The New Prime theorem (10)
 There are finite Mersenne primes and

There are finite repunits primes

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we prove the finite Mersenne primes and the finite repunits primes. Theorem. Suppose the prime equation

$$
\begin{equation*}
P_{1}=\frac{(P-1)^{P_{0}}-1}{P-2} . \tag{1}
\end{equation*}
$$

where P_{0} is a given prime.
There exist infinitely many primes P such that P_{1} is a prime.
Proof. We have Jiang function[1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
\frac{(q-1)^{P_{0}}-1}{q-2} \equiv 0 \quad(\bmod P), \quad q=1, \cdots, P-1 . \tag{3}
\end{equation*}
$$

$\chi\left(P_{0}\right)=1, \chi(P)=P_{0}-1$ if $P \equiv 1\left(\bmod P_{0}\right), \chi(P)=0$ otherwise.
Since $J_{2}(\omega) \neq 0$, there exist infinitely many primes P such that P_{1} is a prime.
We have the asymptotic formula [1]

$$
\begin{equation*}
\pi_{2}(N, 2)=\mid\left\{P \leq N: P_{1}=\text { prime }\right\} \left\lvert\, \sim \frac{1}{P_{0}-1} \frac{J_{2}(\omega) \omega}{\phi^{2}(\omega)} \frac{N}{\log ^{2} N} .\right. \tag{4}
\end{equation*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.
Let $P=3$. From (1) we have equation of Mersenne numbers [2]

$$
\begin{equation*}
P_{1}=2^{P_{0}}-1 . \tag{5}
\end{equation*}
$$

From (4) we have

$$
\begin{equation*}
\pi_{2}(3,2)=\mid\left\{3 \leq N: 2^{P_{0}}-1=\text { prime }\right\} \left\lvert\, \sim \frac{1}{P_{0}-1} \frac{J_{2}(\omega) \omega}{\phi^{2}(\omega)} \frac{3}{\log ^{2} 3} \rightarrow 0 \quad\right. \text { as } \quad P_{0} \rightarrow \infty \tag{6}
\end{equation*}
$$

We prove the finite Mersenne primes.
Let $P=11$. From (1) we have equation of repunits numbers [2]

$$
\begin{equation*}
P_{1}=\frac{10^{P_{0}}-1}{9} . \tag{7}
\end{equation*}
$$

From (4) we have

$$
\begin{equation*}
\pi_{11}(11,2)=\left\lvert\,\left\{11 \leq N: \frac{10^{P_{0}}-1}{9}=\text { prime }\right\}\right. \left\lvert\, \sim \frac{1}{P_{0}-1} \frac{J_{2}(\omega) \omega}{\phi^{2}(\omega)} \frac{11}{\log ^{2} 11} \rightarrow 0 \quad\right. \text { as } \quad P_{0} \rightarrow \infty . \tag{8}
\end{equation*}
$$

We prove the finite repunits primes.
In the same way we are able to prove that $\left(a^{P_{0}}-1\right) /(a-1)$ with $a=4,6,10,12, \cdots$, has the finite prime solutions.

Reference

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf.
[2] P. Ribenboim, The new book of prime number records, 3rd edition, spring-Verlag, New York, NY, 1995.

