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The New Prime theorem（10） 
There are finite Mersenne primes 

and  
There are finite repunits primes 
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Abstract 

Using Jiang function we prove the finite Mersenne primes and the finite repunits primes. 
Theorem. Suppose the prime equation 
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where 0P  is a given prime. 
There exist infinitely many primes P  such that 1P  is a prime. 
Proof. We have Jiang function[1]  
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where 
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Pω = Π , ( )Pχ  is the number of solutions of congruence 
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0( ) 1Pχ = , 0( ) 1P Pχ = −  if 01 (mod )P P≡ , ( ) 0Pχ =  otherwise. 

Since 2 ( ) 0J ω ≠ , there exist infinitely many primes P  such that 1P  is a prime. 

We have the asymptotic formula [1] 
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where ( ) ( 1)
P

Pφ ω = Π − . 

Let 3P = . From (1) we have equation of Mersenne numbers [2] 
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From (4) we have 
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We prove the finite Mersenne primes. 
Let 11P = . From (1) we have equation of repunits numbers [2] 
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From (4) we have 
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We prove the finite repunits primes. 

In the same way we are able to prove that 
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−  with 4,6,10,12, ,a = L  has the 

finite prime solutions. 
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