Prime Theorem: $P_{2}=a P_{1}+b$, Polignac Theorem and Goldbach Theorem

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove prime theorem: $P_{2}=a P_{1}+b$, Polignac theorem and Goldbach theorem.

We read Ribenboim paper [2] and write this paper.
Prime theorem [1]. Prime equation is

$$
\begin{equation*}
P_{2}=a P_{1}+b, \quad 2 \mid a b, \quad(a, b)=1 \tag{1}
\end{equation*}
$$

There exist infinitely many primes P_{1} such that P_{2} is a prime.
Proof. We have Jiang function [1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P>2}(P-1-\chi(P)) \tag{2}
\end{equation*}
$$

$\omega=\prod_{P \geq 2} P, \quad \chi(P)$ denotes the number of solutions for the following congruence

$$
\begin{equation*}
a q+b \equiv 0(\bmod P) \tag{3}
\end{equation*}
$$

where $q=1,2, \ldots, P-1$.
If $P \mid a b$ then $\chi(P)=0 ; \quad \chi(P)=1$ otherwise. From (2) and (3) we have

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P>2}(P-2) \prod_{P \mid a b} \frac{P-1}{P-2} \rightarrow \infty \text { as } \omega \rightarrow \infty \tag{4}
\end{equation*}
$$

We prove that there exist infinitely many primes P_{1} such that P_{2} is a prime.
We have the best asymptotic formula for the number of primes P_{1} [1]

$$
\begin{align*}
\pi_{2}(N, 2) & =\left|\left\{P_{1} \leq N: a P_{1}+b=p r i m e\right\}\right|=\frac{J_{2}(\omega) \omega}{\phi^{2}(\omega)} \frac{N}{\log ^{2} N}(1+o(1)) \\
& =2 \prod_{P>2}\left(1-\frac{1}{(P-1)^{2}}\right) \prod_{P \mid a b} \frac{P-1}{P-2} \frac{N}{\log ^{2} N}(1+o(1)) \tag{5}
\end{align*}
$$

where $\phi(\omega)==\prod_{P \geq 2}(P-1)$.
Polignac theorem [2]. Let $a=1$ and $b=2 n(n \geq 1)$. From (1) we have Polignac equation

$$
\begin{equation*}
P_{2}=P_{1}+2 n \tag{6}
\end{equation*}
$$

From (4) we have

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P>2}(P-2) \prod_{P \mid n} \frac{P-1}{P-2} \rightarrow \infty \quad \text { as } \quad \omega \rightarrow \infty \tag{7}
\end{equation*}
$$

We prove that for every $2 n$ there exist infinitely many primes P_{1} such that P_{2} is a prime. From (5) we have

$$
\begin{equation*}
\pi_{2}(N, 2)=\mid\left\{P_{1} \leq N: P_{1}+2 n=\text { prime }\right\} \left\lvert\,=2 \prod_{P>2}\left(1-\frac{1}{(P-1)^{2}}\right) \prod_{P \mid n} \frac{P-1}{P-2} \frac{N}{\log ^{2} N}(1+o(1))\right. \tag{8}
\end{equation*}
$$

Goldbach theorem [3]. Let $b=N \geq 6$ be an even number, $a=-1$.
From (1) we have Goldbach equation

$$
\begin{equation*}
P_{2}=N-P_{1} \tag{9}
\end{equation*}
$$

From (4) we have

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P>2}(P-2) \prod_{P \mid N} \frac{P-1}{P-2} \rightarrow \infty \quad \text { as } \quad \omega \rightarrow \infty \tag{10}
\end{equation*}
$$

We prove that every even number $N \geq 6$ is the sum of two primes.
From (5) we have

$$
\begin{equation*}
\pi_{2}(N, 2)=\mid\left\{P_{1}<N: N-P_{1}=\text { prime }\right\} \left\lvert\,=2 \prod_{P>2}\left(1-\frac{1}{(P-1)^{2}}\right) \prod_{P \mid N} \frac{P-1}{P-2} \frac{N}{\log ^{2} N}(1+o(1))\right. \tag{11}
\end{equation*}
$$

Note. Prime equation $P^{2}+2$ has the only prime solution, $3^{2}+2=11$, because $J_{2}(\omega)=0$.
Prime equation $(P+2)^{2}+2$ has infinitely many prime solutions, because

$$
J_{2}(\omega) \rightarrow \infty \quad \text { as } \omega \rightarrow \infty
$$

References

[1] Chun-Xuan Jiang, Foundations of Santilli’s isonumber theory with applications to new cryptograms, Fermat's theorem and Golbdach's cojecture. Inter. Acad. Press, 2002, MR2004c: 11001, http: //www. i-b-r.org/docs/jiang.pdf or http://www.wbabin.net/math/xuan13.pdf. P.339-356.
[2] Paulo Ribenboim, A remark on Polignac's conjecture, Proc. Amer. Math. Soc., Vol. 137, No. 9, (2009) 2865-2868.
[3] Chun-Xuan Jiang, On the Yu-Goldbach prime theorem, Guangxi Sciences (Chinese), 3(1996), 9-12.

