The New Prime theorem (15)

$P_{j}=(j)^{3} P+(k-j)^{3}, j=1, \cdots, k-1$
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that there exist infinitely many primes P such that each of $(j)^{3} P+(k-j)^{3}$ is a prime.

Theorem. Let k be a given prime.

$$
\begin{equation*}
P_{j}=(j)^{3} P+(k-j)^{3}(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

There exist infinitely many prime P such that each of $(j)^{3} P+(k-j)^{3}$ is a prime.
Proof. We have Jiang function[1]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{2}
\end{equation*}
$$

where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
\prod_{j=1}^{k-1}\left[(j)^{3} q+(k-j)^{3}\right] \equiv 0 \quad(\bmod P), q=1, \cdots, P-1 . \tag{3}
\end{equation*}
$$

From (3) we have $\chi(2)=0$, if $P<k$ then $\chi(P) \leq P-2, \chi(k)=1$, if $k<P$ then $\chi(P) \leq k-1$. From (3) we have

$$
\begin{equation*}
J_{2}(\omega) \neq 0 . \tag{4}
\end{equation*}
$$

We prove that there exist inifinitely many primes P such that each of $(j)^{3} P+(k-j)^{3}$ is a prime. Jiang function is a subset of Euler function: $J_{2}(\omega) \subset \phi(\omega)$.
We have asymptotic formula [1]

$$
\begin{equation*}
\pi_{k}(N, 2)=\left|\left\{P \leq N:(j)^{3} P+(k-j)^{3}=\operatorname{prime}\right\}\right| \sim \frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log ^{k} N} . \tag{5}
\end{equation*}
$$

where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3$. From (1) we have

$$
\begin{equation*}
P_{1}=P+8, \quad P_{2}=8 P+1 \tag{6}
\end{equation*}
$$

We have Jiang function

$$
\begin{equation*}
J_{2}(\omega)=\prod_{5 \leq P}(P-3) \neq 0 \tag{7}
\end{equation*}
$$

There exist infinitely many primes P such that P_{1} and P_{2} are all prime. We have asymptotic formula

$$
\begin{equation*}
\pi_{3}(N, 2)=\mid\left\{P \leq N: P_{1}=\text { prime }, P_{2}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{2}}{\phi^{3}(\omega)} \frac{N}{\log ^{3} N}\right. \tag{8}
\end{equation*}
$$

Example 2. Let $k=5$, from (1) we have

$$
\begin{equation*}
P_{j}=(j)^{3} P+(k-j)^{3}(j=1,2,3,4) \tag{9}
\end{equation*}
$$

We have jiang function

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}[P-1-\chi(P)], \tag{10}
\end{equation*}
$$

where $\chi(P)$ is the number of solutions of congruence

$$
\begin{equation*}
\prod_{j=1}^{4}\left[(j)^{3} q+(k-j)^{3}\right] \equiv 0 \quad(\bmod P) \tag{11}
\end{equation*}
$$

From (11) we have $\chi(2)=0, \chi(3)=1, \chi(5)=1, \chi(7)=2, \chi(11)=4, \chi(13)=3$, $\chi(P)=4$ otherwise.

Substituting it into (10) we have.

$$
\begin{equation*}
J_{2}(\omega)=648 \prod_{17 \leq P}(P-5) \neq 0 \tag{12}
\end{equation*}
$$

We prove that there exist infinitely many primes P such that each of $(j)^{3} P+(k-j)^{3}$ is prime.
Note. The prime numbers theory is to count the Jiang function $J_{n+1}(\omega)$ and Jiang singular series $\sigma(J)=\frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)}=\prod_{P}\left(1-\frac{1+\chi(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}[1-2]$, which can count the number of prime number. The prime number is not random. But Hardy singular series $\sigma(H)=\prod_{P}\left(1-\frac{v(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ is false. [2-5], which can not count the number of prime numbers.

References

[1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf. http://wbabin.net/xuan.htm\#chun-xuan.
[2] G. H. Hardy and J. E. Littlewood, Some problems of "Partitio Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923)-70.
[4] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
[5] D. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I. Ann. Math., 170(2009) 819-862.

