The New Prime theorem (14)

$P_{j}=(j)^{2} P+(k-j)^{2}, j=1, \cdots, k-1$
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that there exist infinitely many primes P such that each of $(j)^{2} P+(k-j)^{2}$ is a prime.

Theorem. Let k be a given prime.

$$
\begin{equation*}
P_{j}=(j)^{2} P+(k-j)^{2}(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

There exist infinitely many prime P such that each of $(j)^{2} P+(k-j)^{2}$ is a prime.
Proof. We have Jiang function[1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
\prod_{j=1}^{k-1}\left[(j)^{2} q+(h-j)^{2}\right] \equiv 0 \quad(\bmod P), q=1, \cdots, P-1 . \tag{3}
\end{equation*}
$$

From (3) we have $\chi(2)=0$ if $P<k$ then $\chi(P) \leq P-2, \chi(k)=1$, if $k<P$ then $\chi(P) \leq k-1$. Jiang functions a subset of Euler function: $J_{2}(\omega) \subset \phi(\omega)$. From (3) we have

$$
\begin{equation*}
J_{2}(\omega) \neq 0 . \tag{4}
\end{equation*}
$$

We prove that there exist inifinitely many primes P such that each of $(j)^{2} P+(k-j)^{2}$ is a prime.
We have asymptotic formula

$$
\begin{equation*}
\pi_{k}(N, 2)=\mid\left\{P \leq N:(j)^{2} P+(k-j)^{2}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right., \tag{5}
\end{equation*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.
We have [2]

$$
\begin{equation*}
\mid\{P \leq N: j P+k-j=\text { prime }\}|\leq|\left\{P \leq N:(j)^{2} P+(k-j)^{2}=\text { prime }\right\} \mid \tag{6}
\end{equation*}
$$

Example 1. Let $K=3$. From (1) we have

$$
\begin{equation*}
P_{1}=P+4, P_{2}=4 P+1 \tag{7}
\end{equation*}
$$

We have Jiang function

$$
\begin{equation*}
J_{2}(\omega)=\prod_{5 \leq P}(P-3) \neq 0 \tag{8}
\end{equation*}
$$

There exist infinitely many primes P such that P_{1} and P_{2} are all prime. We have asymptotic formula

$$
\begin{equation*}
\pi_{3}(N, 2)=\mid\left\{P \leq N: P_{1}=\text { prime }, P_{2}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{2}}{\phi^{3}(\omega)} \frac{N}{\log ^{3} N}\right. \tag{9}
\end{equation*}
$$

Example 2. Let $k=5$, from (1) we have

$$
\begin{equation*}
P_{j}=(j)^{2} P+(5-j)^{2}(j=1,2,3,4) \tag{10}
\end{equation*}
$$

We have jiang function

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)] . \tag{11}
\end{equation*}
$$

We have $\chi(3)=1, \chi(5)=1, \chi(7)=2, \chi(11)=2, \chi(13)=3, \chi(17)=3, \chi(P)=4$ otherwise.
Substituting it into (11) we have

$$
\begin{equation*}
J_{2}(\omega)=11232 \prod_{19 \leq P}(P-5) \neq 0 \tag{12}
\end{equation*}
$$

There exist infinitely many primes P such that P_{1}, P_{2}, P_{3} and P_{4} are all prime. We have asymptotic formula

$$
\begin{equation*}
\pi_{5}(N, 2)=\mid\left\{P \leq N: P_{1}, P_{2}, P_{3}, P_{4}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{4}}{\phi^{5}(\omega)} \frac{N}{\log ^{5} N}\right. \tag{13}
\end{equation*}
$$

Example 3. Let $k=7$. From (1) we have

$$
\begin{equation*}
P_{j}=(j)^{2} P+(7-j)^{2}(j=1,2,3,4,5,6) \tag{14}
\end{equation*}
$$

We have jiang function

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)] . \tag{15}
\end{equation*}
$$

Where $\chi(2)=0, \chi(3)=1, \quad \chi(5)=2, \quad \chi(7)=1, \quad \chi(11)=5, \quad \chi(13)=5, \quad \chi(17)=4$, $\chi(29)=5, \chi(37)=5, \chi(P)=6$ otherwise.

From (15) we have

$$
\begin{equation*}
J_{2}(\omega) \neq 0 \tag{16}
\end{equation*}
$$

We prove that there exist infinitely many primes P such that each of $(j)^{2} P+(7-j)^{2}$ is a prime.

Note. The prime numbers theory is to count the Jiang function $J_{n+1}(\omega)$ and Jiang singular
series $\sigma(J)=\frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)}=\prod_{P}\left(1-\frac{1+\chi(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}[1-3]$, which can count the number of prime numbers. The prime number is not random. But Hardy singular series $\sigma(H)=\prod_{P}\left(1-\frac{v(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ is false [4-6], which can not count the number of prime numbers.

References

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf. http://wbabin.net/xuan.htm\#chun-xuan
[2] Chun-Xuan Jiang, The New prime theorem (5), http://www.wbabin.net/math/xuan88.pdf
[3] Chun-Xuan Jiang, The Hardy-Littlewood prime K-tuple conjectnre is false. http://wbabin.net/xuan.htm \# chun-xuan.
[4] G. H. Hardy and J. E. Littlewood, Some problems of "Prtition Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923) 1-70.
[5] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
[6] D. Goldston, J. Pintz, and C. Y. Yildiriom, Primes in tuples I. Ann, Math., 170 (2009) 819-862.
[7] T. Tao. Recent progress in additive prime number theory, preprint. 2009. Szemerédi's theorem does not directly to the primes, because it can not count the number of primes. It is unusable.
[8] W. Narkiewicz, The development of prime number theory. From Euclid to Hardy and Littlewood. Springer-Verlag, New York, NY. 2000.

