The New Prime theorem (9) There are finite Fermat primes

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove the finite fermat primes. Theorem. Suppose the prime equation $$
\begin{equation*} P_{1}=(P-1)^{2^{n}}+1 . \tag{1} \end{equation*}
$$

There exist infinitely many primes P such that P_{1} is a prime.
Proof. We have Jiang function[1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
(q-1)^{2^{n}}+1 \equiv 0 \quad(\bmod P), \quad q=1, \cdots, P-1 \tag{3}
\end{equation*}
$$

From (3) we have $\chi(P)=2^{n}$ if $P \equiv 1\left(\bmod 2^{n+1}\right), \chi(P)=0$ otherwise.
Since $J_{2}(\omega) \neq 0$, there exist infinitely many primes P such that P_{1} is a prime.
We have the asymptotic formula [1]

$$
\begin{equation*}
\pi_{2}(N, 2)=\mid\left\{P \leq N:(P-1)^{2^{n}}+1=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega)}{2^{n} \phi^{2}(\omega)} \frac{N}{\log ^{2} N} .\right. \tag{4}
\end{equation*}
$$

When $P=3$. From (1) we have the equation of Fermat number [2]

$$
\begin{equation*}
P_{1}=2^{2^{n}}+1 \tag{5}
\end{equation*}
$$

From (4) we have

$$
\begin{equation*}
\pi_{2}(3,2)=\mid\left\{3 \leq N: 2^{2^{n}}+1=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega)}{2^{n} \phi^{2}(\omega)} \frac{3}{\log ^{2} 3} \rightarrow 0 \quad\right. \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

From (4) we prove the finite Fermat primes.
In the same way we are able to prove that $4^{2^{n}}+1$ and $6^{2^{n}}+1$ have finite prime solutions [2]

Reference

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf.
[2] P. Ribenboim, The new book of prime number records, 3rd edition, spring-Verlag, New York, NY, 1995.

