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0.  ABSTRACT 

 
This article presents two methods, in parallel, of solving more complex integrals, among 

which is the Poisson’s integral, in order to emphasize the obvious advantages of a new method 
of integration, which uses the supermathematics circular ex-centric functions.   

We will specially analyze the possibilities of easy passing/changing of the supermathematics 
circular ex-centric functions of a centric variable α to the same functions of ex-centric variable θ. 
The angle α is the angle at the center point O(0,0), which represents the centric variable and θ 
is the angle at the ex-center E(k,ε), representing the ex-centric variable. These are the angles 
from which the points W1 and W2 are visible on the unity circle – resulted from the intersection 
of the unity/trigonometric circle with the revolving straight line d around the ex-centric E(k,ε) – 
from O and from E, respectively. 
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1. INTRODUCTION 
 

The discovery of the ex-centric mathematics (EM), as a vast extension of the centric 
common/mathematics (CM), which together form the SuperMathematics (SM), allows new 
simpler approaches, for resolving more complex integrals, among which we present (11) the 
Poisson integral (PI) [1]. To emphasize the new integration method, we will present, in parallel, 
the classic method of solving, only for PI, presented in [1] and the new method which utilizes 
SM’s ex-centric circular functions (EC) [2], [3], [4] . 

The SM-EC functions, which will be in the center of our attention, are the radial ex-centric 
functions rex θ and Rex α and the derivatives ex-centric dex θ and Dex α, functions which are 
independent of the reference system selected. 
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The functions rex θ, of ex-centric variable θ, of the principal determination 1 and secondary 
2, defined on the whole real axis for numeric ex-centricity k2 <1, and for k 2 > 1 exist only in the 
interval ℑ ∈ (θi, θf), in which  θf,i = π + ε ± arcsin(1/k), αf,i = θf,i + βf,i  are 

 
(1)     rex1,2 θ = rex1,2 (θ, Ε(k,ε)) = )(sin1)cos(. 22 ηθεθ −−±−− kk , 

 
where E(k, ε) is a pole, called ex-center, which divides the straight line d (d = d+ U  d - ), 
revolving around this point, in the positive semi straight line d+, on which is situated the first 
principal determination rex1 θ , as function of ex-centric variable θ and, respectively, Rex α1 , of  
centric variable α of the function and in the negative semi straight line d -, on which is situated, 
along it, the second determination, secondary, of the function rex2 θ and Rex α2. The 
expressions of the same entities (1), as functions of centric variable α, which exist on the whole 
real axis, no matter which is the numeric ex-centricity k, are 

(2)                            Rex α1,2 = )cos(.21 2,1
2 εα −−+± kk  

 
These functions represent, as Prof. Dr. Math. Octav Gheorghiu observed, the distance in 

plane, as oriented segments, in polar coordinates, between two points: the ex-center E(k, ε) and 
the intersection points W1,2 (1, α1,2) – between the straight line d and the unity circle 
CT[1,O(0,0)] with the center in the origin O of the system of coordinates axis, right Cartesian or 
polar reference point.  

For an E which is interior to the unity disc, the segment EW1 is situated on the positive 
direction of the semi straight line d +, being, in this case, positive, that is Rex α1 = rex1θ  > 0, 
while the oriented segment EW2, positive oriented on the negative semi straight line is negative, 
that is Rex α2 = rex2 θ < 0, as it can be seen in the Figure 1.  

For k = ± 1 at α1 ∈ (0, 2π) ⇒ θ ∈ (0, π) and at α2 ∈ (0, 2π) ⇒ θ ∈ (π, 2π ). In other words, if, 
the straight line d rotates around E(k,ε) ⊂ C (1,O) with an angular speed Ω (θ = Ωt ), the points 
W1,2 rotate on the unity circle C(1,O) with a double angular speed ( α1,2 = 2Ωt) in half of the 
period and is stationary in the second half of the period (α1,2 = 0) taking turns in E (k, ε). 

If E is exterior to the unity disk, that is |k | > 1, then both determinations will be on the same 
semi straight line, being, successive, both positive and then, after the rotation of d of π, both 
negative, therefore are of the same sign, and this will make their product, in this case, positive, 
and, while in the precedent case, the product of the two determinations of the function was 
always negative (see Fig.1).  

We must observe also that at k > 1 and for α1,2 ∈ (0, 2π) ⇒ θ ∈ (θi , θf); the ex-centric 
variable θ diminishes the interval of existence of FSM-CE, between an initial value θi and a final 
one θf, with as much as the numeric growth of ex-centricity k. For k → ∞ the interval is reduced 
to a single point on the real axis R, for each determination.  

The results presented so far, will also be obtained from the relations that will follow. 
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Fig. 1 The representation of the functions rex1,2 θ and Rexα1,2   (EW1,2 )  on the unity circle. 
 

The dependency between the two variables is: 
 
(3)              α1,2 (θ) =  θ - β1,2 (θ) =  θ m  arcsin[e.sin (θ - ε)]   

 
and, respectively 

(4)      θ ( α1,2 ) = α1,2 + β (α1,2) = α1,2 + arcsin(
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(6)              sin β (α1,2) = 
2,1

2,1

Re
)sin(.

α
εα

x
k −

,  

and the derivative of  d[β(α)]/dα  is 

(7)     
)cos(..21

])[cos()(
2 εα

εα
α
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−−+
−−

=
kk

kk
d

d = 
2,1

2Re
])[cos(

α
εα

x
kk −−  

 
From (1), it results, without difficulty, that the sum, the difference, the product, and the 

ratio of the two determinations of the functions  rex are: 
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A function similarly useful, in this article, is the ex-centric derivative function of a centric 

variable α, for which the form of expression is invariable at the position of the ex-center E is: 

(9)   Dex α1,2  = 
)cos(.21

)cos(.1

2,1
2
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εα
εα
−−+

−−

kk
k

 = : 
2,1α

θ
d
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and 

(10) dex1,2 = 1− 
)(sin1
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22 εθ
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−

k
k  

and the nucleus of Poisson integral  

(11) Nip α1,2 = 
2,1α

γ
d
d = 

2,1

)(
α

βθ
d

d +  = 1+ 2 
2,1α

β
d
d = 

)(21
1

2,1
2

2

εα −−+
−
kk
k  = 

2,1
2

2

Re
1

αx
k−  =  

                           = 
1

2

Re
Re

α
α

x
x

−  

 
 

2. THE INTEGRATION USING THE CLASSIC METHOD [1] 
 

The Poisson’s integral, with modified notations, in accordance with the supermathematics 
ex-centric circular functions (SM - EC), is 

(12) PI (k, ε) = ∫
− −−+

π

π εα
α

)cos(..21 2 kk
d ,  

in which ℜ∈k  and ],[ ππε −∈  are the parameters and, in the same time, the polar coordinates 
of the ex-center E. This is resolved in [1] as a simple integral which is dependent of a real 
parameter λ ≡ k, which will be further denoted as k, and representing, in EM, numeric ex-
centricity k = e/R, the ratio between the real ex-centricity e and the circle radius R on which are 
placed the intersection points W1 and W2. The integral is simple, but the integration is quite 
laborious, as we will see later, and it will become indeed simple, only when passed from CM to 
EM with the utilization of the new supermathematics functions. 
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Classical Solution: The periodic real function   
 

(13) f(α) = 
)cos(21

1
2 εα −−+ kk

  

is, as it is easily observed, the square of the radial ex-centric function of α 
 

(14)    f(α) = 1 / (Rex2 α),    
 
defined for any k ∈ ℜ − {±1}  and ϕ ∈ [-π, π ] .  

Remark: Only one from the two determinations of the function Rex α1,2  is null (!) when E 
belongs to unity circle, that is  /k/ = 1; the second determination having the expression which will 
be presented bellow.  Based on the new knowledge from EM, now we can assert that the radial 
ex-centric function is defined also for  k = ± 1.  

If  k = +1, then 
(15) rex1,2 θ = - cos(θ-ε) ± )(sin1 2 εθ −−  → rex1 θ = Rex α1 =  0  

 
and rex2θ = Rex α2 = − 2cos(θ− ε) and, for k = −1, it results  
 

(16)            rex1,2 θ =  cos(θ-ε) ± )(sin1 2 εθ −−   
 
such that, now, rex1θ = Rex α1  = 2 cos (θ-ε) and rex 2θ = Rex α2 = 0, which it results and it can 
be seen, equally easy, also from the graphic. 

Because 
 
(17)            Rex2 α = [k− ei(α - ε)].[k – e -i.(α -  ε)] = [k−rad(α-ε)].[k – rad-(α- ε)] ,  

 
in which, the radial centric functions [5], or in short, radial (denoted rad), equivalent to the 
exponential functions are unitary vectors, of symmetric directions, in relation to the straight line 
which contains the points  O and E, therefore: 
 

(18)          rad (α- ε)  − rad[- (α - ε)] = 2 cos(α - ε)    
 
and 
 

(19)         rad(α-ε) . rad-(α-ε) = 1
)(
)(
=

−
−
εα
εα

rad
rad ,  

in which  
 

(20)        rad α = ei α  
 
is equivalent, in centric (for k = 0, when α1 = θ and α2 = θ + π)  of functions rex θ and Rexα  [ 5]. 

The function Rex2α  (16) has the roots:  
 
(21)        e ±( α - ε) = rad[ ±(α−ε )]  

 

 which, for α = ε  and also for  α = ε −π, din (14)  it results 
 

(22)        k = ±1.  
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By introducing in PI the variable α’ = α + π, the change will lead to the integral:  
 

(23)       PI (− k) = ∫ +++

π

εα
α2

0 '2

'

)cos(.21 kk
d ,  

 
in which the numeric ex-centricity changes the sign, that is k → − k , which is equivalent to the 
rotation of the ex-center E(k, ε) around the origin O (0,0) with π, on the circle with the radius  k,  
that is  ε → ± ( ε ±  π ), or, yet, because of the inter-conversion properties of  α with  ε in the 
function cosine from ( 12 ),  α → ±  ( α ± π ).  

Suppose that  k ≠ ± 1, the change of the variable  α’ = α + π 
 
(24)         z = ei(α’ + ε) ,  

 
for which 

(25)         dz / z = 
)(

)(.
)(

)(
'

''

'

''

εα
αεα

εα
αεα

+
+

=
+

+
rad

dradi
rad

dder  = i dα’  

 
it will transform the segment [−π, + π]  in the unity circumference, going in trigonometric positive 
sense ( sinistrorum / levogin). Then: 
 

(26)         PI(k, α) = i ∫ +++C kzzk
dz

)1()1( 22    = ∫ ++C mzz
dz

k
i

12 ,  

 
in which m = k +1/k.  

The poly-functions f(z) from under the sign of  ∫C are  z’ =  − k and  z” = − 1 / k with the 

residues a’-1 = Rez[f(z), -k] = k / (k2 - 1)  and a”-1 = Rez[f(z), -1 / k] = k / (1 – k2), such that  a’-1 + 
a”-1 = 0.  

By applying the residues and semi-residues theorems, it results that for any angle ε ∈ [ −π, 
+π ]   

(27)          IP( k, ε) = 

2

2

2 ,  1;
1

0,    1
2 ,  1

1

for k
k

for k

for k
k

π

π

⎧ <⎪ −⎪
= ±⎨

⎪
⎪ >

−⎩

 

 
The zero value for 

1
lim ( , )

k
PI k ε

→±

 can be found choosing the contour Γmade of the 

circumferences C and γ (Fig. 2) , the last having the center in  z” = 1 / k and the radius r < 1, 
from which we suppressed the interior portions of the reunion of the two circles. In this 

conditions, the integral ∫Γ +− 12 kzz
dz  is null even when  k → 1 (or –1), appearing as a principal 

value in the Cauchy sense.  We can then write: 
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(28)          PI(k, ε) = 2

2 , { 1}
1

0, 1

for k
k

for k

π⎧ ⇒ =ℜ− ±⎪ −⎨
⎪ ⇒ = ±⎩

 

 
 

 

 
 

 

 

Fig. 2  Explanatory Drawing Fig. 3 The functions Rex1,2 and rex1,2 of k = ± 1 and ε = 0 

 
The result (28), presented in [1], can also be established directly, knowing that from (14), for 

k = 1, rex1θ = 0, and for k = −1,  rex2 θ = 2cos(α-ε) such that:  
 

(28)       ∫∫
−− −

=
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π εα
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d
x
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For k ≠ ± 1, will present the integral below.  

 
 

3. THE INTEGRATION WITH THE HELP OF CIRCULAR EX-CENTRIC 
SUPERMATHEMATICS FUNCTIONS. 

 
Multiplying PI(k, ε) with (1−k2) / (1−k2) it results  
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for k < 1  and 

 (30)   PI (k, ε) = ∫
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for k > 1, in which we took in consideration the relation (9) and the sign of the functions Rex α1,2, 
for k < 1 and for  k > 1, that is an ex-center interior or exterior to unity disk and of the relation, for  
k < 1. The relations between the integration limits, taking in account of the dependencies [2] 
 

(31) 
⎩
⎨
⎧

++=
−=

πβθα
βθα

2

1    

 
knowing that  β1 + β2 =  π  [3] are : 
 

(32) If  α1 ∈ [−π, π] ⇒   then θ ∈ [ π − β1, π  + β1 ]  
 
and their difference is +2π, and if 
 

(33) α2 ∈ [ −π, π ], then  ⇒  θ ∈ [−2π −β,  −β],  
 
as it can be seen also in Fig. 1, and their difference is  −2π. 
 

(34) 1+2
α
β

d
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x
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because θ = α + β,  and for  
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⎩
⎨
⎧

+=→=
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2,12

2,11

2
2
βπθπγ
βπθπγ

 ,  

as it results also from the figure, therefore  
(36) γ2 - γ1 = 2 π 
 
 

CONCLUSIONS 
  
Because of the labor volume in the two variants, the conclusion is, evidently, in the favor of 

the new method of integration, taking in account, firstly, the degree of complexity of the 
integration. 

By utilizing the existing relations in EM, as, for example the relation (28), which can be 
written by denoting γ = θ + β , from which  dγ = d(θ +β), but α = (θ - β ) and dα = d(γ - 2β) or dα 
= d(θ - β) , such that  

dγ / dα  = 1 +2.dβ / dα = 
2,1

2

2

1

2

1 Re
1

Re
Re)cos(.

αα
α

θ
εθ

x
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x
x

rex
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=−=
−
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and PI is an immediate integral, k being a constant parameter, as we saw before. Furthermore, 
from the relation (29) it results the Poisson’s integral value undefined as being: 

(37) IPN = 
2222 1
Re

)sin(arcsin2
)](2[
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1)]()([
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Re k
x
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kkx
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The integrals calculated in  [1] with the help of the residues theorem 
 



 9

(38) I1 = ∫ −−+
−−π

εα
εα2

0
22 )cos(2

)cos(
rrR

rR ,  

 
in which  with r = k.R we denoted the real ex-centricity and with R the radius of a certain circle 
and 

(39) I 2 = ∫ −−+
−π

εα
εα2

0
22 )cos(2

)sin(
rrR

r   

 
which, by the classical method presented in [1, pp. 186-187] are equally laborious and, 
unfortunately, wrong; by the new method, from EM, these integrals are immediate.  Reducing R 
from (38) and (39) it results the functions to be integrated:   
 

(40) F1 =  
)cos(2

)cos(
22 εα

εα
−−+

−−
rrR

rR  = 
α

εα
2Re

)cos(1
x

k −−  = Dex α1,2 = 
α
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d
d   

 
such that the undefined integral is 
 

(41) I1N = ]
)cos(21

)sin(
arcsin[)(

2,1
2

2,1
2,1

εα

εα
ααθθα

α
θ

−−+±

−
+=== ∫∫ kk

k
dd

d
d ,  

 
such that, the defined integral (38) will be: 
 

 For k = +1 ⇒ I1 = π, because in the first determination 1 (principal) θ(α = 0) = π/2 and 
 θ(α=2π) = 3π/2 and the difference is π. If k = − 1 for the first determination θ(α=0) = π and θ(α = 
2π) = 2π, such that the difference is the same π. It results that for |k| = 1 ⇒ I1 = π.  

 For k > 1, the integral value I1 is 0. 
 

 For k < 1, the integral value is 2π. 
 
The undefined integral I2N is: 

 

(42) I2N = α
εα

εα d
kk

k
∫ −−+

−
)cos(21

)sin(.
2 = α

α
εα d

x
k
∫

−
2Re

)sin(.  = ∫ α
α
α

α
d

d
xd

x
)(Re

Re
1  = ln|Rexα 

 
Therefore, the defined integral I2 is: 
 

(43) I2 = 0Reln
2

0
=α

π

x ,  

 
for any k and ε, knowing that Rex0 = rex0 = Rex2π = rex2π. 

 
More integrals can be resolved immediately in this way without difficulties, if one knows the 

expressions of some supermathematics functions. 
More integrals are presented in [6]. 
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