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Abstract 

 In this paper exponential ratio and exponential product type estimators using two 

auxiliary variables are proposed for estimating unknown population variance 2
yS  . Problem is 

extended to the case of two-phase sampling. Theoretical results are supported by an empirical 

study. 
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1. Introduction 

It is common practice to use the auxiliary variable for improving the precision of the 

estimate of a parameter. Out of many ratio and product methods of estimation are good 

examples in this context. When the correlation between the study variate and the auxiliary 

variate is positive (high) ratio method of estimation is quite effective. On the other hand, 

when this correlation is negative (high) product method of estimation can be employed 

effectively. Let y and (x,z) denotes the study variate and auxiliary variates taking the values 

yi and (xi,zi) respectively, on the unit Ui (i=1,2,……,N), where x is positively correlated with 

y and z is negatively correlated with y. To estimate ∑
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population size N is large so that the finite population correction terms are ignored. 

 

 

 

 Assume that a simple random sample of size n is drawn without replacement 

(SRSWOR) from U. The usual unbiased estimator of 2
yS  is  
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n
1y  is the sample mean of y. 

When the population variance ∑
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1S is known, Isaki (1983) proposed a 

ratio estimator for 2
yS  as 
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1s is an unbiased estimator of 2

xS . 

Upto the first order of approximation, the variance of 2
yS  and MSE of tk (ignoring the finite 

population correction (fpc) term) are respectively given by 
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Following Bahl and Tuteja (1991), we propose exponential ratio type and exponential 

product type estimators for estimating population variance 2
yS  as – 
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2.  Bias and MSE of proposed estimators 

To obtain the bias and MSE of t1, we write 
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After simplification we get the bias and MSE of t1 as  
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To obtain the bias and MSE of t2, we write 
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After simplification we get the bias and MSE of t2 as  
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3. Improved Estimator 

Following Kadilar and Cingi (2006) and Singh et. al. (2007), we propose an improved 

estimator for estimating population variance 2
yS  as- 
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where α  is a real constant to be determined such that the MSE of t is minimum. 

Expressing t in terms of e’s, we have 
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Expanding the right hand side of (3.2) and retaining terms up to second power of e’s, we have  
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Taking expectations of both sides of (3.3) and then subtracting 2
yS  from both sides, we get 

the bias of the estimator t, up to the first order of approximation, as 
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From (3.4), we have  
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Squaring both the sides of (3.5) and then taking expectation, we get MSE of the estimator t, 

up to the first order of approximation, as  
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Minimization of (3.6) with respect to α  yields its optimum value as  
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Substitution of 0α  from (3.7) into (3.6) gives minimum value of MSE of t. 



 

 

 

4. Proposed estimators in two-phase sampling  

In certain practical situations when 2
xS  is not known a priori, the technique of two-

phase or double sampling is used. This scheme requires collection of information on x and z 

the first phase sample s’ of size n’ (n’<N) and on y for the second phase sample s of size n 

(n<n’) from the first phase sample. 

The estimators t1, t2 and t in two-phase sampling will take the following form, respectively 
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To obtain the bias and MSE of t1d, t2d, td, we write 
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Expressing t1d, t2d, and td in terms of e’s and following the procedure explained in section 2 

and section3 we get the MSE of these estimators, respectively as- 
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Minimization of (4.6) with respect to k yields its optimum value as  
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Substitution of k0 from (4.7) to (4.6) gives minimum value of MSE of td. 

 

5. Empirical Study 

To illustrate the performance of various estimators of 2
yS , we consider the data given 

in Murthy(1967, p.-226). The variates are: 

y: output, x: number of workers, z: fixed capital, 

N=80, n’=25, n=10. 

2667.2400 =∂ , 65.3040 =∂ , 8664.2004 =∂ , 3377.2220 =∂ , 2208.2202 =∂ , 14.3400 =∂  

The percent relative efficiency (PRE) of various estimators of 2
yS  with respect to 

conventional estimator 2
ys  has been computed and displayed in table 5.1. 

 

 

 



Table 5.1 :  PRE of 2
ys , t1, t2 and min. MSE (t) with respect to 2

ys  

Estimator PRE(., 2
ys ) 

2
ys  100 

t1 214.35 

t2 42.90 

t 215.47 

 

 

In table 5.2 PRE of various estimators of 2
ys  in two-phase sampling with respect to 2

yS  are 

displayed. 

Table 5.2 : PRE of 2
ys , t1d, t2d and min.MSE (td) with respect to 2

ys  

Estimator PRE (., 2
ys ) 

2
ys  100 

t1d 1470.76 

t2d 513.86 

td 1472.77 

 

6. Conclusion 

From table 5.1 and 5.2, we infer that the proposed estimators t performs better than 

conventional estimator 2
ys  and other mentioned estimators. 
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