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Abstract 

In this paper we have proposed an almost unbiased ratio and product type 

exponential estimator for the finite population mean Y . It has been shown that Bahl and 

Tuteja (1991) ratio and product type exponential estimators are particular members of the 

proposed estimator. Empirical study is carried to demonstrate the superiority of the 

proposed estimator.  
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1. Introduction 

It is well known that the use of auxiliary information in sample surveys results in 

substantial improvement in the precision of the estimators of the population mean. Ratio, 

product and difference methods of estimation are good examples in this context. Ratio 

method of estimation is quite effective when there is a high positive correlation between 

study and auxiliary variables. On other hand, if this correlation is negative (high), the 

product method of estimation can be employed effectively. 

Consider a finite population with N units )U,....,U,U( N21  for each of which the 

information is available on auxiliary variable x. Let a sample of size n be drawn with 



simple random sampling without replacement (SRSWOR) to estimate the population 

mean of character y under study. Let )x,y(  be the sample mean estimator of )X,Y(  the 

population means of y and x respectively. 

In order to have a survey estimate of the population mean Y  of the study 

character y, assuming the knowledge of the population mean X of the auxiliary character 

x, Bahl and Tuteja (1991) suggested ratio and product type exponential estimator 
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Up to the first order of approximation, the bias and mean-squared error (MSE) of 

1t  and 2t  are respectively given by 
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From (1.3) and (1.5), we see that the estimators 1t  and 2t  suggested by Bahl and 

Tuteja (1991) are biased estimator. In some applications bias is disadvantageous. 

Following Singh and Singh (1993) and Singh and Singh (2006) we have proposed almost 

unbiased estimators of Y . 

2. Almost unbiased estimator 
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such that 0t , 1t , Ht 2 ∈ , where H denotes the set of all possible estimators for estimating 

the population mean Y . By definition, the set H is a linear variety if  
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where ( )2,1,0ih i =  denotes the statistical constants and R denotes the set of real numbers.  

To obtain the bias and MSE of th, we write 

( )0e1Yy += , ( )1e1Xx += . 

such that  

E (e0)=E (e1)=0. 
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Expressing th in terms of e’s, we have  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

++=
1

1
2

1

1
100h e2

eexph
e2

eexphhe1Yt    (2.3) 



Expanding the right hand side of (2.3) and retaining terms up to second powers of e’s, we 

have  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−++−−+=

2
ee

h
2
ee

h
8
e

h
8
e

hhh
2
e

e1Yt 10
2

10
1

2
1

2

2
1

121
1

0h   (2.4) 

Taking expectations of both sides of (2.4) and then subtracting Y  from both sides, we get 

the bias of the estimator th, up to the first order of approximation as 
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From (2.4), we have  
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where h=h1-h2 .         (2.7) 

Squaring both the sides of (2.7) and then taking expectations, we get MSE of the 

estimator th, up to the first order of approximation, as  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

= K
4
hhCCY

Nn
nN)t(MSE 2

x
2
y

2
h      (2.8) 

which is minimum when 

h = 2K.         (2.9) 

Putting this value of h = 2K in (2.1) we have optimum value of estimator as th(optimum). 

Thus the minimum MSE of th is given by 
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which is same as that of traditional linear regression estimator. 

From (2.7) and (2.9), we have  



 h1-h2 = h = 2K .        (2.11) 

From (2.2) and (2.11), we have only two equations in three unknowns. It is not possible 

to find the unique values for hi’s, i=0,1,2. In order to get unique values of hi’s, we shall 

impose the linear restriction  
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where B(ti) denotes the bias in the ith estimator. 

Equations (2.2), (2.11) and (2.12) can be written in the matrix form as  
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Using (2.13), we get the unique values of hi’s(i=0,1,2) as 
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Use of these hi’s (i=0,1,2) remove the bias up to terms of order o(n-1) at (2.1). 

3. Two phase sampling  

When the population mean X  of x is not known, it is often estimated from a 

preliminary large sample on which only the auxiliary characteristic is observed. The 

value of population mean X  of the auxiliary character x is then replaced by this estimate. 

This technique is known as the double sampling or two-phase sampling. 

The two-phase sampling happens to be a powerful and cost effective (economical) 

procedure for finding the reliable estimate in first phase sample for the unknown 



parameters of the auxiliary variable x and hence has eminent role to play in survey 

sampling, for instance, see; Hidiroglou and Sarndal (1998). 

 When X  is unknown, it is sometimes estimated from a preliminary large sample 

of size n′  on which only the characteristic x is measured. Then a second phase sample of 

size )nn(n ′< is drawn on which both y and x characteristics are measured. Let 
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second phase of size n. 

 In double (or two-phase) sampling, we suggest the following modified 

exponential ratio and product estimators for Y , respectively, as 
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To obtain the bias and MSE of d1t  and d2t , we write  
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Following standard procedure we obtain  
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From (3.3) and (3.4) we observe that the proposed estimators d1t  and d2t are biased, 

which is a drawback of an estimator is some applications. 

4. Almost unbiased two-phase estimator 

Suppose yt 0 = , d1t  and d2t  as defined in (3.1) and (3.2) such that 

t0, d1t , d2t W∈ , where W denotes the set of all possible estimators for estimating the 

population mean Y . By definition, the set W is a linear variety if 
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where ( )2,1,0iw i =  denotes thee statistical constants and R denotes the set of real 

numbers. 

To obtain the bias and MSE of wt , using notations of section 3 and expressing wt  in 

terms of e’s, we have 
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Taking expectations of both sides of (4.4) and then subtracting Y  from both sides, we get 

the bias of the estimator wt , up to the first order f approximation as 
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From (4.4), we have  

 ( )⎥⎦
⎤

⎢⎣
⎡ ′−−≅ 110w ee

2
weYt        (4.7)  

Squaring both sides of (4.7) and then taking expectation, we get MSE of the estimator 

wt , up to the first order of approximation, as 
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which is minimum when  

 w = 2K.         (4.9) 

Thus the minimum MSE of wt  is given by – 
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which is same as that of two-phase linear regression estimator. From (4.5) and (4.9), we 

have 
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From (4.2) and (4.11), we have only two equations in three unknowns. It is not 

possible to find the unique values for ( )2,1,0is'w i = . In order to get unique values of 

s'h i , we shall impose the linear restriction 
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where ( )idtB  denotes the bias in the thi  estimator. 

Equations (4.2), (4.11) and (4.12) can be written in the matrix form as 
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Solving (4.13), we get the unique values of ( )2,1,0is'w i =  as – 
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Use of these ( )2,1,0is'w i =  removes the bias up to terms of order ( )1no −  at (4.1).  

5.  Empirical study 

The data for the empirical study are taken from two natural population data sets 

considered by Cochran (1977) and Rao (1983). 

Population I: Cochran (1977) 

Cy =1.4177, Cx =1.4045, 887.0=ρ . 

Population II:  Rao (1983) 

Cy =0.426, Cx = 0.128, 7036.0−=ρ . 

In table (5.1), the values of scalar hi’s (i = 0,1,2) are listed. 

 

Table (5.1):  Values of hi’s (i =0,1,2) 

Scalars Population 

 I II 

h0 -2.2065 -20.93 

h1 2.4985 8.62 

h2 0.7079 13.30 

 

Using these values of hi’s (i = 0,1,2) given in the table 5.1, one can reduce the bias 

to the order o (n-1) in the estimator th at (2.1). 

In table 5.2, Percent relative efficiency (PRE) of y , t1, t2 and th (in optimum case) are 

computed with respect to y . 

Table 5.2:  PRE of different estimators of Y  with respect to y . 



Estimators PRE (., y ) 

 Population I Population II 

y  100 100 

t1 272.75 32.55 

t2 47.07 126.81 

th (optimum) 468.97 198.04 

 

Table 5.2 clearly shows that the suggested estimator th in its optimum condition is 

better than usual unbiased estimator y , Bahl and Tuteja (1991) estimators t1 and t2. 

For the purpose of illustration for two-phase sampling, we consider following 

populations: 

Population III: Murthy (1967) 

y  : Output 
x  : Number of workers 

3542.0Cy = , 9484.0Cx = , 9150.0=ρ ,  N = 80, 20n =′ , n = 8. 

Population IV: Steel and Torrie(1960) 

4803.0Cy = , 7493.0Cx = , 4996.0−=ρ , N = 30, 12n =′ , n = 4. 

In table 5.3 the values of scalars ( )2,1,0is'w i =  are listed.  

Table 5.3: Values of ( )2,1,0is'w i =  

Scalars Population I Population II 

0w  0.659 0.2415 

1w  0.808 0.0713 

2w  0.125 0.6871 



 Using these values of ( )2,1,0is'w i =  given in table 5.3 one can reduce the bias 

to the order ( )1no −  in the estimator wt  at 5.3. 

 In table 5.4 percent relative efficiency (PRE) of y , d1t , d2t and wt (in 

optimum case) are computed with respect to y . 

Table 5.4: PRE of different estimators of Y  with respect to y . 

Estimators PRE (., y ) 

 Population I Population II 

y  100 100 

d1t  128.07 74.68 

d2t  41.42 103.64 

wt  138.71 106.11 

 

References 

Bahl, S. and Tuteja, R.K. (1991): Ratio and product type exponential estimator. 

Information and optimization sciences, 12 (1), 159-163. 

Cochran (1977):  

 

 


