k-Factorial

Florentin Smarandache
Arizona State Univ., Special Collections
1972
Let n and k be positive integers, with $1=<\mathrm{k}=<\mathrm{n}-1$.
As a generalization of the factorial and double factorial one defines the k factorial of n as the below product of all possible strictly positive factors:
$\operatorname{SKF}(n)=n(n-k)(n-2 k) . .$.

Particular Cases:

$\operatorname{S1F}(n)$ is just the well-known factorial of n, i.e. $n!=n(n-1)(n-2) \ldots 1$.
$\operatorname{S2F}(n)$ is just the well-known double factorial of n, i.e. $n!!=n(n-2)(n-4) \ldots$.
$\operatorname{S3F}(n)$ is the triple factorial of n, i.e. $n!!!=n(n-3)(n-6) . .$. .
$\operatorname{S4F}(n)$ is the fourth factorial of n, i.e. $\operatorname{S4F}(n)=n(n-4)(n-8) \ldots$.

Examples:
$\operatorname{S3F}(7)=7(7-3)(7-6)=28$.
$S 4 F(8)=8(8-4)=32$.
$\mathrm{S} 10 \mathrm{~F}(27)=27(27-10)(27-20)=27(17) 7=3213$.

Remark:
Many Smarandache type functions, such as the Smarandache (classical) function, double factorial function, ceil functions, etc. can be extended/transformed to this k-factorial definition.

