The New Prime theorem (12)

$3 \times a^{3} \pm 1$
Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we prove that $3 \times a^{3} \pm 1$ has infinitely many prime solutions Theorem. We define the prime equation

$$
\begin{equation*}
P_{1}=3 \times(P-1)^{3}+1 \tag{1}
\end{equation*}
$$

There exist infinitely many primes P such that P is a prime.
Proof. We have Jiang function[1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, \chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
3 \times(q-1)^{3}+1 \equiv 0 \quad(\bmod P), \quad q=1, \cdots, P-1 \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
3^{\frac{P-1}{3}} \equiv 1 \quad(\bmod P) \tag{4}
\end{equation*}
$$

If (4) has a solution then $\chi(P)=3$. If (4) has no solution then $\chi(P)=0, \chi(P)=1$ otherwise.
We prove $J_{2}(\omega) \neq 0$, there exist infinitely many primes P such that P_{2} is a prime. We have asymptotic formula [1]

$$
\begin{equation*}
\pi_{2}(N, 2)=\mid\left\{P \leq N: 3 \times(P-1)^{3}+1=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega}{3 \phi^{2}(\omega)} \frac{N}{\log ^{2} N}\right. \tag{5}
\end{equation*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.
In the same way we are able to prove that $3 \times a^{3}-1$ has infinitely many prime solutions.

Reference

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf.

