|\mathrm{S}|=\mathrm{m}=\left|\mathrm{S}_{1}\right| \cup\left|\mathrm{S}_{2}\right|$ $=\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ one can find a $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2} \in \mathrm{C}_{1} \cup \mathrm{C}_{2}$ such that,

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \\
\leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) .
\end{gathered}
$$

Since

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \\
=\min \left\{\operatorname{cov}\left(\mathrm{a}_{1}, \mathrm{~S}_{1}\right) / \mathrm{a}_{1} \in \mathrm{C}_{1}\right\} \cup \min \left\{\operatorname{cov}\left(\mathrm{a}_{2}, \mathrm{~S}_{2}\right) / \mathrm{a}_{2} \in \mathrm{C}_{2}\right\} \\
\leq\left\{\mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right)\right\} \cup\left\{\mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right)\right\} ;
\end{gathered}
$$

for all $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ with $|\mathrm{S}|=\left|\mathrm{S}_{1}\right| \cup\left|\mathrm{S}_{2}\right|=\mathrm{m}_{1} \cup \mathrm{~m}_{2}$, it follows that

$$
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{C}_{2}\right)=\max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right) / \mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} ;\left|\mathrm{S}_{1}\right|=\mathrm{m}_{1}\right\} \cup
$$

$$
\begin{gathered}
\max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right) / \mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}} ;\left|\mathrm{S}_{2}\right|=\mathrm{m}_{2}\right\} \\
\leq\left\{\mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right)\right\} \cup\left\{\mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right)\right\} .
\end{gathered}
$$

Proposition 2.8: For any pair of integers (n_{1}, n_{2}); $n_{1} \cup n_{2} \geq 2$ $\cup 2, t_{2}^{l}\left(V^{n_{l}}\right) \cup t_{2}^{2}\left(V^{n_{2}}\right) \leq n_{1}-1 \cup n_{2}-1$; where $V^{n_{l}}=F_{2^{N}}^{n_{l}}$, $V^{n_{2}}=F_{2^{v}}^{n_{2}} ; n_{1} \leq N$ and $n_{2} \leq N$.

Proof: Let

$$
\mathrm{x}_{1}=\left(\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}^{1}\right), \mathrm{y}_{1}=\left(\mathrm{y}_{1}^{1}, \mathrm{y}_{2}^{1}, \ldots, \mathrm{y}_{\mathrm{n}_{1}}^{1}\right) \in \mathrm{V}^{\mathrm{n}_{1}}
$$

and

$$
\mathrm{x}_{2}=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{2}}^{2}\right), \mathrm{y}_{2}=\left(\mathrm{y}_{1}^{2}, \mathrm{y}_{2}^{2}, \ldots, \mathrm{y}_{\mathrm{n}_{2}}^{2}\right) \in \mathrm{V}^{\mathrm{n}_{2}}
$$

Let

$$
\mathrm{u}=\mathrm{u}_{1} \cup \mathrm{u}_{2} \in \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}
$$

where

$$
u_{1}=\left(x_{1}^{1} u_{2}^{1} u_{3}^{1} \ldots u_{n_{1}-1}^{1} y_{n_{1}}^{1}\right)
$$

and

$$
\mathrm{u}_{2}=\left(\mathrm{x}_{1}^{2} \mathrm{u}_{2}^{2} \mathrm{u}_{3}^{2} \ldots \mathrm{u}_{\mathrm{n}_{2}-1}^{2} \mathrm{y}_{\mathrm{n}_{2}}^{2}\right) .
$$

Thus $u=u_{1} \cup u_{2}$ bicovers $x_{1} \cup x_{2}$ and $y_{1} \cup y_{2} \in V^{n_{1}} \cup V^{n_{2}}$ with in a biradius $n_{1}-1 \cup n_{2}-1$ as

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{u}_{1}, \mathrm{x}_{1}\right) \leq \mathrm{n}_{1}-1 \text { and } \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{u}_{2}, \mathrm{x}_{2}\right) \leq \mathrm{n}_{2}-1
$$

and

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{u}_{1}, \mathrm{y}_{1}\right) \leq \mathrm{n}_{1}-1 \text { and } \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{u}_{2}, \mathrm{y}_{2}\right) \leq \mathrm{n}_{2}-1 .
$$

Thus for any pair of bivectors $x_{1} \cup x_{2}$ and $y_{1} \cup y_{2}$ in $V^{n_{1}} \cup V^{n_{2}}$ there always exists a bivector namely $u=u_{1} \cup u_{2}$ which bicovers $\mathrm{x}_{1} \cup \mathrm{x}_{2}$ and $\mathrm{y}_{1} \cup \mathrm{y}_{2}$ within a biradius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1$. Hence

$$
\mathrm{t}_{2}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{2}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \leq\left(\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1\right) .
$$

Now we proceed on to describe the notion of generalized sphere bicovering bibounds for RD bicodes. A natural question is for a given $\mathrm{t}^{1} \cup \mathrm{t}^{2}, \mathrm{~m}_{1} \cup \mathrm{~m}_{2}$ and $\mathrm{n}_{1} \cup \mathrm{n}_{2}$ what is the smallest $R D$ bicode whose $m_{1} \cup m_{2}$ bicovering biradius is atmost $t^{1} \cup t^{2}$.

As it turns out even for $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \geq 2 \cup 2$, it is necessary that t^{1} $\cup \mathrm{t}^{2}$ be atleast $\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2}$. Infact the minimal $\mathrm{t}^{1} \cup \mathrm{t}^{2}$ for which such a bicode exists is the $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bicovering biradius of $\mathrm{C}_{1} \cup$ $\mathrm{C}_{2}=\mathrm{F}_{2^{\mathrm{N}}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2^{\mathrm{N}}}^{\mathrm{n}_{2}}$.

Various external values associated with this notion are $\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right)$ the smallest ($\left.\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$-covering biradius among bilength $\mathrm{n}_{1} \cup \mathrm{n}_{2} R D$ bicodes $\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{~K}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{~K}^{2}\right)$, the smallest $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ covering biradius among all $\left(\mathrm{n}_{1}, \mathrm{~K}^{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{~K}^{2}\right)$ RD bicodes. $\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)$ is the smallest bicardinality of bilength $n_{1} \cup n_{2} R D$ bicode with $m_{1} \cup$ m_{2} covering biradius $\mathrm{t}^{1} \cup \mathrm{t}^{2}$ and so on. It is the latter quality that is studied in the book for deriving new lower bibounds.

From the earlier results $K_{m_{1}}^{1}\left(n_{1}, t^{1}\right) \cup K_{m_{2}}^{2}\left(n_{2}, t^{2}\right)$ is undefined if

$$
\mathrm{t}^{1} \cup \mathrm{t}^{2}<\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2} .
$$

When this is the case, it is accepted to say

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)=\infty \cup \infty .
$$

There are other circumstances when $\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)$ is undefined.

For instance

$$
\mathrm{K}_{2^{\mathrm{Nn}_{1}}}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{2^{\mathrm{Nn}_{2}}}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right)=\infty \cup \infty .
$$

Also

$$
\begin{aligned}
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) & \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)=\infty \cup \infty, \\
\mathrm{m}_{1} & >\mathrm{V}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right)
\end{aligned}
$$

and

$$
\mathrm{m}_{2}>\mathrm{V}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)
$$

since in this case no biball of biradius $t^{1} \cup t^{2}$ covers any biset of $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ distinct bivectors. More generally one has the fundamental issue of whether

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)
$$

is bifinite for a given n_{1}, m_{1}, t^{1} and n_{2}, m_{2}, t^{2}.
This is the case if and only if

$$
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \leq \mathrm{t}^{1} \text { and } \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \leq \mathrm{t}^{2},
$$

since $t_{m_{1}}^{1}\left(V^{n_{1}}\right) \cup t_{m_{2}}^{2}\left(V^{n_{2}}\right)$ lower bibounds the $\left(m_{1}, m_{2}\right)$ covering biradii of all other bicodes of bidimension $n_{1} \cup n_{2}$. When $t_{1} \cup t_{2}=n_{1} \cup n_{2}$ every bicode word bicovers every bivector, so a bicode of size $1 \cup 1$ will $\left(m_{1}, m_{2}\right)$ bicover $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ for every $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$.

Thus $K_{m_{1}}^{1}\left(n_{1}, n_{1}\right) \cup K_{m_{2}}^{2}\left(n_{2}, n_{2}\right)=1 \cup 1$ for every $m_{1} \cup \mathrm{~m}_{2}$. If $t^{1} \cup t^{2}$ is $n_{1}-1 \cup n_{2}-1$ what happens to $K_{m_{1}}^{1}\left(n_{1}, t^{1}\right) \cup$ $\mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right)$?
When $\mathrm{m}_{1}=\mathrm{m}_{2}=1$,
$\mathrm{K}_{1}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{1}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \leq 1+\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup 1+\mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right)$.
For $\overline{0} \cup \overline{0}=(0 \ldots 0) \cup(0 \ldots 0)$ will cover all bivectors of birank binorm less than or equal $n_{1}-1 \cup n_{2}-1$ within biradius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1$. That is $\overline{0} \cup \overline{0}=(0,0, \ldots, 0) \cup(0,0, \ldots, 0)$ will bicover all binorm $n_{1}-1 \cup n_{2}-1$ bivectors within the biradius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1$.

Hence remaining bivectors are rank $\mathrm{n}_{1} \cup \mathrm{n}_{2}$ bivectors. Thus $\overline{0} \cup \overline{0}=(0,0, \ldots, 0) \cup(0,0, \ldots, 0)$ and these birank- $\left(\mathrm{n}_{1} \cup \mathrm{n}_{2}\right)$ bivectors can bicover the ambient bispace within the biradius n_{1} $-1 \cup n_{2}-1$.

Therefore

$$
\mathrm{K}_{1}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{1}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \leq 1+\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup 1+\mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right) .
$$

Proposition 2.9: For any RD bicode of bilength $n_{1} \cup n_{2}$ over $F_{2^{N}} \cup F_{2^{N}}$

$$
K_{m_{l}}^{1}\left(n_{l}, n_{l}-l\right) \cup K_{m_{2}}^{2}\left(n_{2}, n_{2}-l\right) \leq m_{l} L_{n_{l}}\left(n_{l}\right)+l \cup m_{2} L_{n_{2}}\left(n_{2}\right)+1
$$

provided $m_{l} \cup m_{2}$ is such that

$$
m_{1} L_{n_{1}}\left(n_{1}\right)+l \cup m_{2} L_{n_{2}}\left(n_{2}\right)+1 \leq\left|V^{n_{t}}\right|+\left|V^{n_{2}}\right| .
$$

Proof: Consider a RD-bicode $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ such that $|\mathrm{C}|=\left|\mathrm{C}_{1}\right| \cup$ $\left|C_{2}\right|=m_{1} L_{n_{1}}\left(n_{1}\right)+1 \cup m_{2} L_{n_{2}}\left(n_{2}\right)+1$. Each bivector in $V^{n_{1}} \cup$ $V^{n_{2}}$ has $L_{n_{1}}\left(n_{1}\right) \cup L_{n_{2}}\left(n_{2}\right)$ rank complements, that is from each bivector $\mathrm{v}_{1} \cup \mathrm{v}_{2} \in \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$; there are $\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup \mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right)$ bivectors at rank bidistance $n_{1} \cup n_{2}$. This means for any set $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bivectors there always exists a $\mathrm{c}_{1} \cup \mathrm{c}_{2} \in \mathrm{C}_{1} \cup \mathrm{C}_{2}$ which bicovers $\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ birank distance $\mathrm{n}_{1}-1$ $\cup \mathrm{n}_{2}-1$.
Thus,

$$
\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \leq \mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1
$$

which implies $\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right) \leq \mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1$.
Hence

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \leq \mathrm{m}_{1} \mathrm{~L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right)+1 \cup \mathrm{~m}_{2} \mathrm{~L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right)+1 .
$$

By bounding the number of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bisets that can be covered by a given bicode word, one obtains a straight forward generalization of the classical sphere bibound.

Theorem 2.16: (Generalized Sphere Bound for RD bicodes) For any $\left(n_{1}, K^{1}\right) \cup\left(n_{2}, K^{2}\right) R D$ bicode $C=C_{1} \cup C_{2}$,

$$
K^{l}\binom{V\left(n_{l}, t_{m_{l}}\left(C_{l}\right)\right)}{m_{l}} \cup K^{2}\binom{V\left(n_{2}, t_{m_{2}}\left(C_{2}\right)\right)}{m_{2}} \geq\binom{ 2^{N_{n_{l}}}}{m_{l}} \cup\binom{2^{N_{n_{2}}}}{m_{2}} .
$$

Hence for any n_{1}, t_{1} and m_{1}, n_{2}, t_{2} and m_{2}

$$
K_{m_{l}}^{1}\left(n_{l}, t_{l}\right) \cup K_{m_{2}}^{2}\left(n_{2}, t_{2}\right) \geq \frac{\left[\begin{array}{c}
2^{N_{n_{l}}} \\
m_{1}
\end{array}\right]}{\left[\begin{array}{c}
V\left(n_{1}, t_{l}\right) \\
m_{l}
\end{array}\right]} \cup \frac{\left[\begin{array}{c}
2^{N_{n_{2}}} \\
m_{2}
\end{array}\right]}{\left[\begin{array}{c}
V\left(n_{2}, t_{2}\right) \\
m_{2}
\end{array}\right]}
$$

where

$$
V\left(n_{l}, t_{l}\right) \cup V\left(n_{l}, t_{l}\right)=\sum_{i_{1}=0}^{t_{1}} L_{i_{l}}^{l}\left(n_{l}\right) \cup \sum_{i_{2}=0}^{t_{2}} L_{i_{2}}^{2}\left(n_{2}\right),
$$

number of bivectors in a sphere of biradius $t^{1} \cup t^{2}$ and $L_{i_{I}}^{l}\left(n_{1}\right) \cup L_{i_{2}}^{2}\left(n_{2}\right)$ is the number of bivectors in $V^{n_{l}} \cup V^{n_{2}}$ whose rank binorm is $i_{1} \cup i_{2}$.

Proof: Each set of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bivectors in $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}}$ must occur in a sphere of biradius $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$ around at least one code biword.

Total number of such bisets is $\left|V^{n_{1}}\right| \cup\left|V^{n_{2}}\right|$, choose $m_{1} \cup$ m_{2}, where

$$
\left|V^{n_{1}}\right| \cup\left|V^{n_{2}}\right|=2^{\mathrm{N}_{\mathrm{n}_{1}}} \cup 2^{\mathrm{N}_{\mathrm{n}_{2}}} .
$$

The number of bisets of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bivectors in a neighborhood of biradius $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)$ is

$$
\mathrm{V}\left(\mathrm{n}_{1}, \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)\right) \cup \mathrm{V}\left(\mathrm{n}_{2}, \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)\right) .
$$

Choose $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$. There are K code biwords.
Hence

$$
\mathrm{K}^{1}\binom{\mathrm{~V}\left(\mathrm{n}_{1}, \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)\right)}{\mathrm{m}_{1}} \cup \mathrm{~K}^{2}\binom{\mathrm{~V}\left(\mathrm{n}_{2}, \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)\right)}{\mathrm{m}_{2}} \geq\binom{ 2^{\mathrm{N}_{\mathrm{n}_{1}}}}{\mathrm{~m}_{1}} \cup\binom{2^{\mathrm{N}_{\mathrm{n}_{2}}}}{\mathrm{~m}_{2}} .
$$

Thus for any $\mathrm{n}_{1} \cup \mathrm{n}_{2}, \mathrm{t}^{1} \cup \mathrm{t}^{2}$ and $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$,

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \geq \frac{\left[\begin{array}{c}
2^{\mathrm{N}_{\mathrm{n}_{1}}} \\
\mathrm{~m}_{1}
\end{array}\right]}{\left[\begin{array}{c}
\mathrm{V}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \\
\mathrm{m}_{1}
\end{array}\right]} \cup \frac{\left[\begin{array}{c}
2^{\mathrm{N}_{\mathrm{n}_{2}}} \\
\mathrm{~m}_{2}
\end{array}\right]}{\left[\begin{array}{c}
\mathrm{V}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \\
\mathrm{m}_{2}
\end{array}\right]} .
$$

COROLLARY 2.3: If

$$
\left[\begin{array}{c}
2^{N_{n_{l}}} \\
m_{1}
\end{array}\right] \cup\left[\begin{array}{c}
2^{N_{n_{2}}} \\
m_{2}
\end{array}\right]>2^{N_{n_{1}}}\binom{V\left(n_{1}, t_{1}\right)}{m_{1}} \cup 2^{N_{n_{2}}}\binom{V\left(n_{2}, t_{2}\right)}{m_{2}}
$$

then $K_{m_{1}}^{1}\left(n_{1}, t_{1}\right) \cup K_{m_{2}}^{2}\left(n_{2}, t_{2}\right)=\infty \cup \infty$.

Chapter Three

Rank Distance m-Codes

In this chapter we introduce the new notion of rank distance mcodes and describe some of their properties.

DEFINITION 3.1: Let $C_{1}=C_{1}\left[n_{1}, k_{1}\right], C_{2}=C_{2}\left[n_{2}, k_{2}\right], \ldots, C_{m}=$ $C_{m}\left[n_{m}, k_{m}\right]$, be m distinct $R D$ codes such that $C_{i}=C_{i}\left[n_{i}, k_{i}\right] \neq C_{j}$ $=C_{j}\left[n_{j}, k_{j}\right]$ if $i \neq j$ and $C_{i}=C_{i}\left[n_{i}, k_{i}\right] \not \subset C_{j}=C_{j}\left[n_{j}, k_{j}\right]$ or $C_{j}=$ $C_{j}\left[n_{j}, k_{j}\right] \subseteq C_{i}=C_{i}\left[n_{i}, k_{i}\right]$ for $1 \leq i, j \leq m$ if $i \neq j$; be subspaces of the rank spaces $V^{n_{1}}, V^{n_{2}}, \ldots, V^{n_{m}}$ over the field $G F\left(2^{N}\right)$ or $F_{q^{N}}$ where $n_{1}, n_{2}, \ldots, n_{m} \leq N$, i.e., each $n_{i} \leq N$ for $i=1,2, \ldots, m . C=$ $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ is defined as the Rank Distance m-code ($m \geq 3$). If $m=3$ we call the Rank Distance 3code as the Rank Distance tricode. We say $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ to be ($n_{1}, n_{2}, \ldots, n_{m}$) dimensional vector m-space over the field $F_{q^{v}}$. So we can say $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a m-subspace of the
vector m-space $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$. We represent any element of $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ by

$$
\begin{gathered}
x_{1} \cup x_{2} \cup \ldots \cup x_{n}= \\
\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{n_{1}}^{1}\right) \cup\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n_{2}}^{2}\right) \cup \ldots \cup\left(x_{1}^{m}, x_{2}^{m}, \ldots, x_{n_{m}}^{m}\right),
\end{gathered}
$$

where $x_{i_{j}}^{i} \in F_{q^{n}} ; 1 \leq j \leq m$ and $1 \leq i_{j} \leq n_{j} ; j=1,2,3, \ldots, m$. Also $F_{q^{v}}$ can be considered as a pseudo false m-space of dimension $\underbrace{(N, \ldots, N)}_{m \text {-times }}$ over F_{q}.

Thus elements $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$ has $\mathrm{N}-\mathrm{m}$-tuple representation as

$$
\begin{gathered}
\left(\alpha_{1 \mathrm{j}}^{1}, \alpha_{2 \mathrm{j}}^{1}, \ldots, \alpha_{\mathrm{Nj}_{1}}^{1}\right) \cup\left(\alpha_{1 \mathrm{j}}^{2}, \alpha_{2 \mathrm{j}}^{2}, \ldots, \alpha_{\mathrm{Nj}_{2}}^{2}\right) \cup \ldots \\
\cup\left(\alpha_{1 \mathrm{j}}^{\mathrm{m}}, \alpha_{2 \mathrm{i}}^{\mathrm{m}}, \ldots, \alpha_{\mathrm{Ni}_{\mathrm{j}}}^{\mathrm{m}}\right)
\end{gathered}
$$

over F_{q} with respect to some m-basis. Hence associated with each $x^{1} \cup x^{2} \cup \ldots \cup x^{m} \in V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}\left(n_{i} \neq n_{j}\right.$ if $i \neq j$, $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m})$ there is a m-matrix.

$$
\begin{aligned}
& \mathrm{m}_{1}\left(\mathrm{x}^{1}\right) \cup \ldots \cup \mathrm{m}_{\mathrm{m}}\left(\mathrm{x}^{\mathrm{m}}\right)= \\
& {\left[\begin{array}{ccc}
a_{11}^{1} & \cdots & a_{1_{1}}^{1} \\
a_{21}^{1} & \cdots & a_{2 n_{1}}^{1} \\
\vdots & & \vdots \\
a_{N 1}^{1} & \cdots & a_{N n_{1}}^{1}
\end{array}\right] \cup\left[\begin{array}{ccc}
a_{11}^{2} & \ldots & a_{1 n_{2}}^{2} \\
a_{21}^{2} & \ldots & a_{2 n_{2}}^{2} \\
\vdots & & \vdots \\
a_{N 2}^{2} & \cdots & a_{\mathrm{Nn}_{2}}^{2}
\end{array}\right] \cup \ldots \cup\left[\begin{array}{ccc}
a_{11}^{m} & \ldots & a_{1 n_{m}}^{m} \\
a_{21}^{m} & \ldots & a_{2 n_{m}}^{m} \\
\vdots & & \vdots \\
a_{N m}^{m} & \cdots & a_{\mathrm{Nn}_{\mathrm{m}}}^{m}
\end{array}\right]}
\end{aligned}
$$

where $\mathrm{i}_{1}^{\text {th }} \cup \mathrm{i}_{2}^{\text {th }} \cup \ldots \cup \mathrm{i}_{\mathrm{m}}^{\text {th }} \quad \mathrm{m}$-column represents the $\mathrm{i}_{1}^{\text {th }} \cup \mathrm{i}_{2}^{\text {th }} \cup \ldots \cup \mathrm{i}_{\mathrm{m}}^{\text {th }} \mathrm{m}-$ coordinate of $\mathrm{x}_{\mathrm{i} 1}^{1} \cup \mathrm{x}_{\mathrm{i} 2}^{2} \cup \ldots \cup \mathrm{x}_{\mathrm{im}}^{\mathrm{m}}$ of $\mathrm{x}^{1} \cup$ $\mathrm{x}^{2} \cup \ldots \cup \mathrm{x}^{\mathrm{m}}$ over F_{q}.

It is important and interesting to note in order to develop the new notion rank distance m-codes ($\mathrm{m} \geq 3$) and while trying to give m - matrices and m - ranks associated with them we are forced to define the notion of pseudo false m - vector spaces. For example, $Z_{2}^{5} \cup Z_{2}^{5} \cup \ldots \cup Z_{2}^{5}$ is a false pseudo m-vector space
over $Z_{2} . Z_{5}^{9} \cup Z_{5}^{9} \cup Z_{5}^{9} \cup Z_{5}^{9} \cup Z_{5}^{9} \cup Z_{5}^{9}$ is a false pseudo 6 vector space over Z_{5}.

However we will in this book use only m -vector spaces over Z_{2} or $Z_{2^{\mathrm{N}}}$ and denote it by $\operatorname{GF}(2)$ or $\operatorname{GF}\left(2^{\mathrm{N}}\right)$ or $\mathrm{F}_{2^{\mathrm{N}}}$, unless otherwise specified. Now we see every $x^{1} \cup \ldots \cup x^{m}$ in the $m-$ vector space $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ have an associated m-matrix $\mathrm{m}_{1}\left(\mathrm{x}^{1}\right) \cup \ldots \cup \mathrm{m}_{\mathrm{m}}\left(\mathrm{x}^{\mathrm{m}}\right)$.

We proceed to define m - rank of the m - matrix over F_{q} or GF(2).

DEFINITION 3.2: The m-rank of an element $x^{l} \cup x^{2} \cup \ldots \cup x^{m} \in$ $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ is defined as the m-rank of the m-matrix $m\left(x^{1}\right) \cup m\left(x^{2}\right) \cup \ldots \cup m\left(x^{m}\right)$ over $G F(2)$ or F_{q} [i.e., the m-rank of $m\left(x^{l}\right) \cup m\left(x^{2}\right) \cup \ldots \cup m\left(x^{m}\right)$ is the rank of $m\left(x^{l}\right) \cup$ rank of $m\left(x^{2}\right) \cup \ldots \cup$ rank of $\left.m\left(x^{m}\right)\right]$. We shall denote the m-rank of x^{l} $\cup x^{2} \cup \ldots \cup x^{m}$ by $r_{1}\left(x^{l}\right) \cup r_{2}\left(x^{2}\right) \cup \ldots \cup r_{m}\left(x^{m}\right)$, we can in case of m-rank of a m-matrix prove the following;
(i) For every $x^{l} \cup x^{2} \cup \ldots \cup x^{m} \in V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}\left(x_{i} \in\right.$ $\left.V^{n_{i}}, l \leq i \leq m\right)$ we have, $r\left(x^{l} \cup \ldots \cup x^{m}\right)=r_{l}\left(x^{l}\right) \cup \ldots \cup$ $r_{m}\left(x^{m}\right) \geq 0 \cup 0 \cup \ldots \cup 0$ (i.e., each $r_{i}\left(x^{i}\right) \geq 0$ for every $\left.x^{i} \in V^{n_{i}} ; i=1,2,3, \ldots, m\right)$.
(ii) $r\left(x^{l} \cup x^{2} \cup \ldots \cup x^{m}\right)=r_{1}\left(x^{l}\right) \cup r_{2}\left(x^{2}\right) \cup \ldots \cup r_{m}\left(x^{m}\right)=0 \cup$ $0 \cup \ldots \cup 0$ if and only if $x^{i}=0$ for $i=1,2,3, \ldots, m$.

$$
r\left[\left(x_{1}^{l}+x_{2}^{l}\right) \cup\left(x_{1}^{2}+x_{2}^{2}\right) \cup \ldots \cup\left(x_{1}^{m}+x_{2}^{m}\right)\right]
$$

$$
\leq r_{l}\left(x_{l}^{l}\right)+r_{l}\left(x_{2}^{l}\right) \cup r_{2}\left(x_{l}^{2}\right)+r_{2}\left(x_{2}^{2}\right) \cup \ldots \cup r_{m}\left(x_{1}^{m}\right)+r_{m}\left(x_{2}^{m}\right)
$$

for every $x_{1}^{i}, x_{2}^{i} \in V^{n_{i}} ; i=1,2,3, \ldots, m$. That is we have,
(iii)

$$
\begin{gathered}
r\left[\left(x_{l}^{l}+x_{2}^{l}\right) \cup\left(x_{l}^{2}+x_{2}^{2}\right) \cup \ldots \cup\left(x_{1}^{m}+x_{2}^{m}\right)\right] \\
=r_{l}\left(x_{l}^{l}+x_{2}^{l}\right) \cup r_{2}\left(x_{l}^{2}+x_{2}^{2}\right) \cup \ldots \cup r_{m}\left(x_{1}^{m}+x_{2}^{m}\right) \\
\leq r_{1}\left(x_{1}^{1}\right)+r_{1}\left(x_{2}^{1}\right) \cup r_{2}\left(x_{1}^{2}\right)+r_{2}\left(x_{2}^{2}\right) \cup \ldots \cup r_{m}\left(x_{1}^{m}\right)+r_{m}\left(x_{2}^{m}\right)
\end{gathered}
$$

(as we have for every

$$
x_{1}^{i}, x_{2}^{i} \in V^{n_{i}} ; r_{i}\left(x_{1}^{i}+x_{2}^{i}\right) \leq r_{i}\left(x_{1}^{i}\right)+r_{i}\left(x_{2}^{i}\right)
$$

for $i=1,2,3, \ldots, m)$.
(iv) $r_{1}\left(a_{1} x_{1}\right) \cup r_{2}\left(a_{2} x_{2}\right) \cup \ldots \cup r_{m}\left(a_{m} x_{m}\right)=\left|a_{1}\right| r_{1}\left(x_{1}\right) \cup$ $\left|a_{2}\right| r_{2}\left(x_{2}\right) \cup \ldots \cup\left|a_{m}\right| r_{m}\left(x_{m}\right)$ for every $a_{1}, a_{2}, \ldots, a_{m} \in F_{q}$ or $G F(2)$ and for every $x_{i} \in V^{n_{i}} ; i=1,2,3, \ldots, m$.

Thus the m-function $x_{1} \cup x_{2} \cup \ldots \cup x_{m} \rightarrow r_{1}\left(x_{1}\right) \cup r_{2}\left(x_{2}\right) \cup \ldots \cup$ $r_{m}\left(x_{m}\right)$ defines a m-norm on $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$.

DEFINITION 3.3: The m-metric induced by the m-rank m-norm is defined as the m-rank m-metric on $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ and is denoted by $d_{R_{1}} \cup d_{R_{2}} \cup \ldots \cup d_{R_{m}}$. If $x_{1}^{1} \cup x_{2}^{1} \cup \ldots \cup x_{m}^{1}, y_{1}^{1} \cup y_{2}^{1}$ $\cup \ldots \cup y_{m}^{1} \in V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ then the m-rank m-distance between $x_{1}^{l} \cup x_{2}^{l} \cup \ldots \cup x_{m}^{l}$ and $y_{1}^{l} \cup y_{2}^{l} \cup \ldots \cup y_{m}^{l}$ is

$$
\begin{gathered}
d_{R_{l}}\left(x_{1}^{l}, y_{1}^{l}\right) \cup d_{R_{2}}\left(x_{2}^{l}, y_{2}^{l}\right) \cup \ldots \cup d_{R_{m}}\left(x_{m}^{l}, y_{m}^{l}\right)= \\
r_{1}\left(x_{1}^{l}-y_{l}^{l}\right) \cup r_{2}\left(x_{2}^{l}-y_{2}^{l}\right) \cup \ldots \cup r_{m}\left(x_{m}^{l}-y_{m}^{l}\right)
\end{gathered}
$$

for every $x_{i}^{l}, y_{i}^{l} \in V^{n_{i}}, i=1,2,3, \ldots, m$ (Here $d_{R_{i}}\left(x_{i}^{l}, y_{i}^{l}\right)=$ $r_{i}\left(x_{i}^{l}-y_{i}^{l}\right)$ for every $x_{i}^{l}, y_{i}^{l} \in V^{n_{i}} ;$ for $\left.i=1,2,3, \ldots, m\right)$.

DEFINITION 3.4: A linear m-space $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ over $G F\left(2^{N}\right), N>1$ of m-dimension $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$ such that $n_{i} \leq$ N for $i=1,2,3, \ldots, m$ equipped with the m-rank m-metric is defined as the m-rank m-space.

DEFINITION 3.5: A m-rank m-distance $R D$ m-code of m-length $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$ over $G F\left(2^{N}\right)$ is a m-subset of the m-rank m space $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ over $G F\left(2^{N}\right)$.

DEFINITION 3.6: A linear $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right]$ $R D$-m-code is a linear m-subspace of m-dimension $k_{1} \cup k_{2} \cup \ldots$ $\cup k_{m}$ in the m-rank m-space $V^{n_{l}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$. By $C_{l}\left[n_{1}, k_{l}\right]$ $\cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ we denote a linear $\left[n_{1}, k_{1}\right] \cup$ $\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] R D$ m-code.

We can equivalently define a RD m-code as follows:

DEFINITION 3.7: Let $V^{n_{1}}, V^{n_{2}}, \ldots, V^{n_{m}}$ be rank spaces $n_{i} \neq n_{j}$ if i $\neq j$ over $G F\left(2^{N}\right), N>1$. Suppose $P_{i} \subseteq V^{n_{i}}, i=1,2,3, \ldots, m$ be subset of the rank spaces over $G F\left(2^{N}\right)$. Then $P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ $\subseteq V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ is a rank distance m-code of m-length $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ over $G F\left(2^{N}\right)$.

DEFINITION 3.8: A generator m-matrix of a linear $\left[n_{1}, k_{1}\right] \cup$ $\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] R D$-m-code $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a $k_{1} \times$ $n_{1} \cup k_{2} \times n_{2} \cup \ldots \cup k_{m} \times n_{m}$, m-matrix over $G F\left(2^{N}\right)$ whose mrows form a m-basis for $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$.

A generator m-matrix $G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}$ of a linear $R D$ m-code $C_{l}\left[n_{1}, k_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ can be brought into the form $G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}=\left[I_{k_{1}}, A_{k_{1} \times n_{1}-k_{l}}\right]$ $\cup\left[I_{k_{2}}, A_{k_{2} \times n_{2}-k_{2}}\right] \cup \ldots \cup\left[I_{k_{m}}, A_{k_{m} \times n_{m}-k_{m}}\right]$ where $I_{k_{1}}, I_{k_{2}}, \ldots, I_{k_{m}}$ is the identity matrix and $A_{k_{i} \times n_{i}-k_{i}}$ is some matrix over $G F\left(2^{N}\right) ; i=1$, $2,3, \ldots, m$; this form of $G=G_{l} \cup G_{2} \cup \ldots \cup G_{m}$ is called the standard form.

DEFINITION 3.9: If $G=G_{l} \cup G_{2} \cup \ldots \cup G_{m}$ is a generator mmatrix of $C_{1}\left[n_{1}, k_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ then a m matrix $H=H_{1} \cup H_{2} \cup \ldots \cup H_{m}$ of order $\left(n_{1}-k_{1} \times n_{1}, n_{2}-k_{2} \times\right.$ $\left.n_{2}, \ldots, n_{m}-k_{m} \times n_{m}\right)$ over $G F\left(2^{N}\right)$ such that,

$$
\begin{aligned}
G H^{T}=\left(G_{l}\right. & \left.\cup G_{2} \cup \ldots \cup G_{m}\right)\left(H_{l} \cup H_{2} \cup \ldots \cup H_{m}\right)^{T} \\
& =\left(G_{1} \cup G_{2} \cup \ldots \cup G_{m}\right)\left(H_{l}^{T} \cup H_{2}^{T} \cup \ldots \cup H_{m}^{T}\right) \\
& =G_{l} H_{l}^{T} \cup G_{2} H_{2}^{T} \cup \ldots \cup G_{m} H_{m}^{T} \\
& =0 \cup 0 \cup \ldots \cup 0
\end{aligned}
$$

is called a parity check m-matrix of $C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots$ $\cup C_{m}\left[n_{m}, k_{m}\right]$. Suppose $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a linear $\left[n_{l}\right.$, $\left.k_{1}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] R D$ m-code with $G=G_{1} \cup G_{2} \cup$ $\ldots \cup G_{m}$ and $H=H_{l} \cup H_{2} \cup \ldots \cup H_{m}$ as its generator and parity check m-matrix respectively, then $C=C_{1} \cup C_{2} \cup \ldots \cup$ C_{m} has two representations.
(a) $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a row m-space of $G=G_{1} \cup$ $G_{2} \cup \ldots \cup G_{m}$ (i.e., C_{i} is the row space of G_{i} for $i=1,2$, 3, ..., m).
(b) $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is the solution m-space of $H=$ $H_{l} \cup H_{2} \cup \ldots \cup H_{m}$ (i.e.; C_{i} is the solution space of H_{i} for $i=1,2,3, \ldots, m)$.

Now we proceed on to define the notion of minimum rank mdistance of the rank distance m-code $C=C_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$.

DEFINITION 3.10: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a rank distance m-code, the minimum rank m-distance $d=d_{1} \cup d_{2} \cup$ $\ldots \cup d_{m}$ is defined by

$$
d_{i}=\min \left\{\begin{array}{l|l}
d_{R_{i}}\left(x_{i}, y_{i}\right) & \begin{array}{l}
x_{i}, y_{i} \in C_{i} \\
x_{i} \neq y_{i}
\end{array}
\end{array}\right\}
$$

$i=1,2,3, \ldots, m$. That is

$$
\begin{gathered}
d=d_{l} \cup d_{2} \cup \ldots \cup d_{m} \\
=\min \left\{r_{l}\left(x_{1}\right) / x_{1} \in C_{1} \text { and } x_{l} \neq 0\right\} \cup \\
\min \left\{r_{2}\left(x_{2}\right) / x_{2} \in C_{2} \text { and } x_{2} \neq 0\right\} \cup \ldots \\
\cup \min \left\{r_{m}\left(x_{m}\right) / x_{m} \in C_{m} \text { and } x_{m} \neq 0\right\} .
\end{gathered}
$$

If an $R D$ m-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ has the minimum rank m-distance $d=d_{1} \cup d_{2} \cup \ldots \cup d_{m}$ then it can correct all m errors $e=e_{1} \cup e_{2} \cup \ldots \cup e_{m} \in F_{q^{N}}^{n_{t}} \cup F_{q^{i}}^{n_{2}} \cup \ldots \cup F_{q^{n}}^{n_{m}}$ with mrank

$$
\begin{aligned}
r(e)= & \left(r_{1} \cup r_{2} \cup \ldots \cup r_{m}\right)\left(e_{1} \cup e_{2} \cup \ldots \cup e_{m}\right) \\
& =r_{1}\left(e_{1}\right) \cup r_{2}\left(e_{2}\right) \cup \ldots \cup r_{m}\left(e_{m}\right) \\
\leq & \left\lfloor\frac{d_{1}-1}{2}\right\rfloor \cup\left\lfloor\frac{d_{2}-1}{2}\right\rfloor \cup \ldots \cup\left\lfloor\frac{d_{n}-1}{2}\right\rfloor .
\end{aligned}
$$

Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ denote an $\left[n_{1}, k_{l}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup$ [$\left.n_{m}, k_{m}\right]$ RD m-code over $F_{q^{v}}$.

A generator m-matrix $G=G_{l} \cup G_{2} \cup \ldots \cup G_{m}$ of $C=C_{l} \cup$ $C_{2} \cup \ldots \cup C_{m}$ is a $k_{1} \times n_{1} \cup k_{2} \times n_{2} \cup \ldots \cup k_{m} \times n_{m}$, m-matrix
with entries from $F_{q^{N}}$ whose rows form a m-basis for $C=C_{l} \cup$ $C_{2} \cup \ldots \cup C_{m}$.

Then an $\left(n_{1}-k_{l}\right) \times n_{1} \cup\left(n_{2}-k_{2}\right) \times n_{2} \cup \ldots \cup\left(n_{m}-k_{m}\right) \times n_{m}$ m-matrix $H=H_{1} \cup H_{2} \cup \ldots \cup H_{m}$ with entries from $F_{q^{N}}$ such that,

$$
\begin{gathered}
G H^{T}=\left(G_{1} \cup G_{2} \cup \ldots \cup G_{m}\right)\left(H_{1} \cup H_{2} \cup \ldots \cup H_{m}\right)^{T} \\
=\left(G_{1} \cup G_{2} \cup \ldots \cup G_{m}\right)\left(H_{1}^{T} \cup H_{2}^{T} \cup \ldots \cup H_{m}^{T}\right) \\
=G_{1} H_{1}^{T} \cup G_{2} H_{2}^{T} \cup \ldots \cup G_{m} H_{m}^{T} \\
=0 \cup 0 \cup \ldots \cup 0
\end{gathered}
$$

is called the parity check m-matrix of the $R D$ m-code $C=C_{1} \cup$ $C_{2} \cup \ldots \cup C_{m}$.

The result analogous to Singleton-Style bound in case of RD mcode is given in the following.

Result: (Singleton-Style bound). The minimum rank m-distance $\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2} \cup \ldots \cup \mathrm{~d}_{\mathrm{m}}$ of any linear $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup$ $\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ RD m-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}} \subseteq$ $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{q}^{\mathrm{N}}}^{\mathrm{n}_{\mathrm{m}}}$ satisfies the following bounds $\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2}$ $\cup \ldots \cup \mathrm{d}_{\mathrm{m}} \leq \mathrm{n}_{1}-\mathrm{k}_{1}+1 \cup \mathrm{n}_{2}-\mathrm{k}_{2}+1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}+1$.

Based on this notion we now proceed on to define the new notion of Maximum Rank Distance m-codes.

DEFINITION 3.11: $A n\left[n_{1}, k_{1}, d_{1}\right] \cup\left[n_{2}, k_{2}, d_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right.$, $\left.d_{m}\right] R D$-m-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is called a Maximum Rank Distance (MRD) m-code if the Singleton Style bound is reached that is $d=d_{1} \cup d_{2} \cup \ldots \cup d_{m}=n_{1}-k_{1}+1 \cup n_{2}-k_{2}+$ $1 \cup \ldots \cup n_{m}-k_{m}+1$.

Now we proceed on to briefly give the construction of MRD mcode.

Let $[\mathrm{s}]=\left[\mathrm{s}_{1}\right] \cup\left[\mathrm{s}_{2}\right] \cup \ldots \cup\left[\mathrm{s}_{\mathrm{m}}\right]=\mathrm{q}^{\mathrm{s}_{1}} \cup \mathrm{q}^{\mathrm{s}_{2}} \cup \ldots \cup \mathrm{q}^{\mathrm{s}_{\mathrm{m}}}$ for any m integers $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{m}}$. Let $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}_{1}}\right\} \cup\left\{\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{n}_{2}}\right\}$
$\cup \ldots \cup\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}_{\mathrm{m}}}\right\}$ be any m -set of elements in $\mathrm{F}_{\mathrm{q}^{\mathrm{N}}}$ that are linearly independent over F_{q}. A generator m-matrix $\mathrm{G}=\mathrm{G}_{1} \cup$ $\mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{\mathrm{m}}$ of an MRD m-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is defined by $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{\mathrm{m}}$

$$
\begin{gathered}
=\left[\begin{array}{cccc}
\mathrm{g}_{1} & \mathrm{~g}_{2} & \ldots & \mathrm{~g}_{\mathrm{n}_{1}} \\
\mathrm{~g}_{1}^{[1]} & \mathrm{g}_{2}^{[1]} & \ldots & \mathrm{g}_{\mathrm{n}_{1}}^{[1]} \\
\mathrm{g}_{1}^{[2]} & \mathrm{g}_{2}^{[2]} & \ldots & \mathrm{g}_{\mathrm{n}_{1}}^{[2]} \\
\vdots & \vdots & & \vdots \\
\mathrm{g}_{1}^{\left[k_{1}-1\right]} & \mathrm{g}_{2}^{\left[k_{1}-1\right]} & \ldots & \mathrm{g}_{\left.\mathrm{n}_{1}-1\right]}^{\left[k_{1}-1\right]}
\end{array}\right] \cup\left[\begin{array}{cccc}
\mathrm{h}_{1} & \mathrm{~h}_{2} & \ldots & \mathrm{~h}_{\mathrm{n}_{2}} \\
\mathrm{~h}_{1}^{[1]} & \mathrm{h}_{2}^{[1]} & \ldots & \mathrm{h}_{\mathrm{n}_{2}}^{[1]} \\
\mathrm{h}_{1}^{[2]} & \mathrm{h}_{2}^{[2]} & \ldots & \mathrm{h}_{\mathrm{n}_{2}}^{[2]} \\
\vdots & \vdots & & \vdots \\
h_{1}^{\left[k_{2}-1\right]} & h_{2}^{\left[k_{2}-1\right]} & \ldots & \mathrm{h}_{\left.\mathrm{n}_{2}-1\right]}^{\left[k_{2}-1\right]}
\end{array}\right] \\
\\
\\
\\
\\
\\
\end{gathered}
$$

It can be easily proved that the m-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ given by the generator m-matrix $G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}$ has the rank m-distance $d=d_{1} \cup d_{2} \cup \ldots \cup d_{m}$. Any m-matrix of the above form is called a Frobenius m-matrix with generating m -vector

$$
\begin{gathered}
g_{c}=g_{c_{1}} \cup g_{c_{2}} \cup \ldots \cup g_{c_{m}} \\
=\left(g_{1}, g_{2}, \ldots, g_{n_{1}}\right) \cup\left(h_{1}, h_{2}, \ldots, h_{n_{2}}\right) \cup \ldots \cup\left(p_{1}, p_{2}, \ldots, p_{m_{n}}\right) .
\end{gathered}
$$

Interested reader can prove the following theorem:
Theorem 3.1: Let $C[n, k]=C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup$ $C_{m}\left[n_{m}, k_{m}\right]$ be the linear $\left[n_{1}, k_{1}, d_{l}\right] \cup\left[n_{2}, k_{2}, d_{2}\right] \cup \ldots \cup\left[n_{m}\right.$, $\left.k_{m}, d_{m}\right]$ MRD m-code with $d_{i}=2 t_{i}+1$ for $i=1,2,3, \ldots, m$. Then $C[n, k]=C_{1}\left[n_{1}, k_{1}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ m-code
corrects all m-errors of m-rank atmost $t=t_{1} \cup t_{2} \cup \ldots \cup t_{m}$ and detects all m-errors of m-rank greater than $t=t_{1} \cup t_{2} \cup \ldots \cup t_{m}$. Consider the Galois field $G F\left(2^{N}\right) ; N>1$. An element

$$
\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m} \in \underbrace{G F\left(2^{N}\right) \cup G F\left(2^{N}\right) \cup \ldots \cup G F\left(2^{N}\right)}_{m \text {-times }}
$$

can be denoted by m-N-tuple

$$
\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{N-1}^{1}\right) \cup\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{N-1}^{2}\right) \cup \ldots \cup\left(a_{0}^{m}, a_{1}^{m}, \ldots, a_{N-1}^{m}\right)
$$

as well as by the m-polynomial

$$
\begin{gathered}
a_{0}^{1}+a_{1}^{1} x+\ldots+a_{N-1}^{1} x^{N-1} \cup a_{0}^{2}+a_{1}^{2} x+\ldots+a_{N-1}^{2} x^{N-1} \\
\cup \ldots \cup a_{0}^{m}+a_{1}^{m} x+\ldots+a_{N-1}^{m} x^{N-1}
\end{gathered}
$$

over $G F(2)$

We now proceed on to define the new notion of circulant m transpose.

DEFINITION 3.12: The circulant m-transpose

$$
T_{C}=T_{C_{I}}^{1} \cup T_{C_{2}}^{2} \cup \ldots \cup T_{C_{m}}^{m}
$$

of a m-vector

$$
\begin{gathered}
\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}= \\
\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{N-1}^{l}\right) \cup\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{N-1}^{2}\right) \cup \ldots \cup\left(a_{0}^{m}, a_{1}^{m}, \ldots, a_{N-1}^{m}\right)
\end{gathered}
$$

$\in G F\left(2^{N}\right)$ is defined as,

$$
\begin{gathered}
\alpha^{T_{C}}=\alpha_{1}^{T_{C_{1}}^{l}} \cup \alpha_{2}^{T_{C_{2}}^{2}} \cup \ldots \cup \alpha_{m}^{T_{C_{m}}^{m}}= \\
\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n_{1}}^{l}\right) \cup\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n_{2}}^{2}\right) \cup \ldots \cup\left(a_{0}^{m}, a_{1}^{m}, \ldots, a_{n_{m}}^{m}\right) \\
\text { If } \alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m} \in \underbrace{G F\left(2^{N}\right) \cup G F\left(2^{N}\right) \cup \ldots \cup G F\left(2^{N}\right)}_{m-\text { times }}
\end{gathered}
$$

has the m-polynomial representation

$$
\begin{gathered}
a_{0}^{1}+a_{1}^{1} x+\ldots+a_{N-1}^{1} x^{N-1} \cup a_{0}^{2}+a_{1}^{2} x+\ldots+a_{N-1}^{2} x^{N-1} \\
\cup \ldots \cup a_{0}^{m}+a_{1}^{m} x+\ldots+a_{N-1}^{m} x^{N-1}
\end{gathered}
$$

in

$$
\frac{G F(2)[x]}{\left(x^{N}+1\right)} \cup \frac{G F(2)[x]}{\left(x^{N}+1\right)} \cup \ldots \cup \frac{G F(2)[x]}{\left(x^{N}+1\right)}
$$

then by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}$, we denote the m-vector corresponding to the m-polynomial

$$
\begin{gathered}
{\left[a_{0}^{1}+a_{1}^{1} x+\ldots+a_{N-1}^{1} x^{N-1} \cdot x^{i}\right] \bmod \left(x^{N}+1\right) \cup} \\
{\left[a_{0}^{2}+a_{1}^{2} x+\ldots+a_{N-1}^{2} x^{N-1} \cdot x^{i}\right] \bmod \left(x^{N}+1\right) \cup \ldots \cup} \\
{\left[a_{0}^{m}+a_{1}^{m} x+\ldots+a_{N-1}^{m} x^{N-1} \cdot x^{i}\right] \bmod \left(x^{N}+1\right)}
\end{gathered}
$$

for $i=0,1,2,3, \ldots, N-1\left(\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}=\alpha_{o}\right)$.
We now proceed onto define the m -word generated by $\alpha=\alpha_{1} \cup$ $\alpha_{2} \cup \ldots \cup \alpha_{m}$.

DEFINITION 3.13: Let $f=f_{1} \cup f_{2} \cup \ldots \cup f_{m}$:

$$
\begin{gathered}
\underbrace{G}_{m\left(2^{N}\right) \cup G F\left(2^{N}\right) \cup \ldots \cup G F\left(2^{N}\right)} \underbrace{\left[G F\left(2^{N}\right)\right]^{N} \cup\left[G F\left(2^{N}\right)\right]^{N} \cup \ldots \cup\left[G F\left(2^{N}\right)\right]^{N}}_{m \text {-times }}
\end{gathered}
$$

be defined as

$$
\begin{gathered}
f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\alpha_{2}\right) \cup \ldots \cup f_{m}\left(\alpha_{m}\right) \\
=\left(\alpha_{10}^{T_{C_{1}}^{1}}, \alpha_{11}^{T_{C_{1}}^{1}}, \ldots, \alpha_{1 N-1}^{T_{C_{1}}^{1}}\right) \cup\left(\alpha_{20}^{T_{C_{2}}^{2}}, \alpha_{21}^{T_{C_{2}}^{2}}, \ldots, \alpha_{2 N-1}^{T_{C_{2}}^{2}}\right) \cup \ldots \\
\cup\left(\alpha_{m 0}^{T_{C_{m}}^{m}}, \alpha_{m l}^{T_{C_{m}}^{m}}, \ldots, \alpha_{m N-1}^{T_{C_{m}}^{m}}\right)
\end{gathered}
$$

We call $f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\alpha_{2}\right) \cup \ldots \cup f_{m}\left(\alpha_{m}\right)$ as the m-code word generated by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}$.

We analogous to the definition of Macwilliams and Solane define circulant m-matrix associated with a m-vector in $\operatorname{GF}\left(2^{\mathrm{N}}\right)$ $\cup \mathrm{GF}\left(2^{\mathrm{N}}\right) \cup \ldots \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$.

DEFINITION 3.14: A m-matrix of the form

$$
\left[\begin{array}{cccc}
a_{0}^{1} & a_{1}^{1} & \ldots & a_{N-1}^{1} \\
a_{N-1}^{1} & a_{0}^{1} & \ldots & a_{N-2}^{1} \\
\vdots & \vdots & & \vdots \\
a_{1}^{1} & a_{2}^{1} & \ldots & a_{0}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
a_{0}^{2} & a_{1}^{2} & \ldots & a_{N-1}^{2} \\
a_{N-1}^{2} & a_{0}^{2} & \ldots & a_{N-2}^{2} \\
\vdots & \vdots & & \vdots \\
a_{1}^{2} & a_{2}^{2} & \ldots & a_{0}^{2}
\end{array}\right]
$$

$$
\cup \ldots \cup\left[\begin{array}{cccc}
a_{0}^{m} & a_{1}^{m} & \ldots & a_{N-1}^{m} \\
a_{N-1}^{m} & a_{0}^{m} & \ldots & a_{N-2}^{m} \\
\vdots & \vdots & & \vdots \\
a_{1}^{m} & a_{2}^{m} & \ldots & a_{0}^{m}
\end{array}\right]
$$

is called the circulant m-matrix associated with the m-vector $\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{N-1}^{1}\right) \cup\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{N-1}^{2}\right) \cup \ldots \cup\left(a_{0}^{m}, a_{1}^{m}, \ldots, a_{N-1}^{m}\right) \in$ $G F\left(2^{N}\right) \cup G F\left(2^{N}\right) \cup \ldots \cup G F\left(2^{N}\right)$.

Thus with each $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{m}} \in \operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \operatorname{GF}\left(2^{\mathrm{N}}\right) \cup$ $\ldots \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$ we can associate a circulant m-matrix whose $\mathrm{i}^{\text {th }} \mathrm{m}$ columns represents $\alpha_{1 i}^{T_{C_{1}}} \cup \alpha_{2 i}^{T_{c_{2}}^{2}} \cup \ldots \cup \alpha_{m i}^{T_{\mathrm{m}} \mathrm{Tm}_{\mathrm{m}}} ; i=0,1,2, \ldots, \mathrm{~N}-1$. $f=f_{1} \cup f_{2} \cup \ldots \cup f_{m}$ is nothing but a m-mapping of $\operatorname{GF}\left(2^{N}\right) \cup$ $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \ldots \cup \mathrm{GF}\left(2^{\mathrm{N}}\right)$ onto the pseudo false m -algebra of all N $\times \mathrm{N}$ circulant m-matrices over GF(2). Denote the m -space of $\mathrm{f}\left(\mathrm{GF}\left(2^{\mathrm{N}}\right)\right)=\mathrm{f}_{1}\left(\mathrm{GF}\left(2^{\mathrm{N}}\right)\right) \cup \mathrm{f}_{2}\left(\operatorname{GF}\left(2^{\mathrm{N}}\right)\right) \cup \ldots \cup \mathrm{f}_{\mathrm{m}}\left(\mathrm{GF}\left(2^{\mathrm{N}}\right)\right)$ by

$$
\underbrace{\mathrm{V}^{\mathrm{N}} \cup \mathrm{~V}^{\mathrm{N}} \cup \ldots \cup \mathrm{~V}^{\mathrm{N}}}_{\text {m-times }} .
$$

We define the m-norm of a m-word

$$
\mathrm{v}=\mathrm{v}_{1} \cup \mathrm{v}_{2} \cup \ldots \cup \mathrm{v}_{\mathrm{m}} \in \underbrace{\mathrm{~V}^{\mathrm{N}} \cup \mathrm{~V}^{\mathrm{N}} \cup \ldots \cup \mathrm{~V}^{\mathrm{N}}}_{\text {m-times }}
$$

as follows :
DEFINITION 3.15: The m-norm of a m-word $v=v_{1} \cup v_{2} \cup \ldots \cup$ $v_{m} \in V^{N} \cup V^{N} \cup \ldots \cup V^{N}$ is defined as the m-rank of $v=v_{1} \cup v_{2}$ $\cup \ldots \cup v_{m}$ over GF(2) [By considering it as a circulant mmatrix over $G F(2)]$.

We denote the m-norm of $\mathrm{v}=\mathrm{v}_{1} \cup \mathrm{v}_{2} \cup \ldots \cup \mathrm{v}_{\mathrm{m}}$ by $\mathrm{r}(\mathrm{v})=\mathrm{r}_{1}\left(\mathrm{v}_{1}\right)$ $\cup \mathrm{r}_{2}\left(\mathrm{v}_{2}\right) \cup \ldots \cup \mathrm{r}_{\mathrm{m}}\left(\mathrm{v}_{\mathrm{m}}\right)$, we prove the following theorem:

Theorem 3.2: Suppose

$$
\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m} \in \underbrace{G F\left(2^{N}\right) \cup G F\left(2^{N}\right) \cup \ldots \cup G F\left(2^{N}\right)}_{m \text {-times }}
$$

has the m-polynomial representation $g(x)=g_{1}(x) \cup g_{2}(x) \cup \ldots$ $\cup g_{m}(x)$ over $G F(2)$ such that $g c d\left(g_{i}(x), x^{N}+1\right)$ has degree $N-k_{i}$ for $i=1,2,3, \ldots, m ; 1 \leq k_{1}, k_{2}, \ldots, k_{m} \leq N$. Then the m-norm of the m-word generated by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}$ is $k_{1} \cup k_{2} \cup$ $\ldots \cup k_{m}$.

Proof: We know the m-norm of the m-word generated by $\alpha=$ $\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{m}}$ is the m-rank of the circulant m-matrix

$$
\begin{gathered}
\left(\alpha_{10}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}, \alpha_{11}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}, \ldots, \alpha_{1 \mathrm{~N}-1}^{\mathrm{T}_{\mathrm{C}_{1}}^{1}}\right) \cup\left(\alpha_{20}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}, \alpha_{21}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}, \ldots, \alpha_{2 \mathrm{~N}-1}^{\mathrm{T}_{\mathrm{C}_{2}}^{2}}\right) \cup \ldots \cup \\
\left(\alpha_{\mathrm{m} 0}^{\mathrm{T}_{\mathrm{m}}^{\mathrm{m}}}, \alpha_{\mathrm{m} 1}^{\mathrm{T}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}}, \ldots, \alpha_{\mathrm{mN}-1}^{\mathrm{T}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}}\right)
\end{gathered}
$$

where $\alpha_{i}^{T_{\mathrm{C}}}=\alpha_{1 \mathrm{i}}^{\mathrm{T}_{\mathrm{C}_{1}}} \cup \alpha_{2 \mathrm{i}}^{\mathrm{T}_{\mathrm{C}_{2}}^{T_{2}}} \cup \ldots \cup \alpha_{\mathrm{mi}}^{\mathrm{T}_{\mathrm{m}}^{m}}$ represents a m-polynomial

$$
\begin{gathered}
{\left[\mathrm{x}^{\mathrm{i}} \mathrm{~g}_{1}(\mathrm{x})\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right) \cup\left[\mathrm{x}^{\mathrm{i}} \mathrm{~g}_{2}(\mathrm{x})\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)} \\
\cup \ldots \cup\left[\mathrm{x}^{\mathrm{i}} \mathrm{~g}_{\mathrm{m}}(\mathrm{x})\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)
\end{gathered}
$$

over GF(2).
Suppose the m-GCD $\left\{\left(\mathrm{g}_{1}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right) \cup\left(\mathrm{g}_{2}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right) \cup \ldots \cup\right.$ $\left.\left(g_{\mathrm{m}}(\mathrm{x}), \mathrm{x}^{\mathrm{N}}+1\right)\right\}$ has m-degree $\mathrm{N}-\mathrm{k}_{1} \cup \mathrm{~N}-\mathrm{k}_{2} \cup \ldots \cup \mathrm{~N}-\mathrm{k}_{\mathrm{m}}$. To prove that the m-word generated by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{m}}$ has m-rank $\mathrm{k}_{1} \cup \mathrm{k}_{2} \cup \ldots \cup \mathrm{k}_{\mathrm{m}}$. It is enough to prove that the m space generated by the N-polynomials $\left\{g_{1}(x) \bmod \left(x^{N}+1\right)\right.$, $\left.\mathrm{x} \cdot \mathrm{g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \ldots, \mathrm{x}^{\mathrm{N}-1} \cdot \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup\left\{\mathrm{g}_{2}(\mathrm{x})\right.$ $\left.\bmod \left(x^{N}+1\right), x \cdot g_{2}(x) \bmod \left(x^{N}+1\right), \ldots, x^{N-1} \cdot g_{2}(x) \bmod \left(x^{N}+1\right)\right\}$ $\cup \ldots \cup\left\{g_{m}(x) \bmod \left(x^{N}+1\right), x \cdot g_{m}(x) \bmod \left(x^{N}+1\right), \ldots, x^{N-1} \cdot g_{m}(x)\right.$ $\left.\bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\}$ has m -dimension $\mathrm{k}_{1} \cup \mathrm{k}_{2} \cup \ldots \cup \mathrm{k}_{\mathrm{m}}$. We will prove that the m-set of $k_{1} \cup k_{2} \cup \ldots \cup k_{\mathrm{m}}$, m-polynomials $\left\{g_{1}(x) \bmod x^{N}+1, x \cdot g_{1}(x) \bmod x^{N}+1, \ldots, x^{N-1} \cdot g_{1}(x) \bmod x^{N}+\right.$ $1\} \cup\left\{g_{2}(x) \bmod x^{N}+1, x \cdot g_{2}(x) \bmod x^{N}+1, \ldots, x^{N-1} \cdot g_{2}(x) \bmod \right.$ $\left.x^{N}+1\right\} \cup \ldots \cup\left\{g_{m}(x) \bmod x^{N}+1, x \cdot g_{m}(x) \bmod x^{N}+1, \ldots\right.$, $\left.x^{\mathrm{N}-1} \cdot \mathrm{~g}_{\mathrm{m}}(\mathrm{x}) \bmod \mathrm{x}^{\mathrm{N}}+1\right\}$ forms a m-basis for the m -space. If possible let,

$$
\begin{gathered}
a_{0}^{1}\left(g_{1}(x)\right)+a_{1}^{1} x\left(g_{1}(x)\right)+\ldots+a_{k_{1}-1}^{1}\left(x_{1}^{k_{1}-1} g_{1}(x)\right) \cup \\
a_{0}^{2}\left(g_{2}(x)\right)+a_{1}^{2} x\left(g_{2}(x)\right)+\ldots+a_{k_{2}-1}^{2}\left(x^{k_{2}-1} g_{2}(x)\right) \cup \ldots \cup \\
a_{0}^{m}\left(g_{m}(x)\right)+a_{1}^{m} x\left(g_{m}(x)\right)+\ldots+a_{k_{k_{m}-1}}^{m}\left(x^{k_{m}-1} g_{m}(x)\right)
\end{gathered}
$$

$$
=0 \cup 0 \cup \ldots \cup 0\left(\bmod x^{N}+1\right)
$$

where $\mathrm{a}_{\mathrm{ji}}^{\mathrm{i}} \in \mathrm{GF}(2), 1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{k}_{\mathrm{i}}-1$ and $\mathrm{i}=1,2, \ldots, \mathrm{~m}$.
This implies

$$
\underbrace{x^{\mathrm{N}+1} \cup x^{\mathrm{N}+1} \cup \ldots \cup x^{\mathrm{N}+1}}_{\text {m-times }}
$$

m-divides

$$
\begin{gathered}
\left(a_{0}^{1}+a_{1}^{1} x+\ldots+a_{k_{1}-1}^{1} x^{k_{1}-1}\right) g_{1}(x) \cup \\
\left(a_{0}^{2}+a_{1}^{2} x+\ldots+a_{k_{2}-1}^{2} x^{k_{2}-1}\right) g_{2}(x) \cup \ldots \cup \\
\left(a_{0}^{m}+a_{1}^{m} x+\ldots+a_{k_{m}-1}^{m} x^{k_{m}-1}\right) g_{m}(x)
\end{gathered}
$$

Now if $g_{1}(x) \cup g_{2}(x) \cup \ldots \cup g_{m}(x)=p_{1}(x) a_{1}(x) \cup p_{2}(x) a_{2}(x) \cup$ $\ldots \cup p_{m}(x) a_{m}(x)$ where $p_{i}(x)$ is the $\operatorname{gcd}\left(g_{i}(x), x^{N}+1\right) ; i=1,2$,
\ldots, m, then $\left(a_{i}(x), x^{N}+1\right)=1$. Thus $\mathrm{x}^{\mathrm{N}}+1 \mathrm{~m}$-divides

$$
\begin{aligned}
& \left(a_{0}^{1}+a_{1}^{1} x+\ldots+a_{k_{1}-1}^{1} x^{k_{1}-1}\right) g_{1}(x) \cup \ldots \cup \\
& \quad\left(a_{0}^{m}+a_{1}^{m} x+\ldots+a_{k_{m}-1}^{m} x^{k_{m}-1}\right) g_{m}(x)
\end{aligned}
$$

implies the m-quotient

$$
\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{1}(\mathrm{x})} \cup \ldots \cup \frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{\mathrm{m}}(\mathrm{x})}
$$

m-divides

$$
\begin{gathered}
\left(a_{0}^{1}+a_{1}^{1} x+\ldots+a_{k_{1}-1}^{1} x^{k_{1}-1}\right) a_{1}(x) \cup \\
\left(a_{0}^{2}+a_{1}^{2} x+\ldots+a_{k_{2}-1}^{2} x^{k_{2}-1}\right) a_{2}(x) \cup \ldots \cup \\
\left(a_{0}^{m}+a_{1}^{m} x+\ldots+a_{k_{m}-1}^{1} x^{k_{m}-1}\right) a_{m}(x)
\end{gathered}
$$

That is

$$
\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{1}(\mathrm{x})}\right] \cup\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{2}(\mathrm{x})}\right] \cup \ldots \cup\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{\mathrm{m}}(\mathrm{x})}\right]
$$

m-divides

$$
\begin{gathered}
\left(a_{0}^{1}+a_{1}^{1} x+\ldots+a_{k_{1}-1}^{1} x^{k_{1}-1}\right) \cup \\
\left(a_{0}^{2}+a_{1}^{2} x+\ldots+a_{k_{2}-1}^{2} x^{k_{2}-1}\right) \cup \ldots \cup \\
\left(a_{0}^{m}+a_{1}^{m} x+\ldots+a_{k_{m}-1}^{1} x^{k_{m}-1}\right)
\end{gathered}
$$

which is a contradiction, as

$$
\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{1}(\mathrm{x})}\right] \cup\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{2}(\mathrm{x})}\right] \cup \ldots \cup\left[\frac{\left(\mathrm{x}^{\mathrm{N}}+1\right)}{\mathrm{p}_{\mathrm{m}}(\mathrm{x})}\right]
$$

has m-degree $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}\right)$ where as the m-polynomial

$$
\begin{gathered}
\left(a_{0}^{1}+a_{1}^{1} x+\ldots+a_{k_{1}-1}^{1} x^{k_{1}-1}\right) \cup \\
\left(a_{0}^{2}+a_{1}^{2} x+\ldots+a_{k_{2}-1}^{2} \mathrm{k}_{2}-1\right) \cup \ldots \cup \\
\left(a_{0}^{m}+a_{1}^{m} x+\ldots+a_{k_{k_{m}-1}}^{1} x^{k_{m}-1}\right)
\end{gathered}
$$

has m-degree atmost $\left(\left(k_{1}-1\right),\left(k_{2}-1\right), \ldots,\left(k_{m}-1\right)\right)$. Hence the m-polynomials $\left\{\mathrm{g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \ldots\right.$, $\left.\mathrm{x}^{\mathrm{k}_{1}-1} \cdot \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup\left\{\mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}\right.\right.$ $\left.+1), \ldots, x^{k_{2}-1} \cdot g_{2}(x) \bmod \left(x^{N}+1\right)\right\} \cup \ldots \cup\left\{g_{m}(x) \bmod \left(x^{N}+1\right)\right.$, $\left.x \cdot g_{m}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{m}-1} \cdot g_{m}(x) \bmod \left(x^{N}+1\right)\right\}$ are $m-$ linearly independent over GF(2).

We will prove, $\left\{\mathrm{g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \ldots\right.$, $\left.\mathrm{x}^{\mathrm{k}_{1}-1} \cdot \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup\left\{\mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}\right.\right.$ $\left.+1), \ldots, x^{k_{2}-1} \cdot g_{2}(x) \bmod \left(x^{\mathrm{N}}+1\right)\right\} \cup \ldots \cup\left\{\mathrm{g}_{\mathrm{m}}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right.$, $\left.x \cdot g_{m}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{m}-1} \cdot g_{m}(x) \bmod \left(x^{N}+1\right)\right\}$ generate the m -space.

For this it is enough to prove that $\mathrm{x}^{\mathrm{i}} \mathrm{g}_{1}(\mathrm{x}) \cup \mathrm{x}^{\mathrm{i}} \mathrm{g}_{2}(\mathrm{x}) \cup \ldots \cup$ $x^{i} g_{m}(x)$ is a linear combination of these m-polynomials for $k_{j} \leq i$ $\leq \mathrm{N}-1 ; \mathrm{j}=1,2,3, \ldots, \mathrm{~m}$.

$$
\begin{gathered}
\underbrace{x^{N}+1 \cup x^{N}+1 \cup \ldots x^{N}+1}_{\text {m-times }} \\
=p_{1}(x) b_{1}(x) \cup p_{2}(x) b_{2}(x) \cup \ldots \cup p_{m}(x) b_{m}(x)
\end{gathered}
$$

where $b_{i}(x)=b_{0}^{i}+b_{1}^{i} x+\ldots+b_{k_{i}}^{i} x^{k_{i}} ; i=1,2,3, \ldots, m$. (Note that $b_{0}^{i}=b_{k_{i}}^{i}=1$ since $b_{i}(x)$ divides $\left.x^{N}+1, i=1,2,3, \ldots, m\right)$. Also we have $g_{i}(x)=p_{i}(x) a_{i}(x)$ for $i=1,2,3, \ldots, m$. Thus

$$
x^{N}+1=\left(\frac{g_{i}(x) b_{i}(x)}{a_{i}(x)}\right)
$$

for $\mathrm{i}=1,2,3, \ldots, \mathrm{~m}$. That is

$$
\frac{\mathrm{g}_{\mathrm{i}}(\mathrm{x})\left(\mathrm{b}_{0}^{\mathrm{i}}+\mathrm{b}_{1}^{\mathrm{i}} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}} \mathrm{x}^{\mathrm{k}_{\mathrm{i}}}\right)}{\mathrm{a}_{\mathrm{i}}(\mathrm{x})}=0 \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)
$$

$(\mathrm{i}=1,2,3, \ldots, \mathrm{~m})$ that is

$$
\frac{\mathrm{g}_{\mathrm{i}}(\mathrm{x})\left(\mathrm{b}_{0}^{\mathrm{i}}+\mathrm{b}_{1}^{\mathrm{i}} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{k}_{\mathrm{i}}-1}^{\mathrm{i}} \mathrm{x}^{\mathrm{k}_{\mathrm{i}}-1}\right)}{\mathrm{a}_{\mathrm{i}}(\mathrm{x})}=\left[\frac{\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \cdot \mathrm{x}^{\mathrm{k}_{\mathrm{i}}}}{\mathrm{a}_{\mathrm{i}}(\mathrm{x})}\right] \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)
$$

true for $\mathrm{i}=1,2,3, \ldots, \mathrm{~m}$. Hence
$x^{k_{i}} g_{i}(x)=\left(b_{0}^{i} g_{i}(x)+b_{1}^{i} x g_{i}(x)+\ldots+b_{k_{i}-1}^{i} x^{k_{i}-1} g_{i}(x)\right) \bmod \left(x^{N}+1\right)$ a linear combination of $\left\{g_{i}(x) \bmod \left(x^{N}+1\right),\left[x \cdot g_{i}(x)\right] \bmod \left(x^{N}+\right.\right.$ 1), $\left.\ldots, \mathrm{x}^{\mathrm{k}_{\mathrm{i}}-1} \cdot \mathrm{~g}_{\mathrm{m}}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\}$ over $\mathrm{GF}(2)$.

This is true for each i, for $i=1,2,3, \ldots, m$. Now it can be easily proved that $x^{i} g_{1}(x) \cup x^{i} g_{2}(x) \cup \ldots \cup x^{i} g_{m}(x)$ is a m-linear combination of $\left\{g_{1}(x) \bmod \left(x^{N}+1\right), x \cdot g_{1}(x) \bmod \left(x^{N}+1\right), \ldots\right.$, $\left.\mathrm{x}^{\mathrm{k}_{1}-1} \cdot \mathrm{~g}_{1}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup\left\{\mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{2}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}\right.\right.$ $\left.+1), \ldots, x^{k_{2}-1} \cdot g_{2}(x) \bmod \left(x^{N}+1\right)\right\} \cup \ldots \cup\left\{g_{m}(x) \bmod \left(x^{N}+1\right)\right.$, $\left.x \cdot g_{m}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{m}-1} \cdot g_{m}(x) \bmod \left(x^{N}+1\right)\right\}$ for $i>k_{j} ; j=$ $1,2, \ldots, m$ m.

Hence the m -space generated by the m-polynomials $\left\{\mathrm{g}_{1}(\mathrm{x})\right.$ $\left.\bmod \left(x^{N}+1\right), x \cdot g_{1}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{1}-1} \cdot g_{1}(x) \bmod \left(x^{N}+1\right)\right\}$ $\cup\left\{g_{2}(x) \bmod \left(x^{N}+1\right), x \cdot g_{2}(x) \bmod \left(x^{N}+1\right), \ldots, x^{k_{2}-1} \cdot g_{2}(x)\right.$ $\left.\bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\} \cup \ldots \cup\left\{\mathrm{g}_{\mathrm{m}}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right), \mathrm{x} \cdot \mathrm{g}_{\mathrm{m}}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right.$, $\left.\ldots, \mathrm{x}^{\mathrm{k}_{\mathrm{m}}-1} \cdot \mathrm{~g}_{\mathrm{m}}(\mathrm{x}) \bmod \left(\mathrm{x}^{\mathrm{N}}+1\right)\right\}$ has m -dimension $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}\right)$. That is the m-rank of a m-word generated by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots$ $\cup \alpha_{m}$ is $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$.

COROLLARY 3.1: If $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m} \in$ $\underbrace{G F\left(2^{N}\right) \cup \ldots G F\left(2^{N}\right)}_{m \text {-times }}$ then the m-norm of the m-word generated by $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}$ is (N, N, \ldots, N) and hence $f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\alpha_{2}\right) \cup \ldots \cup f_{m}\left(\alpha_{m}\right)$ is m-invertible. (We say
$f(\alpha)$ is m-invertible if each $f_{i}(\alpha)$ is invertible for $i=1,2,3, \ldots$, $m)$.

Proof: The corollary follows immediately from the theorem since $\operatorname{gcd}\left(g_{i}(x), x^{N}+1\right)=1$ has degree 0 for $i=1,2,3, \ldots, m$; hence the m-rank of $f(\alpha)=f_{1}\left(\alpha_{1}\right) \cup f_{2}\left(\alpha_{2}\right) \cup \ldots \cup f_{m}\left(\alpha_{m}\right)$ is $(N$, $\mathrm{N}, \ldots, \mathrm{N})$.

DEFINITION 3.16: The m-distance between two m-words $u, v \in$ $V^{N} \cup \ldots \cup V^{N}$ is defined as, $d(u, v)=d_{l}\left(u_{1}, v_{l}\right) \cup \ldots \cup d_{m}\left(u_{m}\right.$, $\left.v_{m}\right)=r_{l}\left(u_{l}+v_{l}\right) \cup \ldots \cup r_{m}\left(u_{m}+v_{m}\right)$ where $u=u_{1} \cup u_{2} \cup \ldots \cup$ u_{m} and $v=v_{l} \cup v_{2} \cup \ldots \cup v_{m}$.

DEFINITION 3.17: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a circulant rank m-code of m-length $N_{1} \cup N_{2} \cup \ldots \cup N_{m}$ which is a msubspace of $V^{N_{1}} \cup V^{N_{2}} \cup \ldots \cup V^{N_{m}}$ equipped with the m-distance m-function $d_{l}\left(u_{1}, v_{l}\right) \cup d_{2}\left(u_{2}, v_{2}\right) \cup \ldots \cup d_{m}\left(u_{m}, v_{m}\right)=r_{1}\left(u_{1}+v_{l}\right)$ $\cup r_{2}\left(u_{2}+v_{2}\right) \cup \ldots \cup r_{m}\left(u_{m}+v_{m}\right)$ where $V^{N_{1}}, V^{N_{2}}, \ldots, V^{N_{m}}$ are rank spaces defined over $G F\left(2^{N}\right)$ with $N_{i} \neq N_{j}$ if $i \neq j . C=C_{1} \cup$ $C_{2} \cup \ldots \cup C_{m}$ is defined as the circulant m-code of m-length N_{1} $\cup \quad N_{2} \cup \ldots \quad \cup N_{m}$ defined as a m-subspace of $V^{N_{1}} \cup V^{N_{2}} \cup \ldots \cup V^{N_{m}}$ equipped with the m-distance m-function.

DEFINITION 3.18: A circulant m-rank m-code of m-length $N_{I} \cup$ $N_{2} \cup \ldots \cup N_{m}$ is called m-cyclic if whenever $\left(v_{1}^{1}, \ldots, v_{N_{1}}^{1}\right) \cup$ $\left(v_{1}^{2}, \ldots, v_{N_{2}}^{2}\right) \cup \ldots \cup\left(v_{1}^{m}, \ldots, v_{N_{m}}^{m}\right)$ is a m-code word then it implies $\left(v_{2}^{1}, v_{3}^{1}, \ldots, v_{N_{1}}^{1}, v_{1}^{1}\right) \cup\left(v_{2}^{2}, v_{3}^{2}, \ldots, v_{N_{2}}^{2}, v_{1}^{2}\right) \cup \ldots \cup\left(v_{2}^{m}, v_{3}^{m}, \ldots, v_{N_{m}}^{m}, v_{1}^{m}\right)$ is also a m-code word.

Now we proceed on to define quasi MRD-m-codes.
DEFINITION 3.19: Let $C=C_{I} \cup C_{2} \cup \ldots \cup C_{m}$ be a $R D$ rank mcode where each $C_{i} \neq C_{j}$ if $i \neq j$. If some of the C_{i} 's are MRD codes and others are $R D$ codes then we call $C=C_{1} \cup C_{2} \cup \ldots$ $\cup C_{m}$ to be a quasi MRD m-code.

Note: If r_{1} are MRD codes and r_{2} are RD codes $\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{m},\left(\mathrm{r}_{1} \geq\right.$ $1, r_{2} \geq 1$). Then we call C to be a quasi ($\mathrm{r}_{1}, \mathrm{r}_{2}$) MRD m-code. We can say $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{r}_{\mathrm{i}}}$ are $\mathrm{C}_{\mathrm{i}}\left[\mathrm{n}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}\right]$ RD-codes; $\mathrm{i}=1,2,3, \ldots, \mathrm{r}_{1}$ and $C_{j}\left[n_{j}, k_{j}, d_{j}\right]$ are MRD codes for $j=1,2,3, \ldots, r_{2}$ with $r_{1}+r_{2}=$ m .
Thus

$$
\begin{gathered}
\mathrm{C}=\mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \ldots \cup \mathrm{C}_{\mathrm{r}_{1}}\left[\mathrm{n}_{\mathrm{r}_{1}}, \mathrm{k}_{\mathrm{r}_{1}}\right] \\
\cup \mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right] \cup \ldots \cup \mathrm{C}_{\mathrm{r}_{2}}\left[\mathrm{n}_{\mathrm{r}_{2}}, \mathrm{k}_{\mathrm{r}_{2}}, \mathrm{~d}_{\mathrm{r}_{2}}\right]
\end{gathered}
$$

is a quasi ($\mathrm{r}_{1}, \mathrm{r}_{2}$) MRD m-code. Any m-code word in C would be of the form $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$. The m-codes can be used in multi channel simultaneously when one needs both MRD codes and RD codes. This will be useful in applications in such type of channels.

We proceed on to define the notion of quasi circulant m-codes of type I.

DEFINITION 3.20: Let $C_{1}, C_{2}, \ldots, C_{m}$ be m distinct codes some circulant rank codes and others linear RD-codes defined over $G F\left(2^{N}\right) . C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined as the quasi circulant m-code of type I. If in the quasi circulant m-code of type I some of the C_{i} 's are MRD codes i.e., $C_{1}, C_{2}, \ldots, C_{m}$ is a collection of RD codes, MRD codes and circulant rank codes then we define $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ to be a quasi circulant m-code of type II.

We can define also mixed quasi circulant rank m-codes.
DEFINITION 3.21: Let $C_{1}, C_{2}, \ldots, C_{m}$ be a collection of m-codes, all of them distinct $C_{i} \neq C_{j}$ if $i \neq j$ and $C_{i} \not \subset C_{j}$ or $C_{j} \not \subset C_{i}$ if $i \neq j$. If this collection of codes $C_{1}, C_{2}, \ldots, C_{m}$ are such that some of them are RD-codes, some MRD codes, some cyclic circulant rank codes and some only circulant codes then we define $C=$ $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ to be a mixed quasi circulant rank m-code.

DEFINITION 3.22: If $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a collection of distinct circulant codes some C_{i} 's are circulant codes and some
of them are cyclic circulant codes then C is defined to be a mixed circulant m-code.

These codes will find applications in multi channels which have very high error probability and error correction. These multi channels (m-channels) are such that some of the channels have to work only with circulant codes not cyclic circulant codes and some only with cyclic circulant codes these mixed circulant mcodes will be appropriate.

Now we proceed on to define the notion of almost maximum rank distance m-codes.

DEFINITION 3.23: Let $C_{l}\left[n_{l}, k_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ be a collection of m distinct almost maximum rank distance codes with minimum distances greater than equal to $n_{1}-k_{1} \cup n_{2}$ $-k_{2} \cup \ldots \cup n_{m}-k_{m}$ defined over $G F\left(2^{N}\right) . C$ is defined as the Almost Maximum Distance Rank-m-code or (AMRD-m-code) over $G F\left(2^{N}\right)$. An AMRD m-code is called a AMRD - tricode, if $m=3$. An AMRD m-code whose minimum distance is greater than $n_{1}-k_{1} \cup n_{2}-k_{2} \cup \ldots \cup n_{m}-k_{m}$ is an MRD m-code hence the class of MRD m-codes is a subclass of the class of AMRD m-codes.

We have an interesting property about the AMRD m-codes.
Theorem 3.3: When $\left(n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right) \cup \ldots \cup\left(n_{m}-k_{m}\right)$ AMRD m-code $C=C_{l}\left[n_{l}, k_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}\right]$ is such that each $\left(n_{i}-k_{i}\right)$ is odd for $i=1,2,3, \ldots, m$; then

1. The error correcting capability of the $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] \cup$ $\ldots \cup\left[n_{m}, k_{m}\right]$ AMRD m-code is equal to that of an $\left[n_{1}, k_{l}\right]$ $\cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right]$ MRD m-code.
2. An $\left[n_{l}, k_{l}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] A M R D$ m-code is better than any $\left[n_{1}, k_{l}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] m$-code in Hamming metric for error correction.

Proof: (1) Suppose C $=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is a $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}\right.$, $\left.\mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ AMRD m -code such that $\left(\mathrm{n}_{1}-\mathrm{k}_{1}\right) \cup\left(\mathrm{n}_{2}-\right.$
$\left.k_{2}\right) \cup \ldots \cup\left(n_{m}-k_{m}\right)$ is an odd m-integer (i.e., $n_{i}-k_{i} \neq n_{j}-k_{j}$ if i $\neq \mathrm{j}$ are odd integer $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$). The maximum number of m errors corrected by $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is given by

$$
\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2} \cup \ldots \cup \frac{\left(\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}-1\right)}{2} .
$$

But

$$
\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2} \cup \ldots \cup \frac{\left(\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}-1\right)}{2}
$$

is equal to the error correcting capability of an $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right]$ $\cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right] ;$ MRD m- code (since $\left(\mathrm{n}_{1}-\mathrm{k}_{1}\right),\left(\mathrm{n}_{2}-\mathrm{k}_{2}\right), \ldots$, $\left(\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}\right)$ are odd). That is, $\left(\mathrm{n}_{1}-\mathrm{k}_{1}\right) \cup\left(\mathrm{n}_{2}-\mathrm{k}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}-\right.$ k_{m}) is said to be m-odd if each $n_{i}-k_{i}$ is odd for $i=1,2,3, \ldots$, m . Thus a $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ AMRD m-code is as good as an $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ MRD m-code.

Proof: (2) Suppose $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}\right.$, $\left.\mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ AMRD m -code such that $\left(\mathrm{n}_{1}-\mathrm{k}_{1}\right) \cup\left(\mathrm{n}_{2}-\right.$ $\left.k_{2}\right) \cup \ldots \cup\left(n_{m}-k_{m}\right)$ are odd; then each m-code word of C can correct $L_{\mathrm{r}_{1}}\left(\mathrm{n}_{1}\right) \cup \mathrm{L}_{\mathrm{r}_{2}}\left(\mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{L}_{\mathrm{r}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right)=\mathrm{L}_{\mathrm{r}}(\mathrm{n})$ error m -vectors where

$$
\begin{gathered}
\mathrm{r}=\mathrm{r}_{1} \cup \mathrm{r}_{2} \cup \ldots \cup \mathrm{r}_{\mathrm{m}} \\
=\frac{\left(\mathrm{n}_{1}-\mathrm{k}_{1}-1\right)}{2} \cup \frac{\left(\mathrm{n}_{2}-\mathrm{k}_{2}-1\right)}{2} \cup \ldots \cup \frac{\left(\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}-1\right)}{2}
\end{gathered}
$$

and

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{r}}(\mathrm{n})=\mathrm{L}_{\mathrm{r}_{1}}\left(\mathrm{n}_{1}\right) \cup \mathrm{L}_{\mathrm{r}_{2}}\left(\mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{L}_{\mathrm{r}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right) \\
& =1+\sum_{\mathrm{i}=1}^{\mathrm{n}_{1}}\left[\begin{array}{c}
\mathrm{n}_{1} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{i}-1}\right) \cup \\
& 1+\sum_{\mathrm{i}=1}^{\mathrm{n}_{2}}\left[\begin{array}{c}
\mathrm{n}_{2} \\
i
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{i}-1}\right) \cup \\
& \ldots \\
& \\
& \quad 1+\sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{m}}}\left[\begin{array}{c}
\mathrm{n}_{\mathrm{m}} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{i}-1}\right) .
\end{aligned}
$$

Consider the same $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right] \mathrm{m}$-code in Hamming metric. Let it be denoted by $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \ldots \cup \mathrm{D}_{\mathrm{m}}$
then the minimum m-distance of D is atmost $\left(n_{1}-k_{1}+1\right) \cup\left(n_{2}\right.$ $\left.-k_{2}+1\right) \cup \ldots \cup\left(n_{m}-k_{m}+1\right)$. The error correcting capability of D is

$$
\left\lfloor\frac{\mathrm{n}_{1}-\mathrm{k}_{1}+1-1}{2}\right\rfloor \cup\left\lfloor\frac{\mathrm{n}_{2}-\mathrm{k}_{2}+1-1}{2}\right\rfloor \cup \ldots \cup\left\lfloor\frac{\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}+1-1}{2}\right\rfloor
$$

$=\mathrm{r}_{1} \cup \mathrm{r}_{2} \cup \ldots \cup \mathrm{r}_{\mathrm{m}}\left(\right.$ since $\left(\mathrm{n}_{1}-\mathrm{k}_{1}\right) \cup\left(\mathrm{n}_{2}-\mathrm{k}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}\right)$ are odd). Hence the number of error m-vectors corrected by the m -code word is given by

$$
\sum_{i=0}^{r_{1}}\left[\begin{array}{c}
n_{1} \\
i
\end{array}\right]\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}} \cup \sum_{\mathrm{i}=0}^{\mathrm{r}_{2}}\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}} \cup \ldots \cup \sum_{\mathrm{i}=0}^{\mathrm{r}_{\mathrm{m}}}\left[\begin{array}{c}
\mathrm{n}_{\mathrm{m}} \\
\mathrm{i}
\end{array}\right]\left(2^{\mathrm{N}}-1\right)^{\mathrm{i}}
$$

which is clearly less than $L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right) \cup \ldots \cup L_{r_{m}}\left(n_{m}\right)$. Thus the number of error m -vectors that can be corrected by the $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ AMRD m-code is much greater than that of the same m - code considered in Hamming metric.

For a given m-length $\mathrm{n}=\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$ a single error correcting AMRD m-code is one having m-dimension ($\mathrm{n}_{1}-3$) $\cup\left(\mathrm{n}_{2}-3\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}-3\right)$ and the minimum m-distance greater than or equal to $3 \cup 3 \cup \ldots \cup 3$.

We now proceed on to give a characterization of a single error correcting AMRD m-codes in terms of its parity check mmatrices.

The characterization is based on the condition for the minimum distance proved by Gabidulin in [24, 27].

Theorem 3.4: Let $H=H_{l} \cup H_{2} \cup \ldots \cup H_{m}=\left(\alpha_{i j}^{1}\right) \cup\left(\alpha_{i j}^{2}\right) \cup \ldots$ $\cup\left(\alpha_{i j}^{m}\right)$ be a $\left(3 \times n_{l}\right) \cup\left(3 \times n_{2}\right) \cup \ldots \cup\left(3 \times n_{m}\right)$ m-matrix of mrank 3 over $G F\left(2^{N}\right) ; n_{1} \leq N$ and $n_{2} \leq N$ which satisfies the following condition.

For any two distinct, non empty m-subsets $P_{1}, P_{2}, \ldots, P_{m}$ where $P_{1}=P_{l}^{l} \cup P_{2}^{l} \cup \ldots \cup P_{m}^{l}$ and $P_{2}=P_{1}^{2} \cup P_{2}^{2} \cup \ldots \cup P_{m}^{2}$ of $\{1$, $\left.2,3, \ldots, n_{1}\right\}$ and $\left\{1,2,3, \ldots, n_{2}\right\}$ respectively; there exists
$i_{1}=i_{1}^{1} \cup i_{2}^{1}, i_{2}=i_{1}^{2} \cup i_{2}^{2}, \ldots, i_{m}=i_{1}^{m} \cup i_{2}^{m} \in\{1,2,3\} \cup\{1,2,3\} \cup$ $\ldots \cup\{1,2,3\}$ such that

$$
\begin{aligned}
& \left(\sum_{\mathrm{j}_{1} \in \mathrm{P}_{1}^{1}} \alpha_{\mathrm{i}_{1}, \mathfrak{j}, 1}^{1} \cdot \sum_{\mathrm{k}_{1}^{1} \in \mathrm{P}_{2}^{1}} \alpha_{i_{2}^{1} \mathrm{k}_{1}^{1}}^{1}\right) \cup\left(\sum_{\mathrm{i}_{1}^{2} \in \mathrm{P}_{1}^{2}} \alpha_{\mathrm{i}_{1}^{2} j_{1}^{2} j_{1}^{2}}^{2} \cdot \sum_{\mathrm{k}_{1}^{2} \in P_{2}^{2}} \alpha_{i_{2}^{2} k_{1}^{2}}^{2}\right) \\
& \cup \ldots \cup\left(\sum_{i_{1}^{m} \in P_{1}^{\mathrm{m}}} \alpha_{\mathrm{i}_{1}^{m} \mathrm{j}_{1}^{\mathrm{m}}}^{\mathrm{m}} \cdot \sum_{\mathrm{k}_{1}^{\mathrm{m}} \in \mathrm{P}_{2}^{\mathrm{m}}} \alpha_{\mathrm{i}_{2}^{\mathrm{m}_{2}^{\mathrm{m}}}}^{\mathrm{m}}\right) \\
& \neq\left(\sum_{j_{1} \in P_{1}^{1}} \alpha_{i_{2}^{1}, l_{1}}^{1} \cdot \sum_{k_{1}^{1} \in P_{2}^{1}} \alpha_{i_{i} k_{1}^{1} 1_{1}^{1}}^{1}\right) \cup\left(\sum_{i_{1}^{2} \in P_{1}^{2}} \alpha_{i_{2}^{2} j_{1}^{2}}^{2} \cdot \sum_{k_{1}^{2} \in P_{2}^{2}} \alpha_{i_{1}^{2} k_{1}^{2}}^{2}\right) \\
& \cup \ldots \cup\left(\sum_{\mathrm{i}_{1}^{\mathrm{m}} \in \mathrm{P}_{1}^{\mathrm{m}}} \alpha_{\mathrm{i}_{2}^{\mathrm{m}} \mathrm{j}_{1}^{\mathrm{m}}}^{\mathrm{m}} \cdot \sum_{\mathrm{k}_{1}^{\mathrm{m}} \in \mathrm{P}_{2}^{\mathrm{m}}} \alpha_{i_{1}^{\mathrm{m}} \mathrm{k}_{1}^{\mathrm{m}}}^{\mathrm{m}}\right) .
\end{aligned}
$$

Then $H=H_{1} \cup H_{2} \cup \ldots \cup H_{m}$ as a parity check m-matrix defines $a\left(n_{1}, n_{1}-3\right) \cup\left(n_{2}, n_{2}-3\right) \cup \ldots \cup\left(n_{m}, n_{m}-3\right)$ single m error correcting AMRD m-code over GF(2).

Proof: Given $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{\mathrm{m}}$ is a $\left(3 \times \mathrm{n}_{1}\right) \cup\left(3 \times \mathrm{n}_{2}\right) \cup$ $\ldots \cup\left(3 \times \mathrm{n}_{\mathrm{m}}\right)$ m-matrix of m-rank $3 \cup 3 \cup \ldots \cup 3$ over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$, so that $H=H_{1} \cup H_{2} \cup \ldots \cup H_{m}$ as a parity check m-matrix defines $a\left(n_{1}, n_{1}-3\right) \cup\left(n_{2}, n_{2}-3\right) \cup \ldots \cup\left(n_{m}, n_{m}-3\right) R D m-$ code, where

$$
\begin{gathered}
\mathrm{C}_{1}=\left\{\mathrm{x} \in \mathrm{~V}^{\mathrm{n}_{1}} / \mathrm{xH}_{1}^{\mathrm{T}}=0\right\} \\
\mathrm{C}_{2}=\left\{\mathrm{x} \in \mathrm{~V}^{\mathrm{n}_{2}} / \mathrm{xH}_{2}^{\mathrm{T}}=0\right\}, \ldots \\
\mathrm{C}_{\mathrm{m}}=\left\{\mathrm{x} \in \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}} / \mathrm{xH}_{\mathrm{m}}^{\mathrm{T}}=0\right\}
\end{gathered}
$$

It remains to prove that the minimum m-distance of $C=C_{1} \cup$ $\mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is greater than or equal to $3 \cup 3 \cup \ldots \cup 3$. We will prove that no non zero m-word of $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ has m-rank less than $3 \cup 3 \cup \ldots \cup 3$.

The proof is by the method of contradiction.
Suppose there exists a non zero m-code word $x=x_{1} \cup x_{2} \cup \ldots$ $\cup \mathrm{x}_{\mathrm{m}}$ such that $\mathrm{r}_{1}\left(\mathrm{x}_{1}\right) \leq 2, \mathrm{r}_{2}\left(\mathrm{x}_{2}\right) \leq 2, \ldots, \mathrm{r}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{m}}\right) \leq 2$, then $\mathrm{x}=\mathrm{x}_{1}$
$\cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}}$ can be written as $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}}=\left(\mathrm{y}_{1} \cup\right.$ $\left.\mathrm{y}_{2} \cup \ldots \cup \mathrm{y}_{\mathrm{m}}\right)\left(\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{\mathrm{m}}\right)$ where

$$
\mathrm{y}_{1}=\left(\mathrm{y}_{1}^{1}, \mathrm{y}_{2}^{1}\right), \mathrm{y}_{2}=\left(\mathrm{y}_{1}^{2}, \mathrm{y}_{2}^{2}\right), \ldots, \mathrm{y}_{\mathrm{m}}=\left(\mathrm{y}_{1}^{\mathrm{m}}, \mathrm{y}_{2}^{\mathrm{m}}\right)
$$

$\mathrm{y}_{1}^{\mathrm{i}}, \mathrm{y}_{2}^{\mathrm{i}} \in \mathrm{GF}\left(2^{\mathrm{N}}\right) ; 1 \leq \mathrm{i} \leq \mathrm{m}$ and $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{\mathrm{m}}$ $=\left(\mathrm{m}_{\mathrm{ij}}^{1}\right) \cup\left(\mathrm{m}_{\mathrm{ij}}^{2}\right) \cup \ldots \cup\left(\mathrm{m}_{\mathrm{ij}}^{\mathrm{m}}\right)$ is a $\left(2 \times \mathrm{n}_{1}\right) \cup\left(2 \times \mathrm{n}_{2}\right) \cup \ldots \cup(2$ $\times \mathrm{n}_{\mathrm{m}}$) m-matrix of m-rank $2 \cup 2 \cup \ldots \cup 2$ over $\operatorname{GF}(2)$. Thus

$$
\begin{gathered}
(\mathrm{yM}) \mathrm{H}^{\mathrm{T}}=\mathrm{y}_{1} \mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{y}_{2} \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}} \cup \ldots \cup \mathrm{y}_{\mathrm{m}} \mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}} \\
=0 \cup 0 \cup \ldots \cup 0
\end{gathered}
$$

implies that

$$
\begin{gathered}
\mathrm{y}\left(\mathrm{MH}^{\mathrm{T}}\right)=\mathrm{y}_{1}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right) \cup \mathrm{y}_{2}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right) \cup \ldots \cup \mathrm{y}_{\mathrm{m}}\left(\mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}}\right) \\
=0 \cup 0 \cup \ldots \cup 0 .
\end{gathered}
$$

Since $y=y_{1} \cup y_{2} \cup \ldots \cup y_{m}$ is non zero $y\left(M H^{T}\right)=(0 \cup 0 \cup \ldots$ $\cup 0)$ implies $y_{i}\left(M_{i} H_{i}^{T}\right)=0$ for $i=1,2,3, \ldots, m$; that is the $2 \times$ 3 m-matrix $\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}} \cup \ldots \cup \mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}}$ has m-rank less than 2 over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$. Now let

$$
\mathrm{P}_{1}=\mathrm{P}_{1}^{1} \cup \mathrm{P}_{2}^{1} \cup \ldots \cup \mathrm{P}_{\mathrm{m}}^{1}
$$

$=\left\{\mathrm{j}_{1}^{1}\right.$ such that $\left.\mathrm{m}_{\mathrm{l}_{\mathrm{j}}}^{1}=1\right\} \cup\left\{\mathrm{j}_{2}^{2}\right.$ such that $\left.\mathrm{m}_{1_{2}{ }_{2}^{2}}^{2}=1\right\} \cup \ldots$

$$
\cup\left\{\mathrm{j}_{\mathrm{m}}^{\mathrm{m}} \text { such that } \mathrm{m}_{1 \mathrm{j}_{\mathrm{m}}^{\mathrm{m}}}^{\mathrm{m}}=1\right\}
$$

and

$$
\mathrm{P}_{2}=\mathrm{P}_{1}^{2} \cup \mathrm{P}_{2}^{2} \cup \ldots \cup \mathrm{P}_{\mathrm{m}}^{2}
$$

$=\left\{\mathrm{j}_{1}^{1}\right.$ such that $\left.\mathrm{m}_{2 \mathrm{j}_{1}^{1}}^{1}=1\right\} \cup\left\{\mathrm{j}_{2}^{2}\right.$ such that $\left.\mathrm{m}_{\mathrm{j}_{2}^{2}}^{2}=1\right\} \cup \ldots$
$\cup\left\{\mathrm{j}_{\mathrm{m}}^{\mathrm{m}}\right.$ such that $\left.\mathrm{m}_{2 \mathrm{j}_{\mathrm{m}}^{\mathrm{m}}}^{\mathrm{m}}=1\right\}$.
Since $M=M_{1} \cup M_{2} \cup \ldots \cup M_{m}=\left(m_{i j}^{1}\right) \cup\left(m_{i j}^{2}\right) \cup \ldots \cup\left(m_{i j}^{m}\right)$ is a $2 \times \mathrm{n}_{1} \cup 2 \times \mathrm{n}_{2} \cup \ldots \cup 2 \times \mathrm{n}_{\mathrm{m}}$ m-matrix of m-rank $2 \cup 2 \cup$ $\ldots \cup 2$ and P_{1} and P_{2} are disjoint non empty m-subsets of $\{1,2$, $\left.\ldots, \mathrm{n}_{1}\right\} \cup\left\{1,2, \ldots, \mathrm{n}_{2}\right\} \cup \ldots \cup\left\{1,2, \ldots, \mathrm{n}_{\mathrm{m}}\right\}$ respectively and

$$
\mathrm{MH}^{\mathrm{T}}=\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}} \cup \mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}} \cup \ldots \cup \mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}}
$$

$$
\begin{gathered}
=\left(\begin{array}{lll}
\sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{1 j_{1}^{1}}^{1} & \sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{2 j_{1}^{1}}^{1} & \sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{3 j_{1}^{1}}^{1} \\
\sum_{j_{1}^{1} \in P_{2}^{1}} \alpha_{1 j_{1}^{1}}^{1} & \sum_{j_{1}^{1} \in P_{2}^{1}} \alpha_{2 j_{1}^{1}}^{1} & \sum_{j_{1}^{1} \in P_{2}^{1}} \alpha_{3 j_{1}^{1}}^{1}
\end{array}\right) \cup \\
\left(\begin{array}{lll}
\sum_{j_{2}^{2} \in P_{1}^{2}} \alpha_{1 j_{2}^{2}}^{2} & \sum_{j_{2}^{2} \in P_{1}^{2}} \alpha_{2 j_{2}^{2}}^{2} & \sum_{j_{2}^{2} \in P_{1}^{2}} \alpha_{3 j_{2}^{2}}^{2} \\
\sum_{2} \alpha_{1 j_{2}^{2}}^{2} & \sum_{j_{2}^{2} \in P_{2}^{2}} \alpha_{2 j_{2}^{2}}^{2} & \sum_{j_{2}^{2} \in P_{2}^{2}} \alpha_{3 j_{2}^{2}}^{2}
\end{array}\right) \cup \ldots \cup \\
\left(\begin{array}{lll}
\sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{1 j_{1}^{1}}^{m} & \sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{2 j_{1}^{1}}^{m} & \sum_{j_{1}^{1} \in P_{1}^{1}} \alpha_{3 j_{1}^{1}}^{m} \\
\sum_{j_{2}^{2} \in P_{2}^{2}} \alpha_{1 j_{2}^{2}}^{m} & \sum_{j_{2}^{2} \in P_{2}^{2}} \alpha_{2 j_{2}^{2}}^{m} & \sum_{j_{2}^{2} \in P_{2}^{2}} \alpha_{3 j_{2}^{2}}^{m}
\end{array}\right)
\end{gathered}
$$

But the selection of $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{\mathrm{m}}$ is such that there exists $i_{1}^{p}, i_{2}^{p} \in\{1,2,3\} ; p=1,2, \ldots, m$ such that

$$
\begin{aligned}
& \sum_{j_{i} \in P_{1}} \alpha_{i_{1}, j 1} \cdot \sum_{k_{1} \in P_{2}} \alpha_{i_{2} k_{1}} \cup \sum_{j_{2} \in P_{1}} \alpha_{i_{1}, 2,1} \cdot \sum_{k_{2} \in P_{2}} \alpha_{i_{2}^{2} k_{2}} \cup \ldots \cup \\
& \sum_{j_{2}^{2} \in P_{1}} \alpha_{i_{i}^{m} j i} \cdot \sum_{k_{m} \in P_{2}} \alpha_{i_{2}^{m} k_{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j_{i} \in P_{1}} \alpha_{i_{2} j_{1}} \cdot \sum_{k_{m} \in P_{2}} \alpha_{i_{1} k_{k}} .
\end{aligned}
$$

Hence in MH^{T} there exists a $2 \times 2 \mathrm{~m}$-submatrices whose determinant is non zero; i.e.,

$$
\mathrm{r}\left(\mathrm{MH}^{\mathrm{T}}\right)=\mathrm{r}_{1}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right) \cup \mathrm{r}_{2}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right) \cup \ldots \cup \mathrm{r}_{\mathrm{m}}\left(\mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}}\right)
$$

over $\operatorname{GF}\left(2^{\mathrm{N}}\right)$. But this is a contradiction to fact that,

$$
\begin{gathered}
\operatorname{rank}\left(\mathrm{MH}^{\mathrm{T}}\right)=\operatorname{rank}\left(\mathrm{M}_{1} \mathrm{H}_{1}^{\mathrm{T}}\right) \cup \operatorname{rank}\left(\mathrm{M}_{2} \mathrm{H}_{2}^{\mathrm{T}}\right) \cup \ldots \cup \operatorname{rank}\left(\mathrm{M}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}}^{\mathrm{T}}\right) \\
<2 \cup 2 \cup \ldots \cup 2 .
\end{gathered}
$$

Hence the proof.
Now using constant rank code we proceed on to define the notion of constant rank m-codes of m-length $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$.

Definition 3.24: Let $C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ be a RD-m-code where C_{i} is a constant rank code of length $n_{i}, i=1,2, \ldots, m$ (Each C_{i} is a subset of the rank space $V^{\mathrm{n}_{i}} ; i=1,2, \ldots, m$) then $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is a constant m-rank code of m-length $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$; that is every m-code word has same m-rank.

DEFINITION 3.25: $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right) \cup \ldots \cup A\left(n_{m}, r_{m}\right.$, d_{m}) is defined as the maximum number of m-vectors in $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ of constant m-rank, $r_{1} \cup r_{2} \cup \ldots \cup r_{m}$ and m-distance between any two m-vectors is at least $d_{1} \cup d_{2} \cup \ldots$ $\cup d_{m}\left[B y\left(n_{1}, r_{1}, d_{1}\right) \cup\left(n_{2}, r_{2}, d_{2}\right) \cup \ldots \cup\left(n_{m}, r_{m}, d_{m}\right) m\right.$-set we mean a m-subset of m-vectors of $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ having constant m-rank $r_{1} \cup r_{2} \cup \ldots \cup r_{m}$ and m-distance between any two m-vectors is atleast $d_{1} \cup d_{2} \cup \ldots \cup d_{m}$].

We analyze the m-function $A\left(n_{1}, r_{1}, d_{1}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right) \cup \ldots \cup$ $A\left(n_{m}, r_{m}, d_{m}\right)$ by the following theorem:

Theorem 3.5:

1. $A\left(n_{1}, r_{1}, l\right) \cup A\left(n_{2}, r_{2}, l\right) \cup \ldots \cup A\left(n_{m}, r_{m}, l\right)=$ $L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right) \cup \ldots \cup L_{r_{m}}\left(n_{m}\right)$, the number of m-vectors of m rank $r_{1} \cup r_{2} \cup \ldots \cup r_{m}$ in $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$.
2. $A\left(n_{1}, r_{1}, d_{l}\right) \cup A\left(n_{2}, r_{2}, d_{2}\right) \cup \ldots \cup A\left(n_{m}, r_{m}, d_{m}\right)=0 \cup 0 \cup$ $\ldots \cup 0$ if $r_{i}>0$ or $d_{i}>n_{i}$ and $d_{i}>2 r_{i}(i=1,2,3, \ldots, m)$,

Proof:
(1) Follows from the fact that $L_{r_{1}}\left(n_{1}\right) \cup L_{r_{2}}\left(n_{2}\right) \cup \ldots \cup L_{r_{m}}\left(n_{m}\right)$ is the number of m-vectors of m-length $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$, constant m-rank $\mathrm{r}_{1} \cup \mathrm{r}_{2} \cup \ldots \cup \mathrm{r}_{\mathrm{m}}$ and m-distance between any
two distinct m-vectors in a m-rank space $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ is always greater than or equal to $1 \cup 1 \cup \ldots \cup 1$.
(2) Follows immediately from the definition of $A\left(n_{1}, r_{1}, d_{1}\right) \cup$ $A\left(n_{2}, r_{2}, d_{2}\right) \cup \ldots \cup A\left(n_{m}, r_{m}, d_{m}\right)$.

THEOREM 3.6: $A\left(n_{1}, 1,2\right) \cup A\left(n_{2}, 1,2\right) \cup \ldots \cup A\left(n_{m}, 1,2\right)=$ $2^{n_{1}}-1 \cup 2^{n_{2}}-1 \cup \ldots \cup 2^{n_{m}}-1$ over any Galois field GF $\left(2^{N}\right)$.

Proof: Denote by $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{m}}$ the set of m -vectors of m-rank $1 \cup 1 \cup \ldots \cup 1$ in $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$; we know each non zero element $\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{m}} \in \operatorname{GF}\left(2^{\mathrm{N}}\right)$, there exists $\left(2^{\mathrm{n}_{1}}-1\right) \cup\left(2^{\mathrm{n}_{2}}-1\right) \cup \ldots \cup\left(2^{\mathrm{n}_{\mathrm{m}}}-1\right) \mathrm{m}$-vectors of m-rank one having $\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{m}}$ as a coordinate. Thus the mcardinality of $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{m}}$ is $\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{n}_{1}}-1\right) \cup\left(2^{\mathrm{N}}-1\right)$ $\left(2^{\mathrm{n}_{2}}-1\right) \cup \ldots \cup\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{n}_{\mathrm{m}}}-1\right)$. Now m-divide $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup$ V_{m} into $\left(2^{\mathrm{n}_{1}}-1\right) \cup\left(2^{\mathrm{n}_{2}}-1\right) \cup \ldots \cup\left(2^{\mathrm{n}_{\mathrm{m}}}-1\right)$ blocks of $\left(2^{\mathrm{N}}-1\right) \cup$ $\left(2^{\mathrm{N}}-1\right) \cup \ldots \cup\left(2^{\mathrm{N}}-1\right) \mathrm{m}$-vectors such that each block consists of the same pattern of all nonzero m-elements of $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup$ $\operatorname{GF}\left(2^{\mathrm{N}}\right) \cup \ldots \cup \operatorname{GF}\left(2^{\mathrm{N}}\right)$.

Then from each m-block element almost one m-vector can be choosen such that the selected m-vectors are atleast rank 2 apart from each other. Such a m-set we call as $\left(n_{1}, 1,2\right) \cup\left(n_{2}, 1,2\right) \cup$ $\ldots \cup\left(\mathrm{n}_{\mathrm{m}}, 1,2\right) \mathrm{m}$-set. Also it is always possible to construct such a m-set. Thus $A\left(n_{1}, 1,2\right) \cup A\left(n_{2}, 1,2\right) \cup \ldots \cup A\left(n_{m}, 1,2\right)$ $=\left(2^{n_{1}}-1\right) \cup\left(2^{n_{2}}-1\right) \cup \ldots \cup\left(2^{n_{m}}-1\right)$.

THEOREM 3.7: $A\left(n_{1}, n_{1}, n_{1}\right) \cup A\left(n_{2}, n_{2}, n_{2}\right) \cup \ldots \cup A\left(n_{m}, n_{m}, n_{m}\right)$ $=\left(2^{N}-1\right) \cup\left(2^{N}-1\right) \cup \ldots \cup\left(2^{N}-1\right)\left(\right.$ i.e., $A\left(n_{i}, n_{i}, n_{i}\right)=2^{N}-1 ; i$ $=1,2,3, \ldots, m)$ over $G F\left(2^{N}\right)$.

Proof: Denote by $V_{\mathrm{n}_{1}} \cup \mathrm{~V}_{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}_{\mathrm{m}}}$ the m -set of all mvectors of m-rank $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$ in the m-space $V^{n_{1}} \cup V^{n_{2}}$ $\cup \ldots \cup \mathrm{V}^{\mathrm{n}_{\mathrm{m}}}$. We know the m-cardinality of $\mathrm{V}_{\mathrm{n}_{1}} \cup \mathrm{~V}_{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}_{\mathrm{m}}}$ is

$$
\begin{aligned}
& \left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{n}_{1}-1}\right) \cup\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots \\
& \left(2^{\mathrm{N}}-2^{\mathrm{n}_{2}-1}\right) \cup \ldots \cup\left(2^{\mathrm{N}}-1\right)\left(2^{\mathrm{N}}-2\right) \ldots\left(2^{\mathrm{N}}-2^{\mathrm{n}_{\mathrm{m}}-1}\right)
\end{aligned}
$$

and by the definition in a $\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}\right.$, $\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}$) m -set, the m -distance between any two m -vector should be $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$. Thus no two m -vectors can have a common symbol at a co-ordinate place $\mathrm{i}_{1} \cup \mathrm{i}_{2} \cup \ldots \cup \mathrm{i}_{\mathrm{m}}$; $\left(1 \leq \mathrm{i}_{1}\right.$ $\left.\leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{m} \leq n_{m}\right)$. This implies that $A\left(n_{1}, n_{1}, n_{1}\right)$ $\cup \mathrm{A}\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{A}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}\right) \leq\left(2^{\mathrm{N}}-1\right) \cup\left(2^{\mathrm{N}}-1\right) \cup \ldots$ $\cup\left(2^{\mathrm{N}}-1\right)$.
Now we construct a $\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}\right.$, n_{m}) m-set as follows:
Select N m-vectors from $V_{n_{1}} \cup V_{n_{2}} \cup \ldots \cup V_{n_{m}}$ such that
i. Each m-basis m-elements of $\operatorname{GF}\left(2^{\mathrm{n}_{1}}\right) \cup \mathrm{GF}\left(2^{\mathrm{n}_{2}}\right) \cup \ldots \cup$ $\mathrm{GF}\left(2^{\mathrm{n}_{\mathrm{m}}}\right)$ should occur (can be as a m-combination) atleast once in each m-vector.
ii. If the $\left(\mathrm{i}_{1}^{\text {th }}, \mathrm{i}_{2}^{\text {th }}, \ldots, \mathrm{i}_{\mathrm{m}}^{\text {th }}\right)$ m-vector is choosen $\left(\left(\mathrm{i}_{1}+1\right)^{\text {th }}\right.$, $\left.\left(\mathrm{i}_{2}+1\right)^{\mathrm{th}}, \ldots,\left(\mathrm{i}_{\mathrm{m}}+1\right)^{\mathrm{th}}\right) \mathrm{m}$-vector should be selected such that its m-rank m-distance from any m-linear combination of the previous ($i_{1}, i_{2}, \ldots, i_{m}$) m-vectors is $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$. Now the set of all m-linear combinations of these $\mathrm{N} \cup \mathrm{N} \cup \ldots \cup \mathrm{N}$, mvectors over $\mathrm{GF}(2) \cup \mathrm{GF}(2) \cup \ldots \cup \mathrm{GF}(2)$ will be such that the m -distance between any two m-vectors is $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$. Hence it is $\left(n_{1}, n_{1}, n_{1}\right) \cup\left(n_{2}, n_{2}, n_{2}\right) \cup \ldots \cup\left(n_{m}, n_{m}, n_{m}\right) m$-set. Also the m-cardinally of this $\left(\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup$ $\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}\right)$ m-sets is $\left(2^{\mathrm{N}}-1\right) \cup\left(2^{\mathrm{N}}-1\right) \cup \ldots \cup\left(2^{\mathrm{N}}-1\right)$ (we do not count all zero m-linear combinations). Thus A($\left.\mathrm{n}_{1}, \mathrm{n}_{1}, \mathrm{n}_{1}\right) \cup$ $\mathrm{A}\left(\mathrm{n}_{2}, \mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{A}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}\right)=\left(2^{\mathrm{N}}-1\right) \cup\left(2^{\mathrm{N}}-1\right) \cup \ldots \cup$ $\left(2^{\mathrm{N}}-1\right)$.
Recall a [$\mathrm{n}, 1]$ repetition RD code is a code generated by the matrix $\mathrm{G}=(1,1, \ldots, 1)$ over $\mathrm{F}_{2^{\mathrm{N}}}$. Any non zero code word has rank 1 .

DEFINITION 3.26: $A\left[n_{l}, 1\right] \cup\left[n_{2}, 1\right] \cup \ldots \cup\left[n_{m}, 1\right]$ repetition $R D$ m-code is a m-code generated by the m-matrix $G=G_{l} \cup G_{2}$ $\cup \ldots \cup G_{m}=(11 \ldots 1) \cup(11 \ldots 1) \cup \ldots \cup(11 \ldots 1)\left(G_{i} \neq G_{j}\right.$ if $i \neq j ; 1 \leq i, j \leq m)$ over $F_{2^{n}}$. Any non zero m-code word has m rank $1 \cup 1 \cup \ldots \cup 1$.

DEFINITION 3.27: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a linear $\left[n_{1}\right.$, $\left.k_{1}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right] R D$ m-code defined over $F_{2^{N}}$. The covering m-radius of $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined as the smallest m-tuple of integers $\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ such that all m vectors in the rank m-space $F_{2^{N}}^{n_{1}} \cup F_{2^{N}}^{n_{2}} \cup \ldots \cup F_{2^{N}}^{n_{m}}$ are with in the rank m-distance $r_{1} \cup r_{2} \cup \ldots \cup r_{m}$ of some m-code word.

The covering m-radius of $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is denoted by

$$
\begin{gathered}
t\left(C_{l}\right) \cup t\left(C_{2}\right) \cup \ldots \cup t\left(C_{m}\right)=t(C) \\
=\max _{x_{1} \in F_{2^{N}}^{n_{j}}}\left\{\begin{array}{l}
\min \left(r_{1}\left(x_{1}+C_{1}\right)\right) \\
c_{1} \in C_{1}
\end{array}\right\} \cup \max _{x_{2} \in F_{2^{N}}^{n_{2}}}\left\{\begin{array}{l}
\min \left(r_{2}\left(x_{2}+C_{2}\right)\right) \\
c_{2} \in C_{2}
\end{array}\right\} \\
\cup \ldots \cup \max _{x_{m} \in F_{2^{N}}^{n_{m}}}\left\{\begin{array}{l}
\min \left(r_{m}\left(x_{m}+C_{m}\right)\right) \\
c_{m} \in C_{m}
\end{array}\right\} .
\end{gathered}
$$

Theorem 3.8: The linear $\left[n_{1}, k_{1}\right] \cup\left[n_{2}, k_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}\right]$ $R D$-m-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ satisfies $t(C)=t\left(C_{1}\right) \cup$ $t\left(C_{2}\right) \cup \ldots \cup t\left(C_{m}\right) \leq\left(n_{1}-k_{1}\right) \cup\left(n_{2}-k_{2}\right) \cup \ldots \cup\left(n_{m}-k_{m}\right)$.

Proof: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{n}}$ be a $\left(\mathrm{n}_{1}, \mathrm{k}_{1}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right)$ RD-m-code. Consider the m-generator m-matrix

$$
\begin{gathered}
G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}= \\
\left(I_{k_{1}}, A_{k_{1}, n_{1}-k_{1}}\right) \cup\left(I_{k_{2}}, A_{k_{2}, n_{2}-k_{2}}\right) \cup \ldots \cup\left(I_{k_{\mathrm{m}}}, A_{k_{\mathrm{k}}, n_{m}-k_{m}}\right) .
\end{gathered}
$$

Suppose

$$
\begin{gathered}
\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}} \\
=\left(\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{k}_{1}}^{1}, \mathrm{x}_{\mathrm{k}_{1}+1}^{1}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup \ldots \\
\cup\left(\mathrm{x}_{1}^{\mathrm{m}}, \mathrm{x}_{2}^{\mathrm{m}}, \ldots, \mathrm{x}_{\mathrm{k}_{\mathrm{m}}}^{\mathrm{m}}, \mathrm{x}_{\mathrm{k}_{\mathrm{m}}+1}^{\mathrm{m}}, \ldots, \mathrm{x}_{\mathrm{n}_{\mathrm{m}}}^{\mathrm{m}}\right)
\end{gathered}
$$

be any m vector in $\mathrm{V}^{\mathrm{n}_{1}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$.
Let

$$
\begin{aligned}
C & =\left(C_{1} \cup C_{2} \cup \ldots \cup C_{n}\right)\left(G_{1} \cup G_{2} \cup \ldots \cup G_{m}\right) \\
& =C_{1} G_{1} \cup C_{2} G_{2} \cup \ldots \cup C_{n} G_{m} \\
& =\left(x_{1}^{1} \ldots x_{k_{1}}^{1}\right) G_{1} \cup \ldots \cup\left(x_{1}^{m} \ldots x_{k_{\mathrm{k}}}^{m}\right) G_{m} .
\end{aligned}
$$

Then C is a m-code word of C and $\mathrm{r}(\mathrm{x}+\mathrm{c})=\mathrm{r}_{1}\left(\mathrm{x}_{1}+\mathrm{c}_{1}\right) \cup \ldots \cup$ $\mathrm{r}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{c}_{\mathrm{m}}\right) \leq \mathrm{n}_{1}-\mathrm{k}_{1} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-\mathrm{k}_{\mathrm{m}}$. Hence the proof.

For any $\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup\left[\mathrm{n}_{2}, \mathrm{k}_{1}\right] \cup \ldots \cup\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{1}\right]$ repetition RD m-code generated by the m-matrix $G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}=(11 \ldots 1)$ $\cup(11 \ldots 1) \cup \ldots \cup(11 \ldots 1)\left(G_{i} \neq G_{j}\right.$ if $\left.\mathrm{i} \neq \mathrm{j} ; 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}\right)$ over $\mathrm{F}_{2^{\mathrm{N}}}$. A non zero m-code word of it has m-rank $1 \cup 1 \cup \ldots \cup 1$.

We proceed on to define the notion of covering m-radius.
Theorem 3.9: The covering m-radius of a $\left[n_{1}, 1\right] \cup\left[n_{2}, 1\right] \cup$ $\ldots \cup\left[n_{m}, 1\right]$ repetition $R D$ m-code over $F_{2^{N}}$ is $\left(n_{1}-1\right) \cup\left(n_{2}-\right.$ 1) $\cup \ldots \cup\left(n_{m}-1\right)$.

Proof: The Cartesian m-product of 2 linear RD m-codes

$$
\mathrm{C}=\mathrm{C}_{1}\left[\mathrm{n}_{1}^{1}, \mathrm{k}_{1}^{1}\right] \cup \mathrm{C}_{2}\left[\mathrm{n}_{2}^{1}, \mathrm{k}_{2}^{1}\right] \cup \ldots \cup \mathrm{C}_{\mathrm{m}}\left[\mathrm{n}_{\mathrm{m}}^{1}, \mathrm{k}_{\mathrm{m}}^{1}\right]
$$

and

$$
\mathrm{D}=\mathrm{D}_{1}\left[\mathrm{n}_{1}^{2}, \mathrm{k}_{1}^{2}\right] \cup \mathrm{D}_{2}\left[\mathrm{n}_{2}^{2}, \mathrm{k}_{2}^{2}\right] \cup \ldots \cup \mathrm{D}_{\mathrm{m}}\left[\mathrm{n}_{\mathrm{m}}^{2}, \mathrm{k}_{\mathrm{m}}^{2}\right]
$$

over $\mathrm{F}_{2^{\mathrm{N}}}$ is given by

$$
\begin{gathered}
\mathrm{C} \times \mathrm{D}=\mathrm{C}_{1} \times \mathrm{D}_{1} \cup \mathrm{C}_{2} \times \mathrm{D}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}} \times \mathrm{D}_{\mathrm{m}} \\
=\left\{\left(\mathrm{a}_{1}^{1}, \mathrm{~b}_{1}^{1}\right) / \mathrm{a}_{1}^{1} \in \mathrm{C}_{1} \text { and } \mathrm{b}_{1}^{1} \in \mathrm{D}_{1}\right\} \cup \\
\left\{\left(\mathrm{a}_{1}^{2}, \mathrm{~b}_{1}^{2}\right) / \mathrm{a}_{1}^{2} \in \mathrm{C}_{2} \text { and } \mathrm{b}_{1}^{2} \in \mathrm{D}_{2}\right\} \cup \ldots \cup \\
\left\{\left(\mathrm{a}_{1}^{\mathrm{m}}, \mathrm{~b}_{1}^{\mathrm{m}}\right) / \mathrm{a}_{1}^{\mathrm{m}} \in \mathrm{C}_{\mathrm{m}} \text { and } \mathrm{b}_{1}^{\mathrm{m}} \in \mathrm{D}_{\mathrm{m}}\right\} .
\end{gathered}
$$

$\mathrm{C} \times \mathrm{D}$ is a $\left\{\left(\mathrm{n}_{1}^{1}+\mathrm{n}_{1}^{2}\right) \cup\left(\mathrm{n}_{2}^{1}+\mathrm{n}_{2}^{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}^{1}+\mathrm{n}_{\mathrm{m}}^{2}\right),\left(\mathrm{k}_{1}^{1}+\mathrm{k}_{1}^{2}\right) \cup\right.$ $\left.\left(\mathrm{k}_{2}^{1}+\mathrm{k}_{2}^{2}\right) \cup \ldots \cup\left(\mathrm{k}_{\mathrm{m}}^{1}+\mathrm{k}_{\mathrm{m}}^{2}\right)\right\}$ linear RD m-code.
(We assume $n_{i}^{1}+n_{i}^{2} \leq N$ for $i=1,2, \ldots, m$).

Now the reader is expected to prove the following theorem:
THEOREM 3.10: If $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ and $D=D_{l} \cup D_{2} \cup$ $\ldots \cup D_{m}$ be two linear $R D$ m-codes then $t(C \times D) \leq\left(t\left(C_{1}\right)+\right.$ $\left.t\left(D_{I}\right)\right) \cup\left(t\left(C_{2}\right)+t\left(D_{2}\right)\right) \cup \ldots \cup\left(t\left(C_{m}\right)+t\left(D_{m}\right)\right)$.

Hint: If $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ and $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \ldots \cup \mathrm{D}_{\mathrm{m}}$ then $\mathrm{C} \times \mathrm{D}=\left\{\mathrm{C}_{1} \times \mathrm{D}_{1}\right\} \cup\left\{\mathrm{C}_{2} \times \mathrm{D}_{2}\right\} \cup \ldots \cup\left\{\mathrm{C}_{\mathrm{m}} \times \mathrm{D}_{\mathrm{m}}\right\}$ and $\mathrm{t}(\mathrm{C} \times \mathrm{D})=\mathrm{t}\left(\mathrm{C}_{1} \times \mathrm{D}_{1}\right) \cup \mathrm{t}\left(\mathrm{C}_{2} \times \mathrm{D}_{2}\right) \cup \ldots \cup \mathrm{t}\left(\mathrm{C}_{\mathrm{m}} \times \mathrm{D}_{\mathrm{m}}\right) \leq\left\{\mathrm{t}\left(\mathrm{C}_{1}\right)\right.$ $\left.+\mathrm{t}\left(\mathrm{D}_{1}\right)\right\} \cup\left\{\mathrm{t}\left(\mathrm{C}_{2}\right)+\mathrm{t}\left(\mathrm{D}_{2}\right)\right\} \cup \ldots \cup\left\{\mathrm{t}\left(\mathrm{C}_{\mathrm{m}}\right)+\mathrm{t}\left(\mathrm{D}_{\mathrm{m}}\right)\right\}$.

Next we proceed on to define the notion of m-divisible linear RD m-codes we have earlier defined the notion of bidivisible linear RD bicodes

DEFINITION 3.28: $C=C_{1}\left[n_{1}, k_{1}, d_{1}\right] \cup C_{2}\left[n_{2}, k_{2}, d_{2}\right] \cup \ldots \cup$ $C_{m}\left[n_{m}, k_{m}, d_{m}\right]$ be a linear $R D$ m-code over $F_{q^{v}}, n_{i} \leq N, l \leq i \leq$ m and $N>1$. If there exists $\left(m_{1}, m_{2}, \ldots, m_{m}\right)\left(m_{i}>1 ; i=1,2, \ldots\right.$, m) such that

$$
\frac{m_{i}}{r_{i}\left(c_{i} ; q\right)}
$$

$1 \leq i \leq n_{i} ; i=1,2, \ldots, m$ for all $c_{i} \in C_{i} ;$ then we say the m-code C is m-divisible.

Theorem 3.11: Let $C=C_{1}\left[n_{1}, l, n_{1}\right] \cup C_{2}\left[n_{2}, l, n_{2}\right] \cup \ldots \cup$ $C_{m}\left[n_{m}, 1, n_{m}\right]\left(n_{i} \neq n_{j}, i \neq j ; 1 \leq i, j \leq m\right)$ be a MRD m-code for all $n_{i} \leq N, l \leq i \leq m$. Then C is a m-divisible m-code.

Proof: Since there cannot exists m-code words of m-rank greater than $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}}\right)$ in an $\left[\mathrm{n}_{1}, 1, \mathrm{n}_{1}\right] \cup\left[\mathrm{n}_{2}, 1, \mathrm{n}_{2}\right] \cup \ldots \cup$ [$\mathrm{n}_{\mathrm{m}}, 1, \mathrm{n}_{\mathrm{m}}$] MRD m-code. C is a m-divisible m -code.

DEFINITION 3.29: Let $C_{i}=\left[n_{i}, k_{i}\right]$ be a linear $R D$-code, $i=1,2$, $3, \ldots, m_{1}$ and $C_{j}=\left[n_{j}, k_{j}, d_{j}\right]$ linear divisible $R D$ codes, $j=1,2$, $3, \ldots, m_{2}$ defined over $\operatorname{GF}\left(2^{N}\right)$. Let $m=m_{1}+m_{2}$, then the $R D$ linear m-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined as quasi divisible $R D$ m-code, $n_{i} \leq N, 1 \leq i \leq m$.

DEFINITION 3.30: Let $C_{i}=C_{i}\left[n_{i}, k_{i}, d_{i}\right]$ be a MRD code which is not divisible and $C_{j}=C_{j}\left[n_{j}, k_{j}, d_{j}\right]$ be a divisible MRD code defined over $G F\left(2^{N}\right) ; i=1,2,3, \ldots, m_{1}$ and $j=1,2,3, \ldots, m_{2}$ such that $m=m_{1}+m_{2} . C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined to be a quasi divisible MRD m-code.

DEFINITION 3.31: Let $C_{1}, C_{2}, \ldots, C_{m_{l}}$ be circulant rank codes and $C_{j}\left[n_{j}, k_{j}, d_{j}\right]$ a divisible RD-code defined over $G F\left(2^{N}\right) ; j=1$, $2, \ldots, m_{2}$ such that $m_{1}+m_{2}=m$. Then $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined to be a quasi divisible circulant rank m-code.

DEFINITION 3.32: Let $C_{1}, C_{2}, \ldots, C_{m_{l}}$ be $A M R D$ codes and $C_{j}\left[n_{j}\right.$, $\left.k_{j}, d_{j}\right]$ be a divisible $R D$ code defined over $G F\left(2^{N}\right), j=1,2, \ldots$, m_{2} such that $m_{1}+m_{2}=m$. Then $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is defined to be the quasi divisible $A M R D$ m-code.

We see non divisible MRD m-codes exists as there exists non divisible MRD bicodes.

DEFINITION 3.33: Let $C_{i}=C_{i}\left[n_{i}, k_{i}, d_{i}\right], i=1,2, \ldots, m$ be MRD codes defined over $F_{q^{N}}, n_{i} \leq N ; i=1,2, \ldots, m$ with $n_{i} \neq n_{j}$ if $i \neq$ $j, l \leq i, j \leq m$.
$A_{s_{l}}\left[n_{1}, d_{1}\right] \cup A_{s_{2}}\left[n_{2}, d_{2}\right] \cup \ldots \cup A_{s_{m}}\left[n_{m}, d_{m}\right]$ be the number of m-code words with rank m-norms s_{i} in the linear $\left[n_{i}, k_{i}, d_{i}\right]$ MRD-code $1 \leq i \leq m$. Then m-spectrum of the MRD m-code $C=$ $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ is described by the formulae

$$
\begin{gathered}
A_{0}\left(n_{1}, d_{l}\right) \cup A_{0}\left(n_{2}, d_{2}\right) \cup \ldots \cup A_{0}\left(n_{m}, d_{m}\right)=1 \cup 1 \cup \ldots \cup 1 \\
A_{d_{l}+m_{l}}\left(n_{l}, d_{l}\right) \cup A_{d_{2}+m_{2}}\left(n_{2}, d_{2}\right) \cup \ldots \cup A_{d_{m}+m_{m}}\left(n_{m}, d_{m}\right) \\
=\left[\begin{array}{c}
n_{1} \\
d_{1}+m_{l}
\end{array}\right]_{j_{l}=0}^{m_{l}}(-1)^{j_{l}+m_{l}}\left[\begin{array}{c}
d_{1}+m_{l} \\
d_{1}+j_{l}
\end{array}\right] q^{\frac{\left(m_{l}-j_{l}\right)\left(m_{l}-j_{l}-l\right)\left(Q^{j_{l}+1}-1\right)}{2}} \cup
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
n_{2} \\
d_{2}+m_{2}
\end{array}\right] \sum_{j_{2}=0}^{m_{2}}(-1)^{j_{2}+m_{2}}\left[\begin{array}{l}
d_{2}+m_{2} \\
d_{2}+j_{2}
\end{array}\right] q^{\frac{\left(m_{2}-j_{2}\right)\left(m_{2}-j_{2}-1\right)\left(Q^{j_{2}+1}-1\right)}{2}} \cup \ldots \cup} \\
& {\left[\begin{array}{c}
n_{m} \\
d_{m}+m_{m}
\end{array}\right] \sum_{j_{m}=0}^{m_{m}}(-1)^{j_{m}+m_{m}}\left[\begin{array}{l}
d_{m}+m_{m} \\
d_{m}+j_{m}
\end{array}\right] q^{\frac{\left(m_{m}-j_{m}\right)\left(m_{m}-j_{m}-1\right)\left(Q^{j_{m}+1}-1\right)}{2}}}
\end{aligned}
$$

where $Q=q^{N}$;

$$
\left[\begin{array}{c}
n_{i} \\
m_{i}
\end{array}\right]=\frac{\left(q^{n_{i}}-1\right)\left(q^{n_{i}}-2\right) \ldots\left(q^{n_{i}}-q^{m_{i}-1}\right)}{\left(q^{m_{i}}-1\right)\left(q^{m_{i}}-2\right) \ldots\left(q^{m_{i}}-q^{m_{i}-1}\right)} ; i=1,2, \ldots, m .
$$

Using the m-spectrum of a MRD m-code we prove the following theorem:

Theorem 3.12: All MRD m-codes $C_{1}\left[n_{1}, k_{1}, d_{l}\right] \cup C_{2}\left[n_{2}, k_{2}\right.$, $\left.d_{2}\right] \cup \ldots \cup C_{m}\left[n_{m}, k_{m}, d_{m}\right]$ with $d_{i}<n_{i}\left(i . e .\right.$, with $\left.k_{i} \geq 2\right) 1 \leq i \leq m$ are non m-divisible.

Proof: This is proved by making use of the m-spectrum of the MRD m-code. Clearly

$$
\mathrm{A}_{\mathrm{d}_{1}}\left(\mathrm{n}_{1}, \mathrm{~d}_{1}\right) \cup \mathrm{A}_{\mathrm{d}_{2}}\left(\mathrm{n}_{2}, \mathrm{~d}_{2}\right) \cup \ldots \cup \mathrm{A}_{\mathrm{d}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~d}_{\mathrm{m}}\right) \neq 0 \cup 0 \cup \ldots \cup 0 .
$$

If the existence of a m-code word with m-rank $\left(\mathrm{d}_{1}+1\right) \cup\left(\mathrm{d}_{2}+1\right)$ $\cup \ldots \cup\left(\mathrm{d}_{\mathrm{m}}+1\right)$ is established then the proof is complete as the m-gcd $\left\{\left(\mathrm{d}_{1}, \mathrm{~d}_{1}+1\right) \cup\left(\mathrm{d}_{2}, \mathrm{~d}_{2}+1\right) \cup \ldots \cup\left(\mathrm{d}_{\mathrm{m}}, \mathrm{d}_{\mathrm{m}}+1\right)\right\}=1 \cup 1 \cup$ $\ldots \cup 1$. So the proof is to show that,

$$
\mathrm{A}_{\mathrm{d}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{~d}_{1}\right) \cup \mathrm{A}_{\mathrm{d}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{~d}_{2}\right) \cup \ldots \cup \mathrm{A}_{\mathrm{d}_{\mathrm{m}}+1}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~d}_{\mathrm{m}}\right)
$$

is non zero (i.e., $A_{d_{i}+1}\left(n_{i}, d_{i}\right) \neq 0 ; i=1,2, \ldots, m$).
Now

$$
\begin{gathered}
\mathrm{A}_{\mathrm{d}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{~d}_{1}\right) \cup \mathrm{A}_{\mathrm{d}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{~d}_{2}\right) \cup \ldots \cup \mathrm{A}_{\mathrm{d}_{\mathrm{m}}+1}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~d}_{\mathrm{m}}\right) \\
\quad=\left[\begin{array}{c}
\mathrm{n}_{1} \\
\mathrm{~d}_{1}+1
\end{array}\right]\left(-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right]\left[(\mathrm{Q}-1)+\left(\mathrm{Q}^{2}-1\right)\right]\right) \cup
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{~d}_{2}+1
\end{array}\right]\left(-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right]\left[(\mathrm{Q}-1)+\left(\mathrm{Q}^{2}-1\right)\right]\right) \cup \ldots \cup} \\
{\left[\begin{array}{c}
\mathrm{n}_{\mathrm{m}} \\
\mathrm{~d}_{\mathrm{m}}+1
\end{array}\right]\left(-\left[\begin{array}{c}
\mathrm{d}_{\mathrm{m}}+1 \\
\mathrm{~d}_{\mathrm{m}}
\end{array}\right]\left[(\mathrm{Q}-1)+\left(\mathrm{Q}^{2}-1\right)\right]\right)} \\
\quad=\left[\begin{array}{c}
\mathrm{n}_{1} \\
\mathrm{~d}_{1}+1
\end{array}\right](\mathrm{Q}-1)\left(\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right]\right) \cup \\
{\left[\begin{array}{c}
\mathrm{n}_{2} \\
\mathrm{~d}_{2}+1
\end{array}\right](\mathrm{Q}-1)\left(\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right]\right) \cup \ldots \cup} \\
{\left[\begin{array}{c}
\mathrm{n}_{\mathrm{m}} \\
\mathrm{~d}_{\mathrm{m}}+1
\end{array}\right](\mathrm{Q}-1)\left(\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{\mathrm{m}}+1 \\
\mathrm{~d}_{\mathrm{m}}
\end{array}\right]\right) .}
\end{gathered}
$$

Suppose

$$
\mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{1}+1 \\
\mathrm{~d}_{1}
\end{array}\right] \cup \mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{2}+1 \\
\mathrm{~d}_{2}
\end{array}\right] \cup \ldots \cup \mathrm{Q}+1-\left[\begin{array}{c}
\mathrm{d}_{\mathrm{m}}+1 \\
\mathrm{~d}_{\mathrm{m}}
\end{array}\right]
$$

$=0 \cup 0 \cup \ldots \cup 0$;
i.e.,

$$
\mathrm{q}^{\mathrm{N}}+1=\frac{\mathrm{q}^{\mathrm{d}+1}-1}{\mathrm{q}-1}
$$

i.e.,

$$
\mathrm{q}-1=\frac{\mathrm{q}^{\mathrm{d}}-1}{\mathrm{q}^{\mathrm{N}-1}}
$$

Clearly,

$$
\frac{q^{d}-1}{q^{N-1}}<1
$$

For,

$$
\text { if } \frac{\mathrm{q}^{\mathrm{d}}-1}{\mathrm{q}^{\mathrm{N}-1}} \geq 1 \text { then } \mathrm{q}^{\mathrm{N}-1}<\mathrm{q}^{\mathrm{d}}-1
$$

which is impossible as $\mathrm{d}<\mathrm{n} \leq \mathrm{N}$. Thus $\mathrm{q}-1<1$ which implies $\mathrm{q}<2$ a contradiction.
Hence, $A_{d_{1}+1}\left(n_{1}, d_{1}\right) \cup A_{d_{2}+1}\left(n_{2}, d_{2}\right) \cup \ldots \cup A_{d_{\mathrm{m}_{\mathrm{m}}+1}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{d}_{\mathrm{m}}\right)$ is non zero. Thus expect $\mathrm{C}_{1}\left(\mathrm{n}_{1}, 1, \mathrm{n}_{1}\right) \cup \mathrm{C}_{2}\left(\mathrm{n}_{2}, 1, \mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{C}_{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, 1\right.$, n_{m}) MRD m-codes all $\mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right] \cup \mathrm{C}_{2}\left[\mathrm{n}_{2}, \mathrm{k}_{2}, \mathrm{~d}_{2}\right] \cup \ldots \cup$ $\mathrm{C}_{\mathrm{m}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}, \mathrm{d}_{\mathrm{m}}\right]$ MRD m-codes with $\mathrm{d}_{\mathrm{i}} \leq \mathrm{n}_{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{~m}$ are non divisible.

Now finally we define the fuzzy rank distance m-codes ($\mathrm{m} \geq 3$).
Recall Von Kaenel introduced the idea of fuzzy codes with hamming metric and we have defined fuzzy RD codes with Rank metric, we have in the earlier chapter defined the notion of fuzzy RD bicodes. We now proceed onto define the new notion of fuzzy RD m-codes ($\mathrm{m} \geq 3$) when ($\mathrm{m}=3$), we call the fuzzy RD m-code to be a fuzzy RD tricode. In the chapter two we have recalled the notion of three types of errors namely asymmetric, symmetric and unidirectional.
We proceed onto define the notion of fuzzy RD m-codes $\mathrm{m} \geq 3$.
DEFINITION 3.34: Let $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ denote the $\left(n_{1}, n_{2}\right.$, ..., n_{m}) dimensional vector m-space of ($n_{1}, n_{2}, \ldots, n_{m}$)-tuples over $F_{2^{v}} ; n_{i} \leq N$ and $N>1 ; 1 \leq i \leq m$.

Let $u_{i}, v_{i} \in V^{n_{i}} ; i=1,2, \ldots, m$, where,

$$
u_{i}=\left(u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{i}}^{i}\right)
$$

and

$$
v_{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n_{i}}^{i}\right)
$$

with

$$
u_{j}^{i}, v_{j}^{i} \in F_{2^{n}} ; l \leq j \leq n_{i} ; l \leq i \leq m .
$$

A fuzzy RD m-code word $f_{u_{1} \cup u_{2} \cup . . \cup u_{m}}=f_{u_{l}}^{l} \cup f_{u_{2}}^{2} \cup \ldots \cup f_{u_{m}}^{m}$ is a fuzzy m-subset of $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ defined by,

$$
\begin{gathered}
f_{u_{1} \cup u_{2} \cup \ldots u_{m}}=f_{u_{1}}^{l} \cup f_{u_{2}}^{2} \cup \ldots \cup f_{u_{m}}^{m} \\
=\left\{\left(v_{1}, f_{u_{1}}^{l}\left(v_{1}\right)\right) / v_{1} \in V^{n_{l}}\right\} \cup\left\{\left(v_{2}, f_{u_{2}}^{2}\left(v_{2}\right)\right) / v_{2} \in V^{n_{2}}\right\} \cup \ldots \cup
\end{gathered}
$$

$$
\left\{\left(v_{m}, f_{u_{m}}^{m}\left(v_{m}\right)\right) / v_{m} \in V^{n_{m}}\right\}
$$

where $f_{u_{l}}^{l}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right) \cup \ldots \cup f_{u_{m}}^{m}\left(v_{m}\right)$ is the membership mfunction.

DEFINITION 3.35: For the symmetric error m-model assume p_{1} $\cup p_{2} \cup \ldots \cup p_{m}$ to represent the m-probability that no transition (i.e., error) is made and $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$ to represent the m probability that a m-rank error occurs so that, $p_{1}+q_{1} \cup p_{2}+q_{2}$ $\cup \ldots \cup p_{m}+q_{m}=1 \cup 1 \cup \ldots \cup 1$, then

$$
f_{u_{l}}^{l}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right) \cup \ldots \cup f_{u_{m}}^{m}\left(v_{m}\right)
$$

$$
=p_{1}^{n_{1}-r_{1}} q_{1}^{r_{1}} \cup p_{2}^{n_{2}-r_{2}} q_{2}^{r_{2}} \cup \ldots \cup p_{m}^{n_{m}-r_{m}} q_{m}^{r_{m}}
$$

where $r_{i}=r_{i}\left(u_{i}-v_{i}, 2\right)=\left\|u_{i}-v_{i}\right\|, i=1,2, \ldots, m$.

DEFINITION 3.36: For unidirectional and asymmetric error mmodels assume $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$ to represent the probability that $(1 \rightarrow 0) \cup(1 \rightarrow 0) \cup \ldots \cup(1 \rightarrow 0)$ m-transition or $(0 \rightarrow 1)$ $\cup(0 \rightarrow 1) \cup \ldots \cup(0 \rightarrow 1)$ m-transition occurs. Then

$$
\begin{gathered}
f_{u_{l}}^{l}\left(v_{1}\right) \cup f_{u_{2}}^{2}\left(v_{2}\right) \cup \ldots \cup f_{u_{m}}^{m}\left(v_{m}\right) \\
=\prod_{i=1}^{n_{l}} f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup \prod_{i=1}^{n_{2}} f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right) \cup \ldots \cup \prod_{i=1}^{n_{m}} f_{u_{i}^{m}}^{m}\left(v_{i}^{m}\right)
\end{gathered}
$$

where $f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right) \cup \ldots \cup f_{u_{i}^{m}}^{m}\left(v_{i}^{m}\right)$ inherits its definition from the unidirectional and asymmetric m-models respectively, since each $u_{i}^{l} \cup u_{i}^{2} \cup \ldots \cup u_{i}^{m}$ or $v_{i}^{l} \cup v_{i}^{2} \cup \ldots \cup v_{i}^{m}$ itself is an N-m-tuple over F_{2}. That is since $u_{i}^{j}, v_{i}^{j} \in F_{2^{N}} ; j=1,2, \ldots, m$; each $u_{i}^{l} \cup u_{i}^{2} \cup \ldots \cup u_{i}^{m}$ or $v_{i}^{l} \cup v_{i}^{2} \cup \ldots \cup v_{i}^{m}$ itself is an N, m tuple from F_{2}.

$$
\begin{aligned}
u_{i}^{j} & =\left(u_{i 1}^{j} \cup u_{i 2}^{j} \cup \ldots \cup u_{i N}^{j}\right), \\
v_{k}^{j} & =\left(v_{k 1}^{j} \cup v_{k 2}^{j} \cup \ldots \cup v_{k N}^{j}\right)
\end{aligned}
$$

where, $u_{i p}^{j} v_{k l}^{j} \in F_{2}, l \leq p, l \leq N$ and $l \leq i \leq m$.
Then for unidirectional error m-model

$$
\begin{gathered}
f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right) \cup \ldots \cup f_{u_{i}^{m}}^{m}\left(v_{i}^{m}\right)= \\
\left\{\begin{array}{l}
0 \cup 0 \cup \ldots \cup 0 \\
\min \left(k_{i 1}^{l}, k_{i 2}^{l}\right) \cup \ldots \cup \min \left(k_{i l}^{m}, k_{i 2}^{m}\right) \neq 0 \cup \ldots \cup 0 \\
p_{1}^{m_{i}^{l}-d_{i}^{l}} q_{1}^{d_{i}^{l}} \cup p_{2}^{m_{i}^{2}-d_{i}^{2}} q_{2}^{d_{i}^{2}} \cup \ldots \cup p_{m}^{m_{i}^{m}-d_{i}^{m}} q_{m}^{d_{i}^{m}} \quad \text { otherwise }
\end{array}\right.
\end{gathered}
$$

where $k_{i t}^{j}=\sum_{s=1}^{N} \max \left(0, u_{i s}^{j}-v_{i s}^{j}\right)$ where $j=1,2, \ldots, m$ and $i=1$, $2, \ldots, m$.

$$
d_{i}^{j}= \begin{cases}k_{i 1}^{j} & \text { if } k_{i 2}^{j}=0 \\ k_{i 2}^{j} & \text { if } k_{i 1}^{j}=0\end{cases}
$$

$j=1,2, \ldots, m$.

$$
m_{i}^{j}=\left\{\begin{array}{l}
\sum_{s=1}^{N} u_{i s}^{j} \text { if } k_{i 2}^{j}=0 \\
N-\sum_{s=1}^{N} u_{i s}^{j} \text { if } k_{i 1}^{j}=0 \\
\max \left(\sum u_{i s}^{j}, N-\sum u_{i s}^{j}\right) \text { if } k_{i 1}^{j}=k_{i 2}^{d}=0
\end{array}\right.
$$

$$
j=1,2, \ldots, m
$$

For the asymmetric error m-model

$$
\begin{gathered}
f_{u_{i}^{l}}^{l}\left(v_{i}^{l}\right) \cup f_{u_{i}^{2}}^{2}\left(v_{i}^{2}\right) \cup \ldots \cup f_{u_{i}^{m}}^{m}\left(v_{i}^{m}\right)= \\
\left\{\begin{array}{l}
0 \cup \ldots \cup 0 \\
\text { if } \min \left(k_{i l}^{l}, k_{i 2}^{l}\right) \cup \ldots \cup \min \left(k_{i l}^{m}, k_{i 2}^{m}\right) \neq 0 \cup \ldots \cup 0 \\
p_{1}^{m_{i}^{l}-d_{i}^{l}} q_{1}^{d_{i}^{l}} \cup p_{2}^{m_{i}^{2}-d_{i}^{2}} q_{2}^{d_{i}^{2}} \cup \ldots \cup p_{m}^{m_{i}^{m}-d_{i}^{m}} q_{m}^{d_{i}^{m}} \text { otherwise }
\end{array}\right.
\end{gathered}
$$

where $d_{i}^{j}=k_{i 1}^{j}$ and $j=1,2, \ldots, m$.

$$
m_{i}^{j}=\sum_{s=1}^{N} u_{i s}^{j}, j=1,2, \ldots, m
$$

for asymmetric $(1 \rightarrow 0) \cup(1 \rightarrow 0)$ error m-model and $d_{i}^{j}=k_{i 2}^{j}$, $j=1,2, \ldots, m$ and

$$
m_{i}^{j}=N-\sum_{s=1}^{N} u_{i s}^{j}
$$

$j=1,2, \ldots, m$ for the asymmetric $0 \rightarrow 1 \cup 0 \rightarrow 1$ error mmodel.

The results for minimum m-distance of a fuzzy RD-m-code can be derived as in case of minimum bidistance of a fuzzy RD bicode. The notions related to m -covering radius of RD bicodes can be analogously transformed to RD-p-codes ($p \geq 3$).

Proposition 3.1: If

$$
C_{1}^{l} \cup C_{2}^{l} \cup \ldots \cup C_{m}^{l} \text { and } C_{1}^{2} \cup C_{2}^{2} \cup \ldots \cup C_{m}^{2}
$$

are $R D$ m-codes with

$$
\begin{gathered}
C_{1}^{l} \cup C_{2}^{l} \cup \ldots \cup C_{m}^{l} \subseteq C_{1}^{2} \cup C_{2}^{2} \cup \ldots \cup C_{m}^{2} \\
\quad\left(i . e ., C_{j}^{l} \subseteq C_{j}^{2} ; j=1,2, \ldots, m\right)
\end{gathered}
$$

then

$$
\begin{aligned}
& t_{m_{l}}\left(C_{l}^{l}\right) \cup t_{m_{2}}\left(C_{2}^{l}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{l}\right) \geq \\
& t_{m_{l}}\left(C_{l}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{2}\right) \\
& \left(\text { i.e., } \mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}^{1}\right) \geq \mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}^{2}\right) ; i=1,2, \ldots, m\right) .
\end{aligned}
$$

Proof: Let $\mathrm{S}_{\mathrm{i}} \subseteq \mathrm{V}^{\mathrm{n}_{\mathrm{i}}}$ with $1 \leq \mathrm{j} \leq \mathrm{m} ;\left|\mathrm{S}_{\mathrm{i}}\right|=\mathrm{m}_{\mathrm{i}} ; i=1,2, \ldots, m$

$$
\begin{gathered}
\operatorname{cov}\left(\mathrm{C}_{1}^{2}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{C}_{2}^{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{C}_{\mathrm{m}}^{2}, \mathrm{~S}_{\mathrm{m}}\right) \\
=\min \left\{\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{~S}_{1}\right) ; \mathrm{x}_{1} \in \mathrm{C}_{1}^{2}\right\} \cup \\
\min \left\{\operatorname{cov}\left(\mathrm{x}_{2}, \mathrm{~S}_{2}\right) ; \mathrm{x}_{2} \in \mathrm{C}_{2}^{2}\right\} \cup \ldots \cup \min \left\{\operatorname{cov}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) ; \mathrm{x}_{\mathrm{m}} \in \mathrm{C}_{\mathrm{m}}^{2}\right\} \\
\leq \min \left\{\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{~S}_{1}\right) / \mathrm{x}_{1} \in \mathrm{C}_{1}^{1}\right\} \cup \\
\min \left\{\operatorname{cov}\left(\mathrm{x}_{2}, \mathrm{~S}_{2}\right) / \mathrm{x}_{2} \in \mathrm{C}_{2}^{1}\right\} \cup \ldots \cup \min \left\{\operatorname{cov}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) / \mathrm{x}_{\mathrm{m}} \in \mathrm{C}_{\mathrm{m}}^{1}\right\} \\
=\operatorname{cov}\left(\mathrm{C}_{1}^{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{C}_{2}^{1}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{C}_{\mathrm{m}}^{1}, \mathrm{~S}_{\mathrm{m}}\right) .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{2}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}^{2}\right) \\
\leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}^{1}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}^{1}\right) .
\end{gathered}
$$

Proposition 3.2: For any $R D$ m-code $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ and a m-tuple of positive integers $\left(m_{1}, m_{2}, \ldots, m_{m}\right)$

$$
\begin{gathered}
t_{m_{l}}\left(C_{l}\right) \cup t_{m_{2}}\left(C_{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}\right) \leq \\
t_{m_{l}+l}\left(C_{l}\right) \cup t_{m_{2}+l}\left(C_{2}\right) \cup \ldots \cup t_{m_{m}+l}\left(C_{m}\right) .
\end{gathered}
$$

Proof: Since $\mathrm{S}_{\mathrm{i}} \subseteq \mathrm{V}^{\mathrm{n}_{\mathrm{i}}} ; \mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{m}}$ is a m -subset of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$.
Now

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) \\
=\max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right) / \mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}},\left|\mathrm{~S}_{1}\right|=\mathrm{m}_{1}\right\} \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right) / \mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}},\left|\mathrm{~S}_{2}\right|=\mathrm{m}_{2}\right\} \cup \ldots \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) / \mathrm{S}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}},\left|\mathrm{~S}_{\mathrm{m}}\right|=\mathrm{m}_{\mathrm{m}}\right\} \\
\leq \max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right) / \mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}},\left|\mathrm{~S}_{1}\right|=\mathrm{m}_{1}+1\right\} \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right) / \mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}},\left|\mathrm{~S}_{2}\right|=\mathrm{m}_{2}+1\right\} \cup \ldots \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) / \mathrm{S}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}},\left|\mathrm{~S}_{\mathrm{m}}\right|=\mathrm{m}_{\mathrm{m}}+1\right\} \\
=\mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left(\mathrm{C}_{\mathrm{m}}\right) .
\end{gathered}
$$

Proposition 3.3: For any m-set of positive integers

$$
\begin{aligned}
& \left\{n_{l}, m_{l}, k_{1}, K_{l}\right\} \cup\left\{n_{2}, m_{2}, k_{2}, K_{2}\right\} \cup \ldots \cup\left\{n_{m}, m_{m}, k_{m}, K_{m}\right\} ; \\
& t_{m_{l}}\left[n_{l}, k_{l}\right] \cup t_{m_{2}}\left[n_{2}, k_{2}\right] \cup \ldots \cup t_{m_{m}}\left[n_{m}, k_{m}\right] \\
& \leq t_{m_{l}+1}\left[n_{1}, k_{1}\right] \cup t_{m_{2}+1}\left[n_{2}, k_{2}\right] \cup \ldots \cup t_{m_{m}+1}\left[n_{m}, k_{m}\right] .
\end{aligned}
$$

Proof: Given $\mathrm{C}_{1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{C}_{2}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup \mathrm{C}_{\mathrm{m}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right]$ to be a RD m-code with $\mathrm{C}_{\mathrm{i}} \subseteq \mathrm{V}^{\mathrm{n}_{\mathrm{i}}} ; \mathrm{i}=1,2, \ldots, \mathrm{~m}$.
Now

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right] \\
=\min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}, \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}\right\} \cup \\
\min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}, \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}\right\} \cup \ldots \cup
\end{gathered}
$$

$$
\begin{aligned}
& \min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}, \operatorname{dim} \mathrm{C}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}}\right\} \\
& \leq \min \left\{\mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}, \operatorname{dim} C_{1}=\mathrm{k}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}, \operatorname{dim} C_{2}=\mathrm{k}_{2}\right\} \cup \ldots \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}, \operatorname{dimC}_{\mathrm{m}_{\mathrm{m}}}=\mathrm{k}_{\mathrm{m}}\right\} \\
& =\mathrm{t}_{\mathrm{m}_{1}+1}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}+1}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right] .
\end{aligned}
$$

Similarly we have

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{~K}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{~K}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right] \\
\leq \mathrm{t}_{\mathrm{m}_{1}+1}\left[\mathrm{n}_{1}, \mathrm{~K}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left[\mathrm{n}_{2}, \mathrm{~K}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right] .
\end{gathered}
$$

That is

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{~K}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{~K}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right] \\
=\min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}},\left|\mathrm{C}_{1}\right|=\mathrm{K}_{1}\right\} \cup \\
\min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}},\left|\mathrm{C}_{2}\right|=\mathrm{K}_{2}\right\} \cup \ldots \cup \\
\min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}},\left|\mathrm{C}_{\mathrm{m}}\right|=\mathrm{K}_{\mathrm{m}}\right\} \\
\leq \min \left\{\mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}},\left|\mathrm{C}_{1}\right|=\mathrm{K}_{1}\right\} \cup \\
\min \left\{\mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}},\left|\mathrm{C}_{2}\right|=\mathrm{K}_{2}\right\} \cup \ldots \cup \\
\min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}},\left|\mathrm{C}_{\mathrm{m}}\right|=\mathrm{K}_{\mathrm{m}}\right\} \\
\leq \mathrm{t}_{\mathrm{m}_{1}+1}\left[\mathrm{n}_{1}, \mathrm{~K}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left[\mathrm{n}_{2}, \mathrm{~K}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right] .
\end{gathered}
$$

Proposition 3.4: For any m-set of positive integers

$\left\{n_{1}, m_{1}, k_{1}, K_{l}\right\} \cup\left\{n_{2}, m_{2}, k_{2}, K_{2}\right\} \cup \ldots \cup\left\{n_{m}, m_{m}, k_{m}, K_{m}\right\} ;$ $t_{m_{l}}\left[n_{l}, k_{l}\right] \cup t_{m_{2}}\left[n_{2}, k_{2}\right] \cup \ldots \cup t_{m_{m}}\left[n_{m}, k_{m}\right]$
$\geq t_{m_{l}}\left[n_{1}, k_{l}+1\right] \cup t_{m_{2}}\left[n_{2}, k_{2}+1\right] \cup \ldots \cup t_{m_{m}}\left[n_{m}, k_{m}+1\right]$.

Proof: Given $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is a RD m-code, hence a m-subspace of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$.
Consider

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}+1\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}+1\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}+1\right] \\
& =\min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}, \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}+1\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}, \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}+1\right\} \cup \ldots \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}, \operatorname{dimC} \mathrm{C}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}}+1\right\} \\
& \leq \min \left\{\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) / \mathrm{C}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}}, \operatorname{dim} \mathrm{C}_{1}=\mathrm{k}_{1}\right\} \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) / \mathrm{C}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}}, \operatorname{dim} \mathrm{C}_{2}=\mathrm{k}_{2}\right\} \cup \ldots \cup \\
& \min \left\{\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) / \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}, \operatorname{dim} \mathrm{C}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}}\right\}
\end{aligned}
$$

since for each $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}} \subseteq \mathrm{C}_{12} \cup \mathrm{C}_{22} \cup \ldots \cup \mathrm{C}_{\mathrm{m} 2}$

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{12}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{22}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m} 2}\right) \\
\leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) \\
=\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right] . .
\end{gathered}
$$

Similarly

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}+1\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}+1\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}+1\right) \\
& \quad \leq \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right) . \\
& \mathrm{c}_{2}
\end{aligned}
$$

Using these results and the fact $\mathrm{k}_{\mathrm{im}_{\mathrm{i}}}\left[\mathrm{n}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right]$ denotes the smallest dimension of a linear RD code of length n_{i} and m_{i} covering radius t_{i} and $K_{\mathrm{im}_{\mathrm{i}}}\left[\mathrm{n}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right]$ denotes the least cardinality of the RD codes of length n_{i} and m_{i}-covering radius t_{i} the following results can be easily proved.

Result 1: For any m-set of positive integers

$$
\left\{\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{t}_{1}\right\} \cup\left\{\mathrm{n}_{2}, \mathrm{~m}_{2}, \mathrm{t}_{2}\right\} \cup \ldots \cup\left\{\mathrm{n}_{\mathrm{m}}, \mathrm{~m}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right\} ;
$$

and

$$
\begin{gathered}
\mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \cup \ldots \cup \mathrm{k}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right] \\
\leq \mathrm{k}_{\mathrm{m}_{1}+1}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}+1}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \cup \ldots \cup \mathrm{k}_{\mathrm{m}_{\mathrm{m}}+1}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right) \\
\leq \mathrm{K}_{\mathrm{m}_{1}+1}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}+1}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}+1}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right) .
\end{gathered}
$$

Result 2: For any m-set of positive integers

$$
\left\{\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{t}_{1}\right\} \cup\left\{\mathrm{n}_{2}, \mathrm{~m}_{2}, \mathrm{t}_{2}\right\} \cup \ldots \cup\left\{\mathrm{n}_{\mathrm{m}}, \mathrm{~m}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right\} .
$$

we have,

$$
\begin{gathered}
\mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \cup \ldots \cup \mathrm{k}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right] \\
\geq \mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}+1\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}+1\right] \cup \ldots \cup \mathrm{k}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}+1\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right) \\
\geq \mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}+1\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}+1\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}+1\right) .
\end{gathered}
$$

We say a m-function $f_{1} \cup f_{2} \cup \ldots \cup f_{m}$ is a non decreasing mfunction in some m-variable say $x_{1} \cup x_{2} \cup \ldots \cup x_{m}$ if each f_{i} happen to be a non-decreasing function in the variable $\mathrm{x}_{\mathrm{i}} ; \mathrm{i}=1$, $2, \ldots, m$.

With this understanding we have for $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right)$ covering m-radius of a fixed RD m-code $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$,

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{k}_{1}\right] \cup \mathrm{t}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{k}_{2}\right] \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}\right], \\
\mathrm{k}_{\mathrm{m}_{1}}\left[\mathrm{n}_{1}, \mathrm{t}_{1}\right] \cup \mathrm{k}_{\mathrm{m}_{2}}\left[\mathrm{n}_{2}, \mathrm{t}_{2}\right] \cup \ldots \cup \mathrm{k}_{\mathrm{m}_{\mathrm{m}}}\left[\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right], \\
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right)
\end{gathered}
$$

and

$$
\mathrm{K}_{\mathrm{m}_{1}}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right)
$$

are non decreasing m-functions of $\left(m_{1}, m_{2}, \ldots, m_{m}\right)$.
The relationships between the multi covering m-radii of two RD m -codes that are built using them are described.
Let

$$
\mathrm{C}^{\mathrm{i}}=\mathrm{C}_{1}^{\mathrm{i}} \cup \mathrm{C}_{2}^{\mathrm{i}} \cup \ldots . . \cup \mathrm{C}_{\mathrm{m}}^{\mathrm{i}}
$$

for $\mathrm{i}=1,2$ be a
$\left[\mathrm{n}_{1}^{1}, \mathrm{k}_{1}^{1}, \mathrm{~d}_{1}^{1}\right] \cup\left[\mathrm{n}_{1}^{2}, \mathrm{k}_{1}^{2}, \mathrm{~d}_{1}^{2}\right] \cup \ldots \cup\left[\mathrm{n}_{1}^{\mathrm{m}}, \mathrm{k}_{1}^{\mathrm{m}}, \mathrm{d}_{1}^{\mathrm{m}}\right]$
and

$$
\left[\mathrm{n}_{2}^{1}, \mathrm{k}_{2}^{1}, \mathrm{~d}_{2}^{1}\right] \cup\left[\mathrm{n}_{2}^{2}, \mathrm{k}_{2}^{2}, \mathrm{~d}_{2}^{2}\right] \cup \ldots \cup\left[\mathrm{n}_{2}^{\mathrm{m}}, \mathrm{k}_{2}^{\mathrm{m}}, \mathrm{~d}_{2}^{\mathrm{m}}\right]
$$

RD m-codes over $\mathrm{F}_{2^{\mathrm{N}}}$ with $\mathrm{n}_{1}^{\mathrm{i}}, \mathrm{n}_{2}^{\mathrm{i}}, \mathrm{n}_{1}^{\mathrm{i}}+\mathrm{n}_{2}^{\mathrm{i}} \leq \mathrm{N}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$.
PROPOSITION 3.5: Let

$$
C^{l}=C_{1}^{l} \cup C_{2}^{l} \cup \ldots \cup C_{m}^{l} \text { and } C^{2}=C_{1}^{2} \cup C_{2}^{2} \cup \ldots \cup C_{m}^{2}
$$

be RD m-codes described above

$$
\begin{gathered}
C=C^{l} \times C^{2}=\left(C_{1}^{l} \times C_{1}^{2}\right) \cup\left(C_{2}^{l} \times C_{2}^{2}\right) \cup \ldots \cup\left(C_{m}^{l} \times C_{m}^{2}\right) \\
=\left\{\left(x_{1} / y_{1}\right) / x_{1} \in C_{1}^{l}, y_{1} \in C_{1}^{2}\right\} \cup \\
\left\{\left(x_{2} / y_{2}\right) / x_{2} \in C_{2}^{l}, y_{2} \in C_{2}^{2}\right\} \cup \ldots \cup \\
\left\{\left(x_{m} / y_{m}\right) / x_{m} \in C_{m}^{l}, y_{m} \in C_{m}^{2}\right\} .
\end{gathered}
$$

Then $C^{l} \times C^{2}$ is a

$$
\begin{gathered}
{\left[n_{l}^{l}+n_{2}^{l} \cup n_{l}^{2}+n_{2}^{2} \cup \ldots \cup n_{l}^{m}+n_{2}^{m},\right.} \\
k_{1}^{l}+k_{2}^{l} \cup k_{1}^{2}+k_{2}^{2} \cup \ldots \cup k_{1}^{m}+k_{2}^{m},
\end{gathered}
$$

$$
\left.\min \left\{d_{1}^{l}, d_{2}^{l}\right\} \cup \min \left\{d_{1}^{2}, d_{2}^{2}\right\} \cup \ldots \cup \min \left\{d_{1}^{m}, d_{2}^{m}\right\}\right]
$$

rank distance m-code over $F_{2^{N}}$ and

$$
\begin{gathered}
t_{m_{1}}\left(C_{1}^{I} \times C_{1}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{I} \times C_{2}^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{I} \times C_{m}^{2}\right) \\
\leq t_{m_{l}}\left(C_{1}^{l}\right)+t_{m_{l}}\left(C_{1}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{l}\right) \\
+t_{m_{2}}\left(C_{2}^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{l}\right)+t_{m_{m}}\left(C_{m}^{2}\right) .
\end{gathered}
$$

Proof: Let $\mathrm{S}_{\mathrm{i}} \subseteq \mathrm{V}^{\mathrm{n}_{1}^{\mathrm{i}}+\mathrm{n}_{2}^{i}}$; for $\mathrm{i}=1,2, \ldots$, m. and $\mathrm{S}_{\mathrm{i}}=\left\{\mathrm{s}_{1}^{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{m}_{\mathrm{i}}}^{\mathrm{i}}\right\}$ for $\mathrm{i}=1,2, \ldots, m$ with $\mathrm{s}_{\mathrm{i}}^{\mathrm{j}}\left(\mathrm{x}_{\mathrm{ji}} / \mathrm{y}_{\mathrm{ji}}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{x}_{\mathrm{ji}} \in \mathrm{V}^{\mathrm{n}_{1}^{j}}$ and $\mathrm{y}_{\mathrm{ji}} \in \mathrm{V}^{\mathrm{n}_{2}}, 1 \leq \mathrm{i} \leq \mathrm{m}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{m}$. Let

$$
\begin{gathered}
\mathrm{S}_{1}^{1}=\left\{\mathrm{x}_{11}, \ldots, \mathrm{x}_{1 \mathrm{~m}_{1}}\right\}, \mathrm{S}_{1}^{2}=\left\{\mathrm{y}_{11}, \ldots, \mathrm{y}_{1 \mathrm{~m}_{1}}\right\}, \\
\mathrm{S}_{2}^{1}=\left\{\mathrm{x}_{21}, \ldots, \mathrm{x}_{2 \mathrm{~m}_{2}}\right\}, \mathrm{S}_{2}^{2}=\left\{\mathrm{y}_{21}, \ldots, \mathrm{y}_{2 \mathrm{~m}_{2}}\right\}, \ldots, \\
\mathrm{S}_{\mathrm{m}}^{1}=\left\{\mathrm{x}_{\mathrm{m} 1}, \ldots, \mathrm{x}_{\mathrm{mm}_{\mathrm{m}}}\right\} \text { and } \mathrm{S}_{\mathrm{m}}^{2}=\left\{\mathrm{y}_{\mathrm{m} 1}, \ldots, \mathrm{y}_{\mathrm{mm}_{\mathrm{m}}}\right\} .
\end{gathered}
$$

Now $\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{1}^{\mathrm{i}}\right)$ being the m_{i} covering radius of $\mathrm{C}_{1}^{\mathrm{i}} ; \mathrm{i}=1,2, \ldots$, m, there exists $c_{1}^{i} \in C_{1}^{i}$ such that $S_{1}^{i} \subseteq B_{t_{m i}}^{i}\left(C_{1}^{i}\right) ; i=1,2, \ldots, m$.

This implies as in case of RD bicodes

$$
\begin{aligned}
\mathrm{r}_{\mathrm{j}}\left(\mathrm{~s}_{\mathrm{ji}}\right. & \left.+\mathrm{C}^{\mathrm{j}}\right)=\mathrm{r}_{\mathrm{j}}\left(\left(\mathrm{x}_{\mathrm{ji}} / \mathrm{y}_{\mathrm{ji}}\right)+\left(\mathrm{C}_{1}^{\mathrm{j}} / \mathrm{C}_{2}^{\mathrm{j}}\right)\right)=\mathrm{r}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{ji}}+\mathrm{C}_{1}^{\mathrm{j}} / \mathrm{y}_{\mathrm{ji}}+\mathrm{C}_{2}^{\mathrm{j}}\right) \\
& \leq \mathrm{r}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{ji}}+\mathrm{C}_{1}^{\mathrm{j}}\right)+\mathrm{r}_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{ji}}+\mathrm{C}_{2}^{\mathrm{j}}\right) \leq \mathrm{t}_{\mathrm{m}_{\mathrm{j}}}\left(\mathrm{C}_{1}^{\mathrm{j}}\right)+\mathrm{t}_{\mathrm{m}_{\mathrm{j}}}\left(\mathrm{C}_{2}^{\mathrm{j}}\right) ;
\end{aligned}
$$

$j=1,2, \ldots, m$.
Thus

$$
\begin{gathered}
t_{m}(C)=t_{m_{1}}\left(C_{1}^{1} \times C_{1}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{1} \times C_{2}^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{1} \times C_{m}^{2}\right) \leq \\
t_{m_{1}}\left(C_{1}^{1}\right)+t_{m_{1}}\left(C_{1}^{2}\right) \cup t_{m_{2}}\left(C_{2}^{1}\right)+t_{m_{2}}\left(C_{2}^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}^{1}\right)+t_{m_{m}}\left(C_{m}^{2}\right) .
\end{gathered}
$$

For any $\underbrace{(\mathrm{r}, \mathrm{r}, \ldots, \mathrm{r})}_{\mathrm{m} \text {-times }}(\mathrm{r}$ a positive integer $(\mathrm{m} \geq 3)$ the $(\mathrm{r}, \mathrm{r}, \ldots$, r) fold repetition RD m-code $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is the m-code

$$
\begin{gathered}
\mathrm{C}=\left\{\left(\mathrm{c}_{1}\left|\mathrm{c}_{1}\right| \ldots \mid \mathrm{c}_{1}\right) / \mathrm{c}_{1} \in \mathrm{C}_{1}\right\} \cup \\
\left\{\left(\mathrm{c}_{2}\left|\mathrm{c}_{2}\right| \ldots \mid \mathrm{c}_{2}\right) / \mathrm{c}_{2} \in \mathrm{C}_{2}\right\} \cup \ldots \cup \\
\left\{\left(\mathrm{c}_{\mathrm{m}}\left|\mathrm{c}_{\mathrm{m}}\right| \ldots \mid \mathrm{c}_{\mathrm{m}}\right) / \mathrm{c}_{\mathrm{m}} \in \mathrm{C}_{\mathrm{m}}\right\}
\end{gathered}
$$

where the m-code word $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is a concatenation of (r, r, \ldots, r) times, this is a $\left[\mathrm{rn}_{1}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right] \cup\left[\mathrm{rn}_{2}, \mathrm{k}_{2}, \mathrm{~d}_{2}\right] \cup \ldots \cup$ $\left[\mathrm{rn}_{\mathrm{m}}, \mathrm{k}_{\mathrm{m}}, \mathrm{d}_{\mathrm{m}}\right]$ rank distance m -code with $\mathrm{n}_{\mathrm{i}} \leq \mathrm{N}$ and $\mathrm{rn}_{\mathrm{i}} \leq \mathrm{N}$; $\mathrm{i}=$ $1,2, \ldots, \mathrm{~m}$. Thus any m-code word in $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ would be of the form

$$
\left\{\left(\mathrm{c}_{1}\left|\mathrm{c}_{1}\right| \ldots \mid \mathrm{c}_{1}\right)\right\} \cup\left\{\left(\mathrm{c}_{2}\left|\mathrm{c}_{2}\right| \ldots \mid \mathrm{c}_{2}\right)\right\} \cup \ldots \cup\left\{\left(\mathrm{c}_{\mathrm{m}}\left|\mathrm{c}_{\mathrm{m}}\right| \ldots \mid \mathrm{c}_{\mathrm{m}}\right)\right\}
$$

such that $x_{i} \in C_{i}$ for $i=1,2, \ldots, m$.
We can also define $\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ fold repetition m-code $\left(r_{i}\right.$ $\neq \mathrm{r}_{\mathrm{j}}$ if $\left.\mathrm{i} \neq \mathrm{j} ; 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}\right)$.

DEFINITION 3.37: Let $C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be a $\left[n_{1}, k_{1}, d_{l}\right] \cup\left[n_{2}, k_{2}, d_{2}\right] \cup \ldots \cup\left[n_{m}, k_{m}, d_{m}\right] R D$ m-code.

Let $c^{i}=\{\underbrace{\left(c_{i}\left|c_{i}\right| \ldots \mid c_{i}\right)}_{r_{i} \text {-times }} / c_{i} \in C_{i}\}$ be a r_{i}-fold repetition RD-code $C_{i}, i=1,2, \ldots, m$. Then $C^{l} \cup C^{2} \cup \ldots \cup C^{m}$ is defined as the $\left(r_{1}\right.$, r_{2}, \ldots, r_{m}-fold repetition m-code each $r_{i} n_{i}<N$ for $i=1,2, \ldots, m$.

We prove the following interesting theorem.
Theorem 3.13: For an (r, r, \ldots, r) fold repetition m-code $C_{I} \cup$ $C_{2} \cup \ldots \cup C_{m}$

$$
\begin{aligned}
& t_{m_{l}}\left(C_{1}\right) \cup t_{m_{2}}\left(C_{2}\right) \cup \ldots \cup t_{m_{m}}\left(C_{m}\right) \\
= & t_{m_{1}}\left(C^{l}\right) \cup t_{m_{2}}\left(C^{2}\right) \cup \ldots \cup t_{m_{m}}\left(C^{m}\right) .
\end{aligned}
$$

Proof: Let $\mathrm{S}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{im}_{\mathrm{i}}}\right\} \subseteq \mathrm{V}^{\mathrm{n}_{\mathrm{i}}}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$; such that $\operatorname{cov}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{S}_{\mathrm{i}}\right)=\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}\right) ; \mathrm{i}=1,2, \ldots, \mathrm{~m}$.
Let

$$
\begin{aligned}
\mathrm{v}_{\mathrm{i} 1}^{\prime} & =\left(\mathrm{v}_{\mathrm{i} 1}\left|\mathrm{v}_{\mathrm{i} 1}\right| \ldots \mid \mathrm{v}_{\mathrm{i} 1}\right) \\
\mathrm{v}_{\mathrm{i} 2}^{\prime} & =\left(\mathrm{v}_{\mathrm{i} 2}\left|\mathrm{v}_{\mathrm{i} 2}\right| \ldots \mid \mathrm{v}_{\mathrm{i} 2}\right)
\end{aligned}
$$

and so on

$$
\mathrm{v}_{\mathrm{im}_{1}}^{\prime}=\left(\mathrm{v}_{\mathrm{im} \mathrm{~m}_{1}}\left|\mathrm{v}_{\mathrm{im}_{1}}\right| \ldots \mid \mathrm{v}_{\mathrm{im}}\right) ; 1 \leq \mathrm{i} \leq \mathrm{m} .
$$

Let $S_{i}=\left\{\mathrm{v}_{\mathrm{i} 1}^{\prime}, \mathrm{v}_{\mathrm{i} 2}^{\prime}, \ldots, \mathrm{v}_{\mathrm{im}_{\mathrm{i}}}^{\prime}\right\}$ be the set of m_{i}-vectors of length m_{i} for, $\mathrm{i}=1,2, \ldots, \mathrm{~m}$. An r fold repetition of any RD code word retains the same rank weight. Hence $\left(\mathrm{C}^{\mathrm{i}}, \mathrm{S}_{\mathrm{i}}^{\prime}\right)=\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}\right)$ true for i $=1,2, \ldots, \mathrm{~m}$. Since

$$
\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}^{\mathrm{i}}\right)=\operatorname{cov}\left(\mathrm{C}^{\mathrm{i}}, \mathrm{~S}_{\mathrm{i}}^{\prime}\right)
$$

it follows that

$$
\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}^{\mathrm{i}}\right) \geq \mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}\right)
$$

for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$; i.e.,

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}^{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}^{\mathrm{m}}\right) \geq \\
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)
\end{aligned}
$$

Conversely let $S_{i}=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i_{i}}\right\}$ be a set of m_{i} vectors $i=1$, $2, \ldots$, m of length rn_{i} with $\mathrm{v}_{\mathrm{ij}}=\left(\mathrm{v}_{\mathrm{ij}}^{\prime}|\ldots| \mathrm{v}_{\mathrm{ij}}^{\prime}\right) ; \mathrm{j}=1,2, \ldots, \mathrm{~m}_{\mathrm{i}}, \mathrm{i}=$ $1,2, \ldots, m . v_{i}^{\prime} \in V^{n_{i}}, 1 \leq i \leq m_{i}$. Then there exists $c_{i} \in C_{i}$ such that $d_{R_{i}}\left(c_{i}, v_{i}^{\prime}\right) \leq t_{m_{i}}\left(C_{i}\right) ; i=1,2, \ldots, m_{i} ; 1 \leq i \leq m$.

This implies $d_{R_{i}}\left(\left(c_{i}\left|c_{i}\right| \ldots \mid c_{i}\right), v_{i j}\right) \leq t_{m_{i}}\left(C_{i}\right)$ for every $i(1 \leq$ $\mathrm{i} \leq \mathrm{m})$. Thus $\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}^{\mathrm{i}}\right) \leq \mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots, \mathrm{~m}$; i.e.,

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}^{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}^{\mathrm{m}}\right) \leq \\
& \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)
\end{aligned}
$$

From I and II

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}^{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}^{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}^{\mathrm{m}}\right)= \\
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) .
\end{gathered}
$$

Now we proceed on to analyse the notion of multi covering mbounds for RD m-codes. The ($\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}$) covering mradius $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)$ of a RD m -code $\mathrm{C}=$ $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ is a non-decreasing m-function of $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ $\cup \ldots \cup \mathrm{m}_{\mathrm{m}}$. Thus a lower m-bound for

$$
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)
$$

implies a m-bound for

$$
\mathrm{t}_{\mathrm{m}_{1}+1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}+1}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}+1}\left(\mathrm{C}_{\mathrm{m}}\right) .
$$

First m-bound exhibits that for $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}} \geq 2 \cup 2 \cup$ $\ldots \cup 2$ the situation of $\left(m_{1}, m_{2}, \ldots, m_{m}\right)$ covering m-radii is quite different for ordinary covering radii.

PREPOSITION 3.6: If $m_{1} \cup m_{2} \cup \ldots \cup m_{m}>2 \cup 2 \cup \ldots \cup 2$ then the ($m_{1}, m_{2}, \ldots, m_{m}$) covering m-radii of a $R D$ m-code $C=C_{1} \cup$ $C_{2} \cup \ldots \cup C_{m}$ of m-length $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ is at least

$$
\left\lceil\frac{n_{1}}{2}\right\rceil \cup\left\lceil\frac{n_{2}}{2}\right\rceil \cup \ldots \cup\left\lceil\frac{n_{m}}{2}\right\rceil .
$$

Proof: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ be a RD m-code of m-length $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}}\right)$ over GF $\left(2^{\mathrm{N}}\right)$. Let $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}=2 \cup 2$ $\cup \ldots \cup 2$. Let $t_{1}, t_{2}, \ldots, t_{m}$ be the 2 -covering m -radii of the RD m -code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$. Let $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}} \in$ $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$. Choose $\mathrm{y}=\mathrm{y}_{1} \cup \mathrm{y}_{2} \cup \ldots \cup \mathrm{y}_{\mathrm{m}} \in$ $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ such that all the $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}}\right)$ coordinate of

$$
x-y=\left(x_{1}-y_{1}\right) \cup\left(x_{2}-y_{2}\right) \cup \ldots \cup\left(x_{m}-y_{m}\right)
$$

are linearly independent that is

$$
\begin{aligned}
& \quad d_{R}(x, y)=d_{R}\left(x_{1} \cup x_{2} \cup \ldots \cup x_{m}, y_{1} \cup y_{2} \cup \ldots \cup y_{m}\right) \\
& \quad=d_{R_{1}}\left(x_{1}, y_{1}\right) \cup d_{R_{2}}\left(x_{2}, y_{2}\right) \cup \ldots \cup d_{R_{m}}\left(x_{m}, y_{m}\right) \\
& \left(R=R_{1} \cup R_{2} \cup \ldots \cup R_{m} \text { and } d_{R}=d_{R_{1}} \cup d_{R_{2}} \cup \ldots \cup d_{R_{m}}\right)=n_{1} \cup \\
& n_{2} \cup \ldots \cup n_{m .} \text {. Then for any } c=c_{1} \cup c_{2} \cup \ldots \cup c_{m} \in C_{1} \cup C_{2} \cup \\
& \ldots \cup C_{m} .
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{d}_{\mathrm{R}}(\mathrm{x}+\mathrm{c})+\mathrm{d}_{\mathrm{R}}(\mathrm{c}+\mathrm{y}) \\
=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{c}_{1}\right)+\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{c}_{2}\right)+\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right) \cup \ldots \cup \\
\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{c}_{\mathrm{m}}\right)+\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) \\
\geq \mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \cup \ldots \cup \mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) \\
=\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}} ;
\end{gathered}
$$

this implies that one of

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{x}_{1}, \mathrm{c}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{x}_{2}, \mathrm{c}_{2}\right) \cup \ldots \cup \mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{c}_{\mathrm{m}}\right)
$$

and

$$
\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right) \cup \ldots \cup \mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)
$$

is at least

$$
\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2} \cup \ldots \cup \frac{\mathrm{n}_{\mathrm{m}}}{2} .
$$

(That is one of $d_{R_{i}}\left(x_{i}, c_{i}\right)$ and $d_{R_{i}}\left(c_{i}, y_{i}\right)$ is atleast $\frac{n_{i}}{2} ; i=1,2$, \ldots, m) and hence

$$
\mathrm{t}=\mathrm{t}_{1} \cup \mathrm{t}_{2} \cup \ldots \cup \mathrm{t}_{\mathrm{m}} \geq\left\lceil\frac{\mathrm{n}_{1}}{2}\right\rceil \cup\left\lceil\frac{\mathrm{n}_{2}}{2}\right\rceil \cup \ldots \cup\left\lceil\frac{\mathrm{n}_{\mathrm{m}}}{2}\right\rceil .
$$

Since t is a non-decreasing m -function of $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$ it follows that

$$
\begin{aligned}
\mathrm{t}_{\mathrm{m}}(\mathrm{C}) & =\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right) \\
& \geq\left\lceil\frac{\mathrm{n}_{1}}{2}\right\rceil \cup\left\lceil\frac{\mathrm{n}_{2}}{2}\right\rceil \cup \ldots \cup\left\lceil\frac{\mathrm{n}_{\mathrm{m}}}{2}\right\rceil
\end{aligned}
$$

for $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}} \geq 2 \cup 2 \cup \ldots \cup 2$. m-bounds of the multi covering m-radius of $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ can be used to obtain m -bounds on the multi covering m-radii of arbitrary mcodes. Thus a relationship between $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right)$ covering m -radii of an RD m-code and that of its ambient m-space $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ is established.

THEOREM 3.14: Let $C=C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ be RD m-code of m-length $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$ over $F_{2^{N}} \cup F_{2^{N}} \cup \ldots \cup F_{2^{N}}$. Then for any positive m-integer tuple ($m_{1}, m_{2}, \ldots, m_{m}$)

$$
\begin{aligned}
& t_{m_{1}}^{l}\left(C_{1}\right) \cup t_{m_{2}}^{2}\left(C_{2}\right) \cup \ldots \cup t_{m_{m}}^{m}\left(C_{m}\right) \\
& \leq t_{l}^{l}\left(C_{1}\right)+t_{m_{1}}^{l}\left(V^{n_{1}}\right) \cup t_{l}^{2}\left(C_{2}\right)+t_{m_{2}}^{2}\left(V^{n_{2}}\right) \cup \ldots \cup \\
& t_{l}^{m}\left(C_{m}\right)+t_{m_{m}}^{m}\left(V^{n_{m}}\right) .
\end{aligned}
$$

Proof: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{m}} \subseteq \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ (i.e., $\mathrm{S}_{\mathrm{i}} \subseteq \mathrm{V}^{\mathrm{n}_{\mathrm{i}}} ; \mathrm{i}=1,2, \ldots, \mathrm{~m}$) with $|\mathrm{S}|=\left|\mathrm{S}_{1}\right| \cup\left|\mathrm{S}_{2}\right| \cup \ldots \cup\left|\mathrm{S}_{\mathrm{m}}\right|$ $=m_{1} \cup m_{2} \cup \ldots \cup m_{m}$. Then there exists $u=u_{1} \cup u_{2} \cup \ldots \cup u_{m}$ $\in \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ such that

$$
\begin{gathered}
\operatorname{cov}(\mathrm{u}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{u}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
\leq \mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right) .
\end{gathered}
$$

Also there is a $c=c_{1} \cup c_{2} \cup \ldots \cup c_{m} \in C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ such that

$$
\begin{aligned}
\mathrm{d}_{\mathrm{R}}(\mathrm{c}, \mathrm{u})= & \mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right) \cup \mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right) \cup \ldots \cup \mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}}\right) \\
& \leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{1}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right) .
\end{aligned}
$$

Now,

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
=\max \left\{\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{y}_{1}\right) / \mathrm{y}_{1} \in \mathrm{~S}_{1}\right\} \cup \\
\max \left\{\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{y}_{2}\right) / \mathrm{y}_{2} \in \mathrm{~S}_{2}\right\} \cup \ldots \cup \\
\max \left\{\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) / \mathrm{y}_{\mathrm{m}} \in \mathrm{~S}_{\mathrm{m}}\right\} \\
\leq \max \left\{\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{u}_{1}, \mathrm{y}_{1}\right) / \mathrm{y}_{1} \in \mathrm{~S}_{1}\right\} \cup \\
\max \left\{\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{u}_{2}, \mathrm{y}_{2}\right) / \mathrm{y}_{2} \in \mathrm{~S}_{2}\right\} \cup \ldots \cup \\
\max \left\{\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}}\right)+\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{u}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) / \mathrm{y}_{\mathrm{m}} \in \mathrm{~S}_{\mathrm{m}}\right\} \\
=\mathrm{d}_{\mathrm{R}_{1}}\left(\mathrm{c}_{1}, \mathrm{u}_{1}\right)+\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \\
\mathrm{d}_{\mathrm{R}_{2}}\left(\mathrm{c}_{2}, \mathrm{u}_{2}\right)+\operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \\
\mathrm{d}_{\mathrm{R}_{\mathrm{m}}}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}}\right)+\operatorname{cov}\left(\mathrm{u}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
\leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \\
\mathrm{t}_{1}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right)+\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{n}_{\mathrm{m}}}\right) .
\end{gathered}
$$

Thus for every $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{m}} \subseteq \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ with $|S|=\left|\mathrm{S}_{1}\right| \cup\left|\mathrm{S}_{2}\right| \cup \ldots \cup\left|\mathrm{S}_{\mathrm{m}}\right|=\mathrm{m}=\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$ one can find $c=c_{1} \cup c_{2} \cup \ldots \cup c_{m} \in C_{1} \cup C_{2} \cup \ldots \cup C_{m}$ such that

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
\leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \\
\mathrm{t}_{1}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right)+\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right) .
\end{gathered}
$$

Since

$$
\begin{gathered}
\operatorname{cov}(\mathrm{c}, \mathrm{~S})=\operatorname{cov}\left(\mathrm{c}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{c}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{c}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
=\min \left\{\operatorname{cov}\left(\mathrm{a}_{1}, \mathrm{~S}_{1}\right) / \mathrm{a}_{1} \in \mathrm{C}_{1}\right\} \cup \\
\min \left\{\operatorname{cov}\left(\mathrm{a}_{2}, \mathrm{~S}_{2}\right) / \mathrm{a}_{2} \in \mathrm{C}_{2}\right\} \cup \ldots \cup \min \left\{\operatorname{cov}\left(\mathrm{a}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) / \mathrm{a}_{\mathrm{m}} \in \mathrm{C}_{\mathrm{m}}\right\}
\end{gathered}
$$

$$
\begin{gathered}
\leq\left\{\mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right)\right\} \cup\left\{\mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right)\right\} \cup \ldots \cup \\
\left\{\mathrm{t}_{1}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right)+\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right)\right\}
\end{gathered}
$$

for all $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{m}} \subseteq \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ with $|\mathrm{S}|$ $=\left|S_{1}\right| \cup\left|S_{2}\right| \cup \ldots \cup\left|S_{m}\right|=m_{1} \cup m_{2} \cup \ldots \cup m_{m}$, it follows that

$$
\begin{gathered}
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right) \\
=\max \left\{\operatorname{cov}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right) / \mathrm{S}_{1} \subseteq \mathrm{~V}^{\mathrm{n}_{1}},\left|\mathrm{~S}_{1}\right|=\mathrm{m}_{1}\right\} \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right) / \mathrm{S}_{2} \subseteq \mathrm{~V}^{\mathrm{n}_{2}},\left|\mathrm{~S}_{2}\right|=\mathrm{m}_{2}\right\} \cup \ldots \cup \\
\max \left\{\operatorname{cov}\left(\mathrm{C}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) / \mathrm{S}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}},\left|\mathrm{~S}_{\mathrm{m}}\right|=\mathrm{m}_{\mathrm{m}}\right\} \\
\leq \mathrm{t}_{1}^{1}\left(\mathrm{C}_{1}\right)+\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{1}^{2}\left(\mathrm{C}_{2}\right)+\mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \\
\mathrm{t}_{1}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{m}}\right)+\mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right) .
\end{gathered}
$$

Proposition 3.7: For any m-tuple of integer ($n_{1}, n_{2}, \ldots, n_{m}$); n_{1} $\cup n_{2} \cup \ldots \cup n_{m} \geq 2 \cup 2 \cup \ldots \cup 2$;

$$
\begin{gathered}
t_{2}^{1}\left(V^{n_{1}}\right) \cup t_{2}^{2}\left(V^{n_{2}}\right) \cup \ldots \cup t_{2}^{m}\left(V^{n_{m}}\right) \\
\leq n_{1}-1 \cup n_{2}-1 \cup \ldots \cup n_{m}-1
\end{gathered}
$$

where $V^{n_{i}}=F_{2^{v}}^{n_{i}} ; i=1,2, \ldots, n_{i} ; n_{i} \leq N, i=1,2, \ldots, m$.

Proof: Let

$$
x_{i}=\left(x_{1}^{i}, x_{2}^{i}, \ldots, x_{n_{i}}^{i}\right) \text { and } y_{i}=\left(y_{1}^{i}, y_{2}^{i}, \ldots, y_{n_{i}}^{i}\right) \in V^{n_{i}} ;
$$

$i=1,2, \ldots, m$.
Let $u=u_{1} \cup u_{2} \cup \ldots \cup u_{m} \in V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ where $u_{i}=\left(x_{1}^{i}, u_{2}^{i}, u_{3}^{i}, \ldots, u_{n_{i}-1}^{i}, y_{n_{i}}^{i}\right) ; i=1,2, \ldots, m$. Thus $u=u_{1} \cup u_{2} \cup$ $\ldots \cup u_{\mathrm{m}} \mathrm{m}$-covers $\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}}$ and $\mathrm{y}_{1} \cup \mathrm{y}_{2} \cup \ldots \cup \mathrm{y}_{\mathrm{m}}$ $\in \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ within a m-radius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup$ $n_{m}-1$ as $d_{R_{i}}\left(u_{i}, x_{i}\right) \leq n_{i}-1 ; i=1,2, \ldots, m$. Thus for any pair of m-vectors $x_{1} \cup x_{2} \cup \ldots \cup x_{m}, y_{1} \cup y_{2} \cup \ldots \cup y_{m}$ in $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ there always exists a m-vector namely $\mathrm{u}=$ $\mathrm{u}_{1} \cup \mathrm{u}_{2} \cup \ldots \cup \mathrm{u}_{\mathrm{m}}$ which m -covers $\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \ldots \cup \mathrm{x}_{\mathrm{m}}$ and $\mathrm{y}_{1} \cup$ $\mathrm{y}_{2} \cup \ldots \cup \mathrm{y}_{\mathrm{m}}$ within a m-radius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1$.

Hence

$$
\begin{aligned}
& \mathrm{t}_{2}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{2}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \mathrm{t}_{2}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right) \\
& \quad \leq \mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1
\end{aligned}
$$

Now we proceed on to describe the notion of generalized sphere m -covering m -bounds for $\mathrm{RD}-\mathrm{m}$-codes. A natural question is for a given $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}, \mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$ and $\mathrm{n}_{1} \cup \mathrm{n}_{2}$ $\cup \ldots \cup \mathrm{n}_{\mathrm{m}}$ what is the smallest RD m-code whose $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup$ $\ldots \cup \mathrm{m}_{\mathrm{m}}, \mathrm{m}$-covering m -radius is atmost $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}$. As it turns out even for $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}} \geq 2 \cup 2 \cup \ldots \cup 2$, it is necessary that $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}$ be atleast

$$
\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2} \cup \ldots \cup \frac{\mathrm{n}_{\mathrm{m}}}{2} .
$$

Infact the minimal $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}$ for which such a m-code exists is the $\left(m_{1}, m_{2}, \ldots, m_{m}\right), m$-covering m-radius of $C_{1} \cup C_{2}$ $\cup \ldots \cup \mathrm{C}_{\mathrm{m}}=\mathrm{F}_{2^{\mathrm{N}}}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2^{\mathrm{N}}}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~F}_{2^{\mathrm{N}}}^{\mathrm{n}_{\mathrm{m}}}$. Various external values associated with this notion are $\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{V}^{\mathrm{n}_{\mathrm{m}}}\right)$, the smallest $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right.$, m_{m}) covering m-radius among m-length $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$ RD-m-codes

$$
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{~K}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{~K}_{\mathrm{m}}\right) ;
$$

the smallest $\left(m_{1}, m_{2}, \ldots, m_{m}\right)$ covering m-radius among all (n_{1}, $\left.\mathrm{K}_{1}\right) \cup\left(\mathrm{n}_{2}, \mathrm{~K}_{2}\right) \cup \ldots \cup\left(\mathrm{n}_{\mathrm{m}}, \mathrm{K}_{\mathrm{m}}\right)$ RD-m-codes.

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right)
$$

is the smallest m-cardinality of a m-length $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$. RD-m-code with $m_{1} \cup m_{2} \cup \ldots \cup m_{m}$ covering m-radius $\mathrm{t}^{1} \cup \mathrm{t}^{2}$ $\cup \ldots \cup t^{\mathrm{m}}$ and so on.

It is the latter quantity that is studied in the book for deriving new lower m-bounds. From the earlier results

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right)
$$

is undefined if

$$
\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}<\frac{\mathrm{n}_{1}}{2} \cup \frac{\mathrm{n}_{2}}{2} \cup \ldots \cup \frac{\mathrm{n}_{\mathrm{m}}}{2}
$$

When this is the case it is accepted to say

$$
\begin{aligned}
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) & \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right) \\
=\infty & \cup \ldots \cup \infty .
\end{aligned}
$$

There are other circumstances when

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right)
$$

is undefined. For instance

$$
\begin{gathered}
\mathrm{K}_{2^{\mathrm{N}_{\mathrm{n} 1}}}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{2^{\mathrm{Nn}_{\mathrm{n} 2}}}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \cup \ldots \cup \mathrm{K}_{2^{\mathrm{Nanm}^{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}-1\right) \\
\quad=\infty \cup \infty \cup \ldots \cup \infty . \\
\mathrm{m}_{1}>\mathrm{V}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right), \mathrm{m}_{2}>\mathrm{V}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right), \ldots, \mathrm{m}_{\mathrm{m}}>\mathrm{V}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right) ;
\end{gathered}
$$

since in this case no m-ball of m-radius $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}} \mathrm{m}$ covers any m -set of $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$ distinct m-vectors.

More generally one has the fundamental issue of whether

$$
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right)
$$

is m -finite for a given $\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{t}^{1}, \mathrm{n}_{2}, \mathrm{~m}_{2}, \mathrm{t}^{2}, \ldots, \mathrm{n}_{\mathrm{m}}, \mathrm{m}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}$. This is the case if and only if

$$
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \leq \mathrm{t}^{1}, \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \leq \mathrm{t}^{2}, \ldots, \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right) \leq \mathrm{t}^{\mathrm{m}}
$$

since

$$
\mathrm{t}_{\mathrm{m}_{1}}^{1}\left(\mathrm{~V}^{\mathrm{n}_{1}}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}^{2}\left(\mathrm{~V}^{\mathrm{n}_{2}}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}\right)
$$

lower m -bounds the $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right)$ covering m -radius of all other m-codes of m-dimension $n_{1} \cup n_{2} \cup \ldots \cup n_{m}$ when $t^{1} \cup t^{2}$ $\cup \ldots \cup \mathrm{t}^{\mathrm{m}}=\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$ every m -code word m -covers every m-vector, so a m-code of size $1 \cup 1 \cup \ldots \cup 1$ will (m_{1}, $\mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}$) m-cover $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ for every $\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ $\cup \ldots \cup \mathrm{m}_{\mathrm{m}}$. Thus

$$
\begin{aligned}
\mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}\right) & \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}\right) \\
& 1 \cup 1 \cup \ldots \cup 1
\end{aligned}
$$

for every $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$.
If $\mathrm{t}^{1} \cup \mathrm{t}^{2} \cup \ldots \cup \mathrm{t}^{\mathrm{m}}=\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1$ what happens to $K_{m_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}^{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}^{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}^{\mathrm{m}}\right)$?

When $\mathrm{m}_{1}=\mathrm{m}_{2}=\ldots=\mathrm{m}_{\mathrm{m}}$,

$$
\begin{aligned}
& \mathrm{K}_{2}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{2}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \cup \ldots \cup \mathrm{K}_{2}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}-1\right) \\
& \quad \leq 1+\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup 1+\mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right) \cup \ldots \cup 1+\mathrm{L}_{\mathrm{n}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right) .
\end{aligned}
$$

For $\overline{0} \cup \overline{0} \cup \ldots \cup \overline{0}=(0,0, \ldots, 0) \cup(0,0, \ldots, 0) \cup(0,0, \ldots, 0)$ will m-cover m-norm less than or equal to $n_{1}-1 \cup n_{2}-1 \cup \ldots$ $\cup \mathrm{n}_{\mathrm{m}}-1$ within m-radius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1$.
That is $\overline{0} \cup \overline{0} \cup \ldots \cup \overline{0}=(0,0, \ldots, 0) \cup(0,0, \ldots, 0) \cup(0,0, \ldots$, 0) will m-cover all m-norm $n_{1}-1 \cup n_{2}-1 \cup \ldots \cup n_{m}-1 m$ vectors within the m-radius $n_{1}-1 \cup n_{2}-1 \cup \ldots \cup n_{m}-1$. Hence remaining m-vectors are m-rank $n_{1} \cup n_{2} \cup \ldots \cup n_{m} m$ vectors.
Thus $\overline{0} \cup \overline{0} \cup \ldots \cup \overline{0}=(0,0, \ldots, 0) \cup(0,0, \ldots, 0) \cup(0,0, \ldots, 0)$ and these m -rank $\left(\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}\right) \mathrm{m}$-vector can m-cover the ambient m -space within the m -radius $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$ -1 . Therefore,

$$
\begin{aligned}
& \mathrm{K}_{2}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{2}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \cup \ldots \cup \mathrm{K}_{2}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}-1\right) \\
& \quad \leq 1+\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup 1+\mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right) \cup \ldots \cup 1+\mathrm{L}_{\mathrm{n}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right) .
\end{aligned}
$$

Proposition 3.8: For any RD m-code of m-length $n_{1} \cup n_{2} \cup$ $\ldots \cup n_{m}$ over $F_{2^{v}} \cup F_{2^{v}} \cup \ldots \cup F_{2^{N}}$,

$$
\begin{aligned}
& K_{2}^{1}\left(n_{1}, n_{1}-1\right) \cup K_{2}^{2}\left(n_{2}, n_{2}-1\right) \cup \ldots \cup K_{2}^{m}\left(n_{m}, n_{m}-1\right) \\
& \leq m_{1} L_{n_{1}}\left(n_{1}\right)+l \cup m_{2} L_{n_{2}}\left(n_{2}\right)+l \cup \ldots \cup m_{m} L_{n_{m}}\left(n_{m}\right)+1
\end{aligned}
$$

provided $m_{1} \cup m_{2} \cup \ldots \cup m_{m}$ is such that

$$
\begin{aligned}
m_{l} L_{n_{l}}\left(n_{l}\right)+l & \cup m_{2} L_{n_{2}}\left(n_{2}\right)+l \cup \ldots \cup m_{m} L_{n_{m}}\left(n_{m}\right)+1 \\
& \leq\left|V^{n_{l}}\right| \cup\left|V^{n_{2}}\right| \cup \ldots \cup\left|V^{n_{m}}\right| .
\end{aligned}
$$

Proof: Consider a RD m-code $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ such that

$$
\begin{gathered}
|\mathrm{C}|=\left|\mathrm{C}_{1}\right| \cup\left|\mathrm{C}_{2}\right| \cup \ldots \cup\left|\mathrm{C}_{\mathrm{m}}\right| \\
=\mathrm{m}_{1} \mathrm{~L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right)+1 \cup \mathrm{~m}_{2} \mathrm{~L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right)+1 \cup \ldots \cup \mathrm{~m}_{\mathrm{m}} \mathrm{~L}_{\mathrm{n}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right)+1 .
\end{gathered}
$$

Each m-vector in $V^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ has

$$
L_{n_{1}}\left(n_{1}\right) \cup L_{n_{2}}\left(n_{2}\right) \cup \ldots \cup L_{n_{m}}\left(n_{m}\right)
$$

rank complements, that is from each m-vector $\mathrm{v}_{1} \cup \mathrm{v}_{2} \cup \ldots \cup \mathrm{v}_{\mathrm{m}} \in \mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ there are

$$
\mathrm{L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right) \cup \mathrm{L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right) \cup \ldots \cup \mathrm{L}_{\mathrm{n}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right)
$$

m -vectors at rank m-distance $\mathrm{n}_{1} \cup \mathrm{n}_{2} \cup \ldots \cup \mathrm{n}_{\mathrm{m}}$.
This means for any set

$$
\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{m}} \subseteq \mathrm{~V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}
$$

of $\left(m_{1}, m_{2}, \ldots, m_{m}\right) m$-vectors there always exists a $c_{1} \cup c_{2} \cup \ldots$ $\cup \mathrm{c}_{\mathrm{m}} \in \mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ which m-covers $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup$ S_{m}; m-rank distance $\mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1$. Thus

$$
\begin{gathered}
\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \cup \ldots \cup \operatorname{cov}\left(\mathrm{u}_{\mathrm{m}}, \mathrm{~S}_{\mathrm{m}}\right) \\
\quad \leq \mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 \cup \ldots \cup \mathrm{n}_{\mathrm{m}}-1
\end{gathered}
$$

which implies

$$
\operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{~S}_{1}\right) \cup \operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{~S}_{2}\right) \leq \mathrm{n}_{1}-1 \cup \mathrm{n}_{2}-1 .
$$

Hence

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{n}_{1}-1\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{n}_{2}-1\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}-1\right) \\
& \leq \mathrm{m}_{1} \mathrm{~L}_{\mathrm{n}_{1}}\left(\mathrm{n}_{1}\right)+1 \cup \mathrm{~m}_{2} \mathrm{~L}_{\mathrm{n}_{2}}\left(\mathrm{n}_{2}\right)+1 \cup \ldots \cup \mathrm{~m}_{\mathrm{m}} \mathrm{~L}_{\mathrm{n}_{\mathrm{m}}}\left(\mathrm{n}_{\mathrm{m}}\right)+1 .
\end{aligned}
$$

By bounding the number of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right) \mathrm{m}$-sets that can be covered by a given m-code word, one obtains a straight forward generalization of the classical sphere m-bound.

Theorem (Generalized sphere bound for RD-m-codes): For $\operatorname{any}\left(n_{1}, K_{l}\right) \cup\left(n_{2}, K_{2}\right) \cup \ldots \cup\left(n_{m}, K_{m}\right) R D m$-code $C=C_{l} \cup$ $C_{2} \cup \ldots \cup C_{m}$,

$$
\begin{gathered}
K^{l}\binom{V\left(n_{l}, t_{m_{1}}\left(C_{1}\right)\right)}{m_{l}} \cup K^{2}\binom{V\left(n_{2}, t_{m_{2}}\left(C_{2}\right)\right)}{m_{2}} \\
\cup \ldots \cup K^{m}\binom{V\left(n_{m}, t_{m_{m}}\left(C_{m}\right)\right)}{m_{m}}
\end{gathered}
$$

$$
\geq\binom{ 2^{N_{n_{l}}}}{m_{l}} \cup\binom{2^{N_{n_{2}}}}{m_{2}} \cup \ldots \cup\binom{2^{N_{n_{m}}}}{m_{m}} .
$$

Hence for any n_{i}, t_{i}, m_{i} triple $i=1,2, \ldots, m$

$$
\begin{aligned}
& K_{m_{l}}^{1}\left(n_{l}, t_{l}\right) \cup K_{m_{2}}^{2}\left(n_{2}, t_{2}\right) \cup \ldots \cup K_{m_{m}}^{m}\left(n_{m}, t_{m}\right) \\
\geq & \frac{\binom{2^{N_{n_{l}}}}{m_{I}}}{\binom{V\left(n_{l}, t_{l}\right)}{m_{l}}} \cup \frac{\binom{2^{N_{n_{2}}}}{m_{2}}}{\binom{V\left(n_{2}, t_{2}\right)}{m_{2}}} \cup \ldots \cup \frac{\binom{2^{N_{n_{m}}}}{m_{m}}}{\binom{V\left(n_{m}, t_{m}\right)}{m_{m}}}
\end{aligned}
$$

where

$$
\begin{gathered}
V\left(n_{1}, t_{l}\right) \cup V\left(n_{2}, t_{2}\right) \cup \ldots \cup V\left(n_{m}, t_{m}\right) \\
=\sum_{i_{1}=0}^{t_{1}} L_{i_{1}}^{l}\left(n_{l}\right) \cup \sum_{i_{2}=0}^{t_{2}} L_{i_{2}}^{2}\left(n_{2}\right) \cup \ldots \cup \sum_{i_{m}=0}^{t_{m}} L_{i_{m}}^{m}\left(n_{m}\right)
\end{gathered}
$$

number of m-vectors in a sphere m-radius $t^{l} \cup t^{2} \cup \ldots \cup t^{m}$ and $L_{i_{1}}^{l}\left(n_{1}\right) \cup L_{i_{2}}^{2}\left(n_{2}\right) \cup \ldots \cup L_{i_{m}}^{m}\left(n_{m}\right)$ is the number of m-vectors in $V^{n_{1}} \cup V^{n_{2}} \cup \ldots \cup V^{n_{m}}$ whose rank m-norm is $i_{1} \cup i_{2} \cup \ldots \cup i_{m}$.

Proof: Each set of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right) \mathrm{m}$-vectors in $\mathrm{V}^{\mathrm{n}_{1}} \cup \mathrm{~V}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~V}^{\mathrm{n}_{\mathrm{m}}}$ must occur in a sphere of m-radius $\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)$ around at least one code m word. Total number of such m -sets is

$$
\left|V^{n_{1}}\right| \cup\left|V^{n_{2}}\right| \cup \ldots \cup\left|V^{n_{m}}\right|
$$

choose $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$ where

$$
\left|V^{\mathrm{n}_{1}}\right| \cup\left|V^{\mathrm{n}_{2}}\right| \cup \ldots \cup\left|\mathrm{V}^{\mathrm{n}_{\mathrm{m}}}\right|=2^{\mathrm{Nn}_{1}} \cup 2^{\mathrm{Nn}_{2}} \cup \ldots \cup 2^{\mathrm{Nn}_{\mathrm{m}}} .
$$

The number of m -sets of $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{m}}\right) \mathrm{m}$-vectors in a neighborhood of m-radius

$$
\mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right) \cup \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right) \cup \ldots \cup \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)
$$

is

$$
\mathrm{V}\left(\mathrm{n}_{1}, \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)\right) \cup \mathrm{V}\left(\mathrm{n}_{2}, \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)\right) \cup \ldots \cup \mathrm{V}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)\right)
$$

choose $\mathrm{m}_{1} \cup \mathrm{~m}_{2} \cup \ldots \cup \mathrm{~m}_{\mathrm{m}}$.
There are K-code m-words.
Hence

$$
\begin{gathered}
\mathrm{K}^{1}\binom{\mathrm{~V}\left(\mathrm{n}_{1}, \mathrm{t}_{\mathrm{m}_{1}}\left(\mathrm{C}_{1}\right)\right)}{\mathrm{m}_{1}} \cup \mathrm{~K}^{2}\binom{\mathrm{~V}\left(\mathrm{n}_{2}, \mathrm{t}_{\mathrm{m}_{2}}\left(\mathrm{C}_{2}\right)\right)}{\mathrm{m}_{2}} \\
\cup \ldots \cup \mathrm{~K}^{\mathrm{m}}\binom{\mathrm{~V}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}_{\mathrm{m}}}\left(\mathrm{C}_{\mathrm{m}}\right)\right)}{\mathrm{m}_{\mathrm{m}}} \\
\geq\binom{ 2^{\mathrm{N}_{\mathrm{m}}}}{\mathrm{~m}_{1}} \cup\binom{2^{\mathrm{N}_{\mathrm{n}_{2}}}}{\mathrm{~m}_{2}} \cup \ldots \cup\binom{2^{\mathrm{N}_{\mathrm{n}_{\mathrm{m}}}}}{\mathrm{~m}_{\mathrm{m}}} .
\end{gathered}
$$

Thus for any $n_{1} \cup n_{2} \cup \ldots \cup n_{m}, t^{1} \cup t^{2} \cup \ldots \cup t^{m}$ and $m_{1} \cup m_{2}$ $\cup \ldots \cup \mathrm{m}_{\mathrm{m}}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{m}_{1}}^{1}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right) \cup \mathrm{K}_{\mathrm{m}_{2}}^{2}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right) \cup \ldots \cup \mathrm{K}_{\mathrm{m}_{\mathrm{m}}}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right) \\
\geq & \frac{\binom{2^{\mathrm{N}_{\mathrm{n}_{1}}}}{\mathrm{~m}_{1}}}{\binom{\mathrm{~V}\left(\mathrm{n}_{1}, \mathrm{t}_{1}\right)}{\mathrm{m}_{1}}} \cup \frac{\binom{2^{\mathrm{N}_{2}}}{\mathrm{~m}_{2}}}{\binom{\mathrm{~V}\left(\mathrm{n}_{2}, \mathrm{t}_{2}\right)}{\mathrm{m}_{2}}} \cup \ldots \cup \frac{\binom{\mathrm{~N}_{\mathrm{m}}}{\mathrm{~m}_{\mathrm{m}}}}{\binom{\mathrm{~V}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right)}{\mathrm{m}_{\mathrm{m}}}} .
\end{aligned}
$$

COROLLARY 3.2: If

$$
\begin{gathered}
\binom{2^{N_{n_{l}}}}{m_{l}} \cup\binom{2^{N_{n_{2}}}}{m_{2}} \cup \ldots \cup\binom{2^{N_{n_{m}}}}{m_{m}} \\
>2^{N_{n_{l}}}\binom{V\left(n_{l}, t_{l}\right)}{m_{l}} \cup 2^{N_{n_{2}}}\binom{V\left(n_{2}, t_{2}\right)}{m_{2}} \cup \ldots \cup 2^{N_{n_{m}}}\binom{V\left(n_{m}, t_{m}\right)}{m_{m}}
\end{gathered}
$$

then
$K_{m_{1}}^{1}\left(n_{1}, t_{l}\right) \cup K_{m_{2}}^{2}\left(n_{2}, t_{2}\right) \cup \ldots \cup K_{m_{m}}^{m}\left(n_{m}, t_{m}\right)=\infty \cup \infty \cup \ldots \cup \infty$.

Chapter Four

APPLICATIONS OF Rank Distance m-Codes

In this chapter we proceed onto give some applications of Rank Distance bicodes and those of the new classes of rank distance bicodes and their generalizations.

Rank distance m-codes can be used in multi disk storage systems by constructing or building m- Redundant Array of Inexpensive Disks (m-RAID). These linear MRD m-codes can also be used in m-public key m-cryptosystems.

Circulant rank m -codes can be used in multi communication channels or m-channels having very high m-error m-probability for m-error correction.

The AMRD m-codes is useful for m-error correction in data multi(m-) storage systems. These m-codes will equally be as good as the MRD m-codes and are better than the corresponding m -codes in the Hamming metric.

In data multi storage systems these MRD and AMRD mcodes can be used simultaneously in criss cross error corrections
by suitably programming; appropriately the functioning of the implementation.

Using these m-codes one can save time, space and economy. With computerization in every walk of life these mcodes can perform simultaneously bulk m-error correction in bulk data transmission if appropriately programmed.

Interested researcher can develop m-algorithms (algorithms that can work in m-channels simultaneously) of these rank distance m -codes.

Further Reading

1. Adams M.J., Subcodes and covering radius, IEEE Trans. Inform. Theory, Vol.IT-32, pp.700-701, 1986.
2. Andrews G.E., The Theory of Partitions, Vol. 2 of Encyclopaedia of Mathematics and Its Applications, Addison - Wesley, Reading, Massachusetts, 1976.
3. Assmuss Jr. E.F. and Pless V., On the Covering radius of extremal self dual codes, IEEE Trans. Inform. Theory, Vol.IT29, pp.359-363, 1983.
4. Bannai, E., and Ito, T., Algebraic Combinatorics I. Association Schemes, The Benjamin/Cummings Publishing Company, 1983.
5. Berger, T. P., Isometries for rank distance and permutation group of Gabidulin codes, IEEE Transactions on Information Theory, Vol. 49, no. 11, pp. 3016-3019, 2003.
6. Berlekamp E.R., Algebraic Coding Theory, McGraw Hill, 1968.
7. Best M.R., Perfect codes hardly exist, IEEE Trans. Inform. Theory, Vol.IT-29, pp.349-351, 1983.
8. Blahut, R., Theory and Practice of Error Control Codes. Addison- Wesley, 1983.
9. Blaum M. and McElice R.J., Coding protection for magnetic tapes; a generalization of the Patel-Hong code, IEEE Trans. Inform. Theory, Vol.IT-31, pp.690-693, 1985.
10. Blaum M., A family of efficient burst-correcting array codes, IEEE Trans. Inform. Theory, Vol.IT-36, pp.671-674, 1990.
11. Blaum M., Farrel F.G. and Van Tilborg H.C.A., A class of error correcting array codes, IEEE Trans. Inform. Theory, Vol.IT-32, pp.836-839, 1989.
12. Brouwer A.E., A few new constant weight codes, IEEE Trans. Inform. Theory, Vol.IT-26, p.366, 1980.
13. Carlitz, L., q-Bernoulli numbers and polynomials, Duke Mathematical Journal, Vol. 15, no. 4, pp. 987-1000, 1948.
14. Chabaud, F., and Stern, J., The cryptographic security of the syndrome decoding problem for rank distance codes, Advances in Cryptology: ASIACRYPT '96, Volume 1163 of LNCS, pp. 368-381, Springer-Verlag, 1996.
15. Chen, K., On the non-existence of perfect codes with rank distance, Mathematische Nachrichten, Vol. 182, no. 1, pp. 8998, 1996.
16. Clark, W.E., and Dunning, L.A., Tight upper bounds for the domination numbers of graphs with given order and minimum degree, The Electronic Journal of Combinatorics, Vol. 4, 1997.
17. Cohen G.D., A non constructive upper bound on covering radius, IEEE Trans. Inform. Theory, Vol.IT-29, pp.352-353, 1983.
18. Cohen G.D., Karpovski M.R., Mattson Jr. H.F. and Schatz J.R., Covering Radius - Survey and Recent Results, IEEE Trans. Inform., Theory, Vol.IT-31, pp.328-343, 1985.
19. Cohen G.D., Lobstein A.C. and Sloane N.J.A., Further results on the covering radius of codes, IEEE Trans. Inform. Theory, Vol.IT-32, pp.680-694, 1986.
20. Delsarte P., Four fundamental parameters of a code and their combinatorial significance, Inform. and Control, Vol.23, pp.407-438, 1973.
21. Delsarte, P., Bilinear forms over a finite field, with applications to coding theory, Journal of Combinatorial Theory A, Vol. 25, no. 3, pp. 226-241, 1978.
22. Delsarte, P., Properties and applications of the recurrence $F(i$ $+1, k+1, n+1)=q k+1 F(i, k+1, n)-q k F(i, k, n)$, SIAM Journal of Applied Mathematics, Vol. 31, no. 2, pp. 262-270, September 1976.
23. Erickson T., Bounds on the size of a code, Lecture notes in Control and Inform. Sciences, Vol.128, pp.45-72, Springer Verlag, 1989.
24. Gabidulin E.M., Theory of codes with Maximum Rank Distance, Problemy Peredachi Informatsii, Vol.21, pp.17-27, 1985.
25. Gabidulin, E. M. and Loidreau, P., On subcodes of codes in the rank metric, Proc. IEEE Int. Symp. on Information Theory, pp. 121-123, Sept. 2005.
26. Gabidulin, E. M. and Obernikhin, V.A., Codes in the Vandermonde F-metric and their application, Problems of Information Transmission, Vol. 39, no. 2, pp. 159-169, 2003.
27. Gabidulin, E. M., Optimal codes correcting lattice-pattern errors, Problems of Information Transmission, Vol. 21, no. 2, pp. 3-11, 1985.
28. Gabidulin, E. M., Paramonov, A.V., and Tretjakov, O.V., Ideals over a non-commutative ring and their application in cryptology," in Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques (EUROCRYPT '91), Vol. 547 of Lecture Notes in Computer Science, pp. 482489, Brighton, UK, April 1991.
29. Gabidulin, E. M., Public-key cryptosystems based on linear codes over large alphabets: efficiency and weakness, Codes and Cyphers, pp. 17-31, 1995.
30. Gadouleau, M., and Yan, Z., Packing and covering properties of rank metric codes, IEEE Trans. Info. Theory, Vol. 54, no. 9,pp. 3873-3883, September 2008.
31. Gadouleau, M., and Yan, Z., "Properties of codes with the rank metric," in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '06), pp. 1-5, San Francisco, Calif, USA, November 2006.
32. Gadouleau, M., and Yan, Z., Construction and covering properties of constant-dimension codes, submitted to IEEE Trans. Info. Theory, 2009.
33. Gadouleau, M., and Yan, Z., Decoder error probability of MRD codes, in Proceedings of IEEE Information Theory Workshop (ITW '06), pp. 264-268, Chengdu, China, October 2006.
34. Gadouleau, M., and Yan, Z., On the decoder error probability of bounded rank-distance decoders for maximum rank distance codes, to appear in IEEE Transactions on Information Theory.
35. Gasper, G., and Rahman, M., Basic Hypergeometric Series, Vol. 96 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, New York, NY, USA, 2nd edition, 2004.
36. Gibson, J.K., The security of the Gabidulin public-key
37. Graham R.L. and Sloane N.J.A., Lower Bounds for constant weight codes, IEEE Trans. Inform. Theory, Vol.IT-26, pp.3743, 1980.
38. Graham R.L. and Sloane N.J.A., On the covering radius of codes, IEEE Trans. Inform. Theory, Vol.IT-31, pp.385-401, 1985.
39. Grant, D. and Varanasi, M., Duality theory for space-time codes over finite fields, to appear in Advance in Mathematics of Communications.
40. Grant, D. and Varanasi, M., Weight enumerators and a MacWilliams-type identity for space-time rank codes over finite fields, in Proceedings of the 43rd Allerton Conference on Communication, Control, and Computing, pp. 2137-2146, Monticello, Ill, USA, October 2005.
41. Hall, L.O., and Gur Dial, On fuzzy codes for Asymmetric and Unidirectional error, Fuzzy sets and Systems, 36, pp. 365373, 1990.
42. Harold N.Ward, Divisible codes, Archiv der Mathematic, 36, pp. 485-494, 1981.
43. Helgert H.J. and Stinaff R.D., Minimum distance bounds for binary linear codes, IEEE Trans. Inform. Theory, Vol.IT-19, pp.344-356, 1973.
44. Helleseth T., Klove T. and Mykkeltveit J., On the covering radius of binary codes, IEEE Trans. Inform. Theory, Vol.IT24, pp.627-628, 1978.
45. Helleseth T., The weight distribution of the coset leaders for some classes of codes with related parity check matrices, Discrete Math., Vol.28, pp.161-171, 1979.
46. Herstein I.N., Topics in Algebra, $2^{\text {nd }}$, Wiley, New York, 1975.
47. Hill R., A first course in coding theory, Clarendon, Oxford, 1986.
48. Hoffman K. and Kunze R., Linear Algebra, $2^{\text {nd }}$, Prentice Hall of India, New Delhi, 1990.
49. Hua, L., A theorem on matrices over a field and its applications, Chinese Mathematical Society, Vol. 1, no. 2, pp. 109-163, 1951.
50. Janwa H.L., Some new upper bounds on the covering radius of binary linear codes, IEEE Trans. Inform. Theory, Vol.IT35, pp.110-122, 1989.
51. Johnson S.M., Upper bounds for constant weight error correcting codes, Discrete Math., Vol.3, pp.109-124, 1972.
52. Koetter, R., and Kschischang, F.R., Coding for errors and erasures in random network coding, IEEE Trans. Info. Theory, Vol. 54, no. 8, pp. 3579-3591, August 2008.
53. Kshevetskiy, A. and Gabidulin, E. M., The new construction of rank codes, Proc. IEEE Int. Symp. on Information Theory, pp. 2105-2108, Sept. 2005.
54. Lidl R. and Niederreiter H., Finite fields, Addison-Wesley, Reading, Massachusetts, 1983.
55. Lidl R. and Pilz G., Applied Abstract Algebra, SpringerVerlag, New York, 1984.
56. Loidreau, P., A Welch-Berlekamp like algorithm for decoding Gabidulin codes, in Proceedings of the 4th International Workshop on Coding and Cryptography (WCC '05), Vol. 3969, pp. 36-45, Bergen, Norway, March 2005.
57. Loidreau, P., Etude et optimisation de cryptosyst emes `a cl'e publique fond'es sur la th'eorie des codes correcteurs, Ph.D. Dissertation, Ecole Polytechnique, Paris, France, May 2001.
58. Loidreau, P., Properties of codes in rank metric, http://arxiv.org/pdf/cs.DM/0610057/.
59. Lusina, P., Gabidulin, E., and Bossert, M., Maximum Rank Distance codes as space-time codes, IEEE Trans. Info. Theory, Vol. 49, pp. 2757-2760, Oct. 2003.
60. MacLane S. and Birkhoff G., Algebra, Macmillan, New York, 1967.
61. MacWilliams, F., and Sloane, N., The Theory of ErrorCorrecting Codes, North-Holland, Amsterdam, The Netherlands, 1977.
62. Manoj, K.N., and Sundar Rajan, B., Full Rank Distance codes, Technical Report, IISc Bangalore, Oct. 2002.
63. Mattson Jr. H.F., An improved upper bound on the covering radius, Lecture notes in Computer Science, 228, Springer Verlag, New York, pp.90-106, 1986.
64. Mattson Jr. H.F., An upper bound on covering radius, Ann. Discrete Math., Vol.17, pp.453-458, 1983.
65. Mattson Jr. H.F., Another upper bound on covering radius, IEEE Trans. Inform. Theory, Vol.IT-29, pp.356-359, 1983.
66. McEliece R.J., and Swanson, L., On the decoder error probability for Reed-Solomon codes, IEEE Trans. Info. Theory, Vol. 32, no. 5, pp. 701-703, Sept. 1986.
67. McEliece, R.J., A public-key cryptosystem based on algebraic coding theory, Jet Propulsion Lab. DSN Progress Report, pp. 114-116, 1978.
68. Ourivski, A. V. and Gabidulin, E. M., Column scrambler for the GPT cryptosystem, Discrete Applied Mathematics, Vol. 128, pp. 207-221, 2003.
69. Peterson W.W. and Weldon Jr. E.J., Error correcting codes, M.I.T. Press, Cambridge, Massachusetts, 1972.
70. Pless, V., Power moment identities on weight distributions in error correcting codes, Information and Control, Vol. 6, no. 2, pp. 147-152, 1963.
71. Prunsinkiewicz P. and Budkowski S., A double track error correction code for magnetic tape, IEEE Trans. Comput., Vol.C-25, pp.642-645, 1976.
72. Richter, G., and Plass, S., Fast decoding of rank-codes with rank errors and column erasures," in Proceedings of IEEE International Symposium on Information Theory (ISIT '04), p.398, Chicago, Ill, USA, June-July 2004.
73. Roth R.M., Maximum Rank Array codes and their application to crisscross error correction, IEEE Trans. Inform. Theory, Vol.IT-37, pp.328-336, 1991.
74. Roth, R. M., Probabilistic criss cross error correction, IEEE Transactions on Information Theory, Vol. 43, no. 5, pp. 14251438, 1997.
75. Schonheim J., On linear and non-linear single error correcting q-nary perfect codes, Inform. and Control, Vol.12, pp.23-26, 1968.
76. Schwartz, M., and Etzion, T., Two-dimensional cluster correcting codes, IEEE Transactions on Information Theory, Vol. 51, no. 6, pp. 2121-2132, 2005.
77. Selvaraj, R.S., Metric properties of rank distance codes, Ph.D. Thesis, Thesis Guide; Dr. W. B. Vasantha Kandasamy, Department of Mathematics, Indian Institute of Technology, Madras, . 2006.
78. Shannon C.E., A mathematical theory of communication, Bell. Syst. Tech., J.27, pp.379-423 and pp.623-656, 1948.
79. Silva, D., Kschischang, F. R. and Koetter, R., A rank-metric approach to error control in random network coding, IEEE Trans. Info. Theory, Vol. 54, no. 9, pp. 3951-3967, September 2008.
80. Sripati, U., and Sundar Rajan, B., On the rank distance of cyclic codes, Proc. IEEE Int. Symp. on Information Theory, p. 72, July 2003.
81. Strang G., Linear Algebra and its applications, $2^{\text {nd }}$, Academic Press, New York, 1980.
82. Suresh Babu, N., Studies on Rank Distance Codes, Ph.D. Thesis. Thesis Guide; Dr. W.B.Vasantha Kandasamy, Department of Mathematics, Indian Institute of Technology, Madras, 1995.
83. Tarokh, V., Seshadri, N., and Calderbank, A.R., Space-time codes for high data rate wireless communication: performance criterion and code construction, IEEE Transactions on Information Theory, Vol. 44, no. 2, pp. 744765, 1998.
84. Tietavanien A., On the non-existence of perfect codes over finite fields, Siam. Jl. Appl. Math., Vol.24, 1973.
85. Van Lint J.H. and Wilson R.M, A course in combinatories, Cambridge University Press, 1992.
86. Van Lint J.H., A Survey of perfect codes, Rocky Moundain Jl. of Math., Vol.5, pp.199-224, 1975.
87. Van Lint J.H., Coding Theory, Springer-Verlag, New York, 1971.
88. Vasantha Kandasamy, W.B., and Raja Durai, R. S., Maximum rank distance codes with complementary duals, Mathematics and Information Theory, Recent topics and Applications, pp. 86-90, 2002.
89. Vasantha Kandasamy, W.B., and Selvaraj, R. S., Multicovering radii of codes with rank metric, Proc. Information Theory Workshop, p. 215, Oct. 2002.
90. Vasantha Kandasamy, W.B., and Suresh Babu, N., On the covering radius of rank-distance codes, Ganita Sandesh, Vol. 13, pp. 43-48, 1999.
91. Vasantha Kandasamy, W.B., Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, Rehoboth, 2003.
92. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to bimatrices, Hexis, Phoenix, 2005.
93. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to Linear Bialgebra, Hexis, Phoenix, 2005.
94. Vasantha, W. B. and R.S.Selvaraj, Multi-covering Radii of Codes with Rank Metric, Proceedings of 2002 IEEE Information Theory Workshop, Indian Institute of Science, Bangalore, October 20-25, p. 215, 2002.
95. Vasantha, W.B. and Selvaraj R.S., Divisible MRD Codes, Proceedings of National Conference on Challenges of the $21^{\text {st }}$ century in Mathematics and its Allied Topics, University of Mysore, Karnataka, India, pp., 242-246, February 3-4, 2001.
96. Vasantha, W.B. and Selvaraj, R.S. Fuzzy RD Codes with Rank Metric and Distance Properties, Proceedings of the International Conference on Recent Advances in Mathematical Sciences, Indian Institute of Technology Kharagpur, India, pp., 341-348, Narosa Publishing House, New Delhi, December 20-22, 2000
97. Vasantha, W.B. and Selvaraj, R.S. Multicovering radius of Codes for Rank Metric, Proceedings of $4^{\text {th }}$ Asia Europe Workshop on Information Theory Concepts, Viareggio, Italy, October 6-8, pp., 96-98, 2004.
98. Vasantha Kandasamy, W.B., and Smarandache, Florentin, Rank distance m-codes and their properties (To appear), Maths Tiger.
99. Von Kaenel, P.A, Fuzzy codes and distance properties, Fuzzy sets and systems, 8, pp., 199-204, 1982.
100. Zhen Zhang, Limiting efficiencies of Burst correcting Array codes, IEEE Trans. Inform. Theory, Vol.IT-37, pp.976-982, 1991.
101. Zimmermann K.H. The weight distribution of indecomposable cyclic codes over 2-groups, Jour. of Comb. Theory, Series A, Vol.60, 1992.
102. Zinover V.A. and Leontev V.K., The non-existence of perfect codes over Galois fields, Problems of Control and Info. Theory, Vol.2, pp.123-132, 1973.

INDEX

(m, n) dimensional vector bispace, 28
$\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ bicovering biradius, 69
$\left(m_{1}, m_{2}\right)$ covering biradii, 69
$\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots, \mathrm{~m}_{\mathrm{m}}\right)$ covering m-radii, 120-2
(r, r) repetition RD bicode, 67
$\left(r_{1}, r_{2}\right)$ fold repetition bicode, 67

A

Almost Maximum Rank Distance (AMRD) codes, 15-6
AMRD bicode, 40-1
AMRD m-codes, 94-5
Associated matrix, 8-9
Asymmetric error bimodel, 59-60
Asymmetric error m-models, 110-1

B

Bibasis, 28-29
Bicirculant transpose, 32

Bicyclic, 39
Bidegree, 34-5
Bidimension of the bispace, 28
Bidistance between biwords, 38
Bidistance bifunction, 38-9
Bidivisible bicode, 49
Bimatrix, 26
Bimetric induced by the birank binorm, 27-8
Binorm, 27
Bipolynomial representation, 31-2
Biprobability, 58
Birank bidistance, 26-9
Birank bimetric, 28
Birank bispace, 28-9
Birank, 28
Birows, 28-9
Bispectrum of a MRD bicode, 50-1
Bivector bispace, 25-28

C

Circulant bimatrix, 33
Circulant birank bicode, 38-9
Circulant bitranspose, 32
Circulant code of length N, 12-5
Circulant m-matrix, 86-8
Circulant matrix, 12-3
Circulant m-rank m-code, 93
Circulant m-transpose, 85-6
Circulant rank bicodes, 38
Constant birank, 45
Constant m-rank code of m-length, 100-1
Constant rank bicode, 45
Constant rank code of length n, 19
Constant rank code, 14-9
Constant weight codes, 18-9
Covering biradius, 48
Cyclic circulant code, 93-4

F

Frobenius bimatrix, 31
Frobenius m-matrix, 84
Fuzzy RD bicode, 60-1
Fuzzy RD code, 54-5
Fuzzy RD m-code, 109
Fuzzy RD tricode, 109

G

Generating bivector, 31
Generator bimatrix, 28-9, 33
Generator matrix of a linear RD code, 9-11
Generator matrix of a MRD code, 11
Generator m-matrix, 81

H

Hamming metric, 10

L

Linear bisubspace, 28

M

Maximum rank bidistance, 29-30
Maximum Rank Distance (MRD) code, 11
Maximum Rank Distance (MRD)-m-code, 83
Maximum Rank Distance bicode (MRD bicode), 30-31
Maximum rank distance, 11
m-basis, 77-78, 82-3
m-bounds, 125-6
m-cardinality, 101-2
m-column, 78
m -degree of m-polynomial, 86-9
m -distance m -function, 92
m-divisible m-code, 104-5
Membership bifunction, 57-8
Membership m-function, 109-10
m-error, 82-3
m-function, 100-1
m-GCD, 88
Minimum rank m-distance, 83
m-invertible, 91-3
Mixed circulant m-code, 93-4
Mixed quasi circulant m-code of type II, 93
Mixed quasi circulant rank m-code, 93-4
m-linear combination, 91, 102
m-matrix, 79-80
m-polynomial, 85-6
m-probability, 110
m-rank m-distance, 80
m-rank m-metric, 80
m-rank m-space, 79-80
m-rank, 79-80, 101
MRD m-code, 93-4
Multi covering m-radii, 122
m -word generated, 91-3

N

N-m-tuple representation, 78
Non bidivisible bicode, 50
Non divisible AMRD m-code, 105-9
Non divisible MRD m-code, 106-7

P

Parity check bimatrix, 30
Parity check matrix, 10-11
Parity check m-matrix, 81
Pseudo false linear bispace, 25-6
Pseudo false m-space, 77-8

Q

Quasi ($\mathrm{r}_{1}, \mathrm{r}_{2}$) MRD m-code, 92-3
Quasi circulant m-code of type I, 93
Quasi divisible AMRD m-code, 106-7
Quasi divisible circulant rank m-code, 106-7
Quasi divisible MRD m-code, 105-7
Quasi MRD m-code, 92

R

Rank Distance (RD) bicodes, 26-8
Rank Distance (RD) codes, 7-9
Rank distance m-code of m-length, 80-1
Rank distance m-code, 77-8
Rank distance space, 9-11
Rank distance tricode, 77-8
Rank distance, 9
Rank metric, 9-10
Rank norm, 9-10
Rank of a matrix, 8-10
RD bicode of bilength, 28
Repetition bicode, 67
r_{i} - fold repetition RD code, 118-9

S

Semi circulant rank bicode of type I, 39
Semi circulant rank bicode of type II, 39
Semi cyclic circulant rank bicode of type I, 40
Semi cyclic circulant rank bicode, 40
Semi divisible AMRD bicode, 50
Semi divisible circulant bicode, 50
Semi divisible MRD bicode, 50
Semi divisible RD bicode, 50
Semi MRD bicode, 39
Single error correcting AMRD m-code, 96-8
Single Style bound theorem, 10-11
Singleton Style bound, 30

Solution bispace, 29
Solution m- space, 80-2
Symmetric error bimodel, 59-60
Symmetric error m-model, 110-1

About the Authors

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the Department of Mathematics, Indian Institute of Technology Madras, Chennai. In the past decade she has guided 13 Ph.D. scholars in the different fields of non-associative algebras, algebraic coding theory, transportation theory, fuzzy groups, and applications of fuzzy theory of the problems faced in chemical industries and cement industries.

She has to her credit 646 research papers. She has guided over 68 M.Sc. and M.Tech. projects. She has worked in collaboration projects with the Indian Space Research Organization and with the Tamil Nadu State AIDS Control Society. She is presently working on a research project funded by the Government of India's Department of Atomic Energy. This is her $46^{\text {th }}$ book.

On India's 60th Independence Day, Dr.Vasantha was conferred the Kalpana Chawla Award for Courage and Daring Enterprise by the State Government of Tamil Nadu in recognition of her sustained fight for social justice in the Indian Institute of Technology (IIT) Madras and for her contribution to mathematics. The award, instituted in the memory of Indian-American astronaut Kalpana Chawla who died aboard Space Shuttle Columbia, carried a cash prize of five lakh rupees (the highest prizemoney for any Indian award) and a gold medal.
She can be contacted at vasanthakandasamy@gmail.com Web Site: http://mat.iitm.ac.in/home/wbv/public html/

Dr. Florentin Smarandache is a Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 150 articles and notes in mathematics, physics, philosophy, psychology, rebus, literature.

In mathematics his research is in number theory, non-Euclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability). Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He can be contacted at smarand@unm.edu

Dr. N. Suresh Babu is a faculty in the College of Engineering, Trivandrum. He has obtained his doctorate degree in coding/ communication theory from department of mathematics, Indian Institute of Technology, Madras. He has worked as a post doctoral research fellow, under Prof. Zimmermann, K. H., a renowned coding theorist, working in the University of Bayreuth, Germany.

Dr. R. S. Selvaraj is presently working as a faculty in NIIT Warangal. He has obtained his doctor of philosophy in coding/ communication theory from department of mathematics, Indian Institute of Technology, Madras.

The new class of rank distance m-codes will be useful in the m-public key m-cryptosystems ($m>1$) and m -redundant array of inexpensive disks.

AMRD-m-codes can be used in data multi (m)-storage systems. These m-codes provide an economical, time-saving alternative.

