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PREFACE

In this book we introduce mainly three new classes of linear 

algebras; neutrosophic group linear algebras, neutrosophic 

semigroup linear algebras and neutrosophic set linear algebras. 

The authors also define the fuzzy analogue of these three 

structures.

 This book is organized into seven chapters. Chapter one is 

introductory in content. The notion of neutrosophic set linear 

algebras and neutrosophic neutrosophic set linear algebras are 

introduced and their properties analysed in chapter two. Chapter 

three introduces the notion of neutrosophic semigroup linear 

algebras and neutrosophic group linear algebras. A study of 

their substructures are systematically carried out in this chapter.  

 The fuzzy analogue of neutrosophic group linear algebras, 

neutrosophic semigroup linear algebras and neutrosophic set 

linear algebras are introduced in chapter four of this book. 

Chapter five introduces the concept of neutrosophic group 

bivector spaces, neutrosophic bigroup linear algebras, 

neutrosophic semigroup (bisemigroup) linear algebras and 

neutrosophic biset bivector spaces. The fuzzy analogue of these 

concepts are given in chapter six. An interesting feature of this 

book is it contains nearly 424 examples of these new notions. 

The final chapter suggests over 160 problems which is another 

interesting feature of this book.  
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Chapter One 

INTRODUCTION

In this chapter we assume fields to be of any desired 

characteristic and vector spaces are taken over any field. We 

denote the indeterminacy by ‘I’ as i will make a confusion, as it 

denotes the imaginary value, viz. i2 = –1 that is 1  = i. The 

indeterminacy I is such that I . I = I 2 = I.

In this chapter we just recall some of the basic neutrosophic 

structures used in this book.  

In this chapter we recall the notion of neutrosophic groups. 

Neutrosophic groups in general do not have group structure. We 

also define yet another notion called pseudo neutrosophic 

groups which have group structure. As neutrosophic groups do 

not have group structure the classical theorems viz. Sylow, 

Lagrange or Cauchy are not true in general which forces us to 

define notions like Lagrange neutrosophic groups, Sylow 

neutrosophic groups and Cauchy elements.  

We just give the basic definition alone as we use it only in 

the construction of neutrosophic group vector spaces and 

neutrosophic group linear algebras which are analogous 
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structures of neutrosophic set vector spaces, neutrosophic semi 

group vector spaces, neutrosophic set linear algebras and 

neutrosophic semigroup linear algebras.   

DEFINITION 1.1: Let (G, *) be any group, the neutrosophic 
group is generated by I and G under * denoted by N(G) = { G

 I , *}. 

Example 1.1: Let Z7 = {0, 1, 2, …, 6} be a group under addition 

modulo 7. N(G) = { Z7  I , ‘+’ modulo 7} is a neutrosophic 

group which is in fact a group. For N(G) = {a + bI | a, b  Z7} is 

a group under ‘+’ modulo 7. Thus this neutrosophic group is 

also a group. 

Example 1.2: Consider the set G = Z5 \ {0}, G is a group under 

multiplication modulo 5. N(G) = { G  I , under the binary 

operation, multiplication modulo 5}. N(G) is called the 

neutrosophic group generated by G  I. Clearly N(G) is not a 

group, for I2 = I and I is not the identity but only an 

indeterminate, but N(G) is defined as the neutrosophic group.  

Thus based on this we have the following theorem: 

THEOREM 1.1: Let (G, *) be a group, N(G) = { G  I , *} be 
the neutrosophic group. 

1. N(G) in general is not a group. 
2. N(G) always contains a group. 

Proof: To prove N(G) in general is not a group it is sufficient 

we give an example; consider Z5 \ {0}  I  = G = {1, 2, 4, 3, I, 

2 I, 4 I, 3 I}; G is not a group under multiplication modulo 5. In 

fact {1, 2, 3, 4} is a group under multiplication modulo 5. 

N(G) the neutrosophic group will always contain a group 

because we generate the neutrosophic group N(G) using the 

group G and I. So G  N(G); hence N(G) will always contain a 

group.  



9

Now we proceed onto define the notion of neutrosophic 

subgroup of a neutrosophic group. 

DEFINITION 1.2: Let N(G) = G  I  be a neutrosophic group 
generated by G and I. A proper subset P(G) is said to be a 
neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G) 
must contain a (sub) group. 

Example 1.3: Let N(Z2) = Z2  I  be a neutrosophic group 

under addition. N(Z2) = {0, 1, I, 1 + I}. Now we see {0, I} is a 

group under + in fact a neutrosophic group {0, 1 + I} is a group 

under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo 

neutrosophic groups for they do not have a proper subset which 

is a group. So {0, I} and {0, 1 + I} will be only called as pseudo 

neutrosophic groups (subgroups).  

We can thus define a pseudo neutrosophic group as a 

neutrosophic group, which does not contain a proper subset 

which is a group. Pseudo neutrosophic subgroups can be found 

as a substructure of neutrosophic groups. Thus a pseudo 

neutrosophic group though has a group structure is not a 

neutrosophic group and a neutrosophic group cannot be a 

pseudo neutrosophic group. Both the concepts are different. 

Now we see a neutrosophic group can have substructures which 

are pseudo neutrosophic groups which is evident from the 

following example: 

Example 1.4: Let N(Z4) = Z4  I  be a neutrosophic group 

under addition modulo 4. Z4  I  = {0, 1, 2, 3, I, 1 + I, 2I, 3I, 1 

+ 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I}. o( Z4

I ) = 42.

Thus neutrosophic group has both neutrosophic subgroups and 

pseudo neutrosophic subgroups. For T = {0, 2, 2 + 2I, 2I} is a 

neutrosophic subgroup as {0 2} is a subgroup of Z4 under 

addition modulo 4. P = {0, 2I} is a pseudo neutrosophic group 

under ‘+’ modulo 4.  
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DEFINITION 1.3: Let N(G) be a neutrosophic group. The 
number of distinct elements in N(G) is called the order of N(G). 
If the number of elements in N(G) is finite we call N(G) a finite 
neutrosophic group; otherwise we call N(G) an infinite 
neutrosophic group, we denote the order of N(G) by o(N(G)) or 
|N(G)|. 

DEFINITION 1.4: Let S be a semigroup, the semigroup 
generated by S and I i.e. S  I denoted by S  I  is defined to 
be a neutrosophic semigroup.

It is interesting to note that all neutrosophic semigroups contain 

a proper subset, which is a semigroup. 

Example 1.5: Let Z12 = {0, 1, 2, …, 11} be a semigroup under 

multiplication modulo 12. Let N(S) = Z12  I  be the 

neutrosophic semigroup. Clearly Z12 Z12  I  and Z12 is a 

semigroup under multiplication modulo 12. 

Example 1.6: Let Z = {the set of positive and negative integers 

with zero}, Z is only a semigroup under multiplication. Let 

N(S) = { Z  I } be the neutrosophic semigroup under 

multiplication. Clearly Z  N(S) is a semigroup.  

Now we proceed on to define the notion of the order of a 

neutrosophic semigroup. 

DEFINITION 1.5: Let N(S) be a neutrosophic semigroup. The 
number of distinct elements in N(S) is called the order of N(S), 
denoted by o(N(S)).  

If the number of elements in the neutrosophic semigroup N(S) is 

finite we call the neutrosophic semigroup to be finite otherwise 

infinite. The neutrosophic semigroup given in example 1.5 is 

finite where as the neutrosophic semigroup given in example 

1.6 is of infinite order. 

Now we proceed on to define the notion of neutrosophic 

subsemigroup of a neutrosophic semigroup N(S). 



11

DEFINITION 1.6: Let N(S) be a neutrosophic semigroup. A 
proper subset P of N(S) is said to be a neutrosophic 
subsemigroup, if P is a neutrosophic semigroup under the 
operations of N (S). A neutrosophic semigroup N(S) is said to 
have a subsemigroup if N(S) has a proper subset, which is a 
semigroup under the operations of N(S).

It is interesting to note a neutrosophic semigroup may or may 

not have a neutrosophic subsemigroup but it will always have a 

subsemigroup. 

Now we proceed on to illustrate these by the following 

examples: 

Example 1.7: Let Z+  {0} denote the set of positive integers 

together with zero. {Z+  {0}, +} is a semigroup under the 

binary operation ‘+’. Now let N(S) = Z+  {0}+  {I} . N(S) is 

a neutrosophic semigroup under ‘+’. Consider 2Z+  I  = P, P 

is a neutrosophic subsemigroup of N(S). Take R = 3Z+  I ; R 

is also a neutrosophic subsemigroup of N(S).  

DEFINITION 1.7: Let K be the field of reals. We call the field 
generated by K  I to be the neutrosophic field for it involves 
the indeterminacy factor in it. We define I 2 = I, I + I = 2I i.e., I 
+…+ I = nI, and if k  K then k.I = kI, 0I = 0. We denote the 
neutrosophic field by K(I) which is generated by K  I that is 
K(I) = K  I . K  I  denotes the field generated by K and I.  

Example 1.8: Let R be the field of reals. The neutrosophic field 

of reals is generated by R and I denoted by R  I  i.e. R(I) 

clearly R R  I .

Example 1.9: Let Q be the field of rationals. The neutrosophic 

field of rationals is generated by Q and I denoted by Q(I). 

DEFINITION 1.8: Let K(I) be a neutrosophic field we say K(I) is 
a prime neutrosophic field if K(I) has no proper subfield, which 
is a neutrosophic field. 
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Example 1.10: Q(I) is a prime neutrosophic field where as R(I) 

is not a prime neutrosophic field for Q(I)  R(I). 

Likewise we can define neutrosophic subfield.  

DEFINITION 1.9: Let K(I) be a neutrosophic field, P  K(I) is a 
neutrosophic subfield of P if P itself is a neutrosophic field. K(I) 
will also be called as the extension neutrosophic field of the 
neutrosophic field P.  

We can also define neutrosophic fields of prime characteristic p 

(p is a prime).  

DEFINITION 1.10: Let Zp = {0,1, 2, …, p – 1} be the prime field 
of characteristic p. Zp  I  is defined to be the neutrosophic 
field of characteristic p. Infact Zp  I  is generated by Zp and I 
and Zp  I  is a prime neutrosophic field of characteristic p.  

Example 1.11: Z7 = {0, 1, 2, 3, …, 6} be the prime field of 

characteristic 7. Z7  I  = {0, 1, 2, …, 6, I, 2I, …, 6I, 1 + I, 1 + 

2I,  …, 6 + 6I } is the prime field of characteristic 7. 

DEFINITION 1.11: Let G(I) by an additive abelian neutrosophic 
group and K any field. If G(I) is a vector space over K then we 
call G(I) a neutrosophic vector space over K. 

Elements of K(I) or Zp  I  or Q(I) or R(I) will also be 

known as neutrosophic numbers.  

For more about neutrosophy please refer [10-7, 19, 25-6]. 

These concepts have good relevance in research, notably 

Smarandache’s neutrosophic method which is a generalization 

of Hegel’s dialectic, and suggests that scientific research will 

progress via studying the opposite ideas and the neutral ideas 

related to them in order to have a bigger picture.  
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Chapter Two  

SET NEUTROSOPHIC LINEAR ALGEBRA

In this chapter we for the first time introduce the notion of set 

neutrosophic vector spaces and set neutrosophic linear algebras 

and study their properties. 

This chapter has four sections. Section one introduces the 

concept of neutrosophic sets. The notion of set neutrosophic 

vector spaces are introduced in section two. Section three 

introduces the concept of set neutrosophic linear algebras. 

Mixed set neutrosophic rational vector spaces and their 

properties are discussed in section four.  

2.1 Types of Neutrosophic Sets 

In this section we introduce a few types of neutrosophic sets 

essential to define the notions of set neutrosophic vector spaces 

and set neutrosophic linear algebras. Throughout this book set 

implies subset of integers or subset of rationals or subset of 



14

complex numbers or subset of modulo integers modulo n (n 

N) or subset of reals. By finite set we mean a set S with finite 

number of distinct elements in them. If a set S has infinite 

number of elements in them, then we say S is of infinite 

cardinality. 

DEFINITION 2.1.1: Let S = {x1, …, xn}; n  N; if each xi is a 
neutrosophic number say of the form ai + bi I, bi  0, ai, bi  Z 
then we call S a pure neutrosophic set of integers or pure 
integer neutrosophic subset of pure integer neutrosophic set. 

Example 2.1.1: Let S = {5 + 2I, 7 – 3I, 15 + 8I, – 9 + 3I, 8 + 

27I, 12 – 43I, 43I, – 50I}, S is a pure integer neutrosophic 

subset of the pure integer neutrosophic set. 

Note: Let PN(Z) = {a + bI | a, b  Z and b  0}, we call PN(Z) 

to be the pure integer neutrosophic set or pure neutrosophic 

integer set. N(Z) = {a + bI | a, b  Z} is the mixed set of 

neutrosophic integers or mixed neutrosophic set of integers. 

Clearly PN(Z)  N(Z), i.e., pure neutrosophic set of integers is 

always a proper subset of mixed neutrosophic set of integers. 

 P(N(Z))  {0} is called the pure neutrosophic set of 

integers with zero. 

Example 2.1.2: Let P = {2I, 0, 3I + 1, 9, 4I – 5, 8 – 9I, –14, 

10I}, P is a mixed neutrosophic subset of N (Z). Clearly P is not 

a pure neutrosophic subset of N(Z). 

THEOREM 2.1.1: Every pure neutrosophic subset of N(Z) is a 
subset of mixed subset of   neutrosophic set and not conversely. 

Proof: Since PN(Z) is a proper subset of N(Z), every subset of 

PN(Z) is also a subset of N(Z). Hence the claim. 

Now consider T = {9 + 3I, 2I, 3 – 5I, 19I, 20 – 31I, 0, 5, 7, 4I + 

2}  N(Z). Since {5, 7, 0}  PN(Z) we see T is not a pure 

neutrosophic subset of PN(Z), it is only a mixed neutrosophic 

subset of N(Z). 
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Likewise we define N(Q) to be the mixed neutrosophic set of 

rationals, i.e., N(Q) = {a + bI | a, b  Q} and PN(Q) = {a + bI | 

a  Q, b  0  Q} is defined as the pure neutrosophic set of 

rationals. Clearly PN(Q) is a proper subset of N(Q). 

Example 2.1.3: Let

T = {
17

5
I, 5 + 

3

4
I,

7

3
 + I, 

3

4
 + 2I, 

18

7
I, 8 + 25I}. 

T is clearly a pure neutrosophic rational subset of PN(Q). 

Example 2.1.4: Let B = {0, 3, 5I + 1, 7I + 8, 14I, –17I, –26} 

N(Q). Clearly B is a mixed neutrosophic rational subset of 

N(Q). We see B  PN(Q). 

It is however interesting to note that T  N(Q).

In view of this we have the following theorem. 

THEOREM 2.1.2: Every pure neutrosophic rational subset is a 
subset of N(Q). However a mixed neutrosophic rational subset 
is not a subset of PN(Q). 

The proof is left as an exercise for the reader. 

DEFINITION 2.1.2: Let N(C) = {a + bI | a, b  C} (C, the field 
of complex numbers); N(C) is defined as the mixed neutrosophic 
complex number set or mixed neutrosophic set of complex 
numbers. Let PN(C) = {a + bI | a  C, b  0, b  C}, PN(C) is 
defined as the pure neutrosophic set of complex numbers or 
pure neutrosophic complex number set. Thus we see PN(C) 
N(C).
We have following relations; 

N(Z)  N(Q)  N(C) and 
PN(Z)  PN(Q)  PN(C). 
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So the relation Z  Q  C is preserved under the mixed 
neutrosophy and pure neutrosophy. Now if Zn denotes the set of 
integers modulo n i.e., Zn = {0, 1, 2, …, n – 1}. N(Zn) = {a + bI | 
a, b  Zn}; N(Zn) is defined as the mixed neutrosophic set of 
modulo integers Zn or mixed neutrosophic modulo set of 
integers.

PN(Zn) = {a + bI | a  Zn, b  0, b  Zn} is defined as the pure 
neutrosophic set of modulo integers Zn or the pure neutrosophic 
modulo integers set. 

N(Zn) = {a + bI | a, b  Zn} is defined as the mixed 
neutrosophic set of modulo integers. Clearly PN(Zn)  N(Zn).

Example 2.1.5: Let Z3 = {0, 1, 2} be the ring of integers 

modulo 3. N(Z3) = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + 2I, 2 + I} is 

the mixed neutrosophic set of integers modulo 3. 

PN(Z3) = {I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I} is the pure 

neutrosophic set of integers modulo 3 and PN(Z3)  {0} = {0, I, 

2I, 1 + I, 2 + I, 1 + 2I, 2 + 2I} is the pure neutrosophic set of 

integers with zero modulo 3. T = {I, 2 + 2I, 1 + 2I, 1 + I, 2I} 

PN(Z3) is a pure neutrosophic subset of integers modulo 3. P = 

{0, I, 2, 2I, 1 + I}  N(Z3) is a mixed neutrosophic subset of 

integers modulo 3. S = {0, 2I, I + 2, 1 + I}  PN(Z3)  {0} is a 

pure neutrosophic subset of modulo integers with zero.  

Thus we have given the basic concepts of the types of 

neutrosophic subsets and sets which will be used in this book. 

2.2 Set Neutrosophic Vector Spaces 

In this section we proceed onto define the new notion of set 

neutrosophic vector spaces and discuss a few of the properties 

associated with them. 

DEFINITION 2.2.1: Let S = {x1, …, xn} be a mixed neutrosophic 
subset of integers. Let P  Z be the subset of integers. If for 
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every xi  S and for every p  P we have pxi, xi p  S then we 
call S to be a mixed neutrosophic set vector space of integers 
over the set P (|P|  2). 

We shall now illustrate this by some examples. 

Example 2.2.1: Let S = {0, I, 2, 3, 4, I + 5, -3 + I, 14 + 4I, 3 + 

2I} be the mixed subset of neutrosophic integers. Let P = {0, 1} 

be a subset of Z. S is a mixed neutrosophic set vector space of 

integers over the set P.

Example 2.2.2: Let T = {0, 2 + I, 7 – I, 81I, 40 – 51I, – 64, 640I 

+ 1} be a proper subset of mixed neutrosophic set N(Z). T is a 

mixed neutrosophic set vector space over the set P = {0, 1}. 

Example 2.2.3: Let D = {0, (2 – 5I),  (17 + 3I), (16 – I), 

7I, (– 8I), 9, (–7 + 3I)} be a mixed neutrosophic subset of 

N(Z). Take P = {–1, 0, 1}  Z. D is a mixed neutrosophic set 

vector space over P. 

Example 2.2.4: Let P = {0, I, 2I, 3I, 4I, 5I, 3 + 3I, 5 + 5I, 8 + 8I, 

6I, 10I, 16I}  PN(Z) be the pure neutrosophic subset of PN(Z) 

with {0}. We see P is a not a mixed neutrosophic set vector 

space over the set T = {0, 1, I}  N(Z), further T  Z, so this 

is not even neutrosophic set vector space as it is not defined 

over a proper subset of Z. This will be dealt later. 

We proceed onto define more new concepts. 

DEFINITION 2.2.2: Let S = {y1, …, ym}  PN(Z)  {0}; yi

PN(Z)  {0}; 1  i  m; m  N be a proper subset of PN(Z) 
{0}. Take  P  Z to be a subset of Z with |P|  2. If for every 
yi  S and t  P; yit, tyi  S then we call S to be a pure 
neutrosophic integer set vector space over P  Z with zero or 
simply pure neutrosophic integers set vector space over S.   

We now illustrate this situation by an example. 



18

Example 2.2.5: Let T = {0, 1 + I, 2 + I, 3 + I, I, 2I, 3I, 9I + 4, 

20I – 5, 6I – 71, 8I – 351}  PN(Z) be a proper subset of 

PN(Z). Take S = {0, 1}  Z. T is clearly a pure neutrosophic 

integer set vector space over S.

Example 2.2.6: Let V = {0, 1 + I, 2 + 2I, 3 + 3I, 42, 80, 4I, 8I, 6 

+ 6I}  PN(Z). V is a pure neutrosophic integer set vector space 

over the set S = {0, 1}. We see V is not a pure neutrosophic 

integer set vector space over the set T = {0, 2} or any P = {0, 

n}; n  N \ {1}.  

Example 2.2.7: Let V = {0, mI, m | m  N}  N(Z); V is a 

mixed neutrosophic integer set vector space over the set S = Z+

 {0}; Z+ the set of positive integers. However it is easily 

verified that V is a mixed neutrosophic integer set vector space 

over any proper subset of S. But it can also be verified that V is 

not a mixed neutrosophic integer set vector space over P = Z–

{0}; Z– is the set of negative integers or any subset of P. 

Example 2.2.8: Let V = {0, 3nI | n  Z}  PN(Q)  {0}. V is a 

pure neutrosophic integer set vector space over every proper 

subset of Z. 

Example 2.2.9: Let W = {0, mI, m | m  Z}  N(Z). W is a 

mixed neutrosophic integer set vector space over any subset of 

Z.

Example 2.2.10: Let W = {m, 0, nI | m, n  2Z + }  N(Z). W is 

a mixed neutrosophic integer set vector space over every subset 

of Z+. However W is not a mixed neutrosophic integer set vector 

space over any subset of Z–  {0} or on Z.  

Now we proceed onto define the notion of mixed neutrosophic 

integer set vector subspace and pure neutrosophic integer set 

vector subspace of a mixed neutrosophic integer set vector 

space.

DEFINITION 2.2.3: Let V be a mixed neutrosophic integer set 
vector space over a subset S of Z. Let W  be a proper subset 
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of V. If W itself is a mixed neutrosophic integer set vector space 
over S then we call W to be a mixed neutrosophic integer set 
vector subspace of V over the set S.

We first illustrate this situation by some examples. 

Example 2.2.11: Let V = {n + nI | n  Z}  N(Z) be a mixed 

neutrosophic integer set vector space over S = {Z +  {0}}  Z. 

Let W = {m + mI | m  5Z}  V  N(Z). We see W is a mixed 

neutrosophic integer set vector space over S. Hence W is a 

mixed neutrosophic integer set vector subspace of V over S. 

Example 2.2.12: Let V = {0, 3, 2I, 3I, 5 + 2I, 16, 3 – 3I, 14, 17 

+ 2I, –15, 15I + 1}  N(Z) be a mixed neutrosophic integer set 

vector space over S = {0, 1}  Z. 

Take W = {0, 2I, 16, 17 + 2I}  V; W is a mixed neutrosophic 

integer set vector subspace of V over S. It is interesting to see 

that every subset of V which contains 16 or –15 or 3 or 14 is a 

mixed neutrosophic integer set vector subspace of V over S = 

{0, 1}.

Example 2.2.13: Let V = {0, 3I + 1, 3 + 5I, 2 – 5I, 17I + 3, 15I 

+ 30, 21, 17I – 153, 15, 412, 317I}  N(Z); V is a mixed 

neutrosophic integer set vector space over S = {0, 1} . Every 

subset W which contains 15 or 21 or 412 is a mixed 

neutrosophic integer set vector subspace of V over S. Take W1

= {0, 17I + 3}  V; W1 is a pure neutrosophic integer set vector 

space contained in V over the set S = {0, 1}  Z.

Example 2.2.14: Let V = {np, mpI, np + mpI | n, m  Z+ and p 

= 3}  N(Z) be a mixed neutrosophic integer set vector space 

over the set S = Z+  Z. Take W = {3 + 3I, 6 + 6I, 21 + 21I, 15 

+ 15I, 27 + 27I, 279 + 279I}  V. W is not a mixed 

neutrosophic integer set vector subspace over the set S = Z+. We 

see no finite proper subset of V is a mixed neutrosophic integer 

set vector subspace of V over the set S = Z+.



20

Example 2.2.15: Let V = {0, 1, 1 + I}  N(Z); V is a mixed 

neutrosophic integer set vector space over S = {0, 1}  Z. V has 

no proper subset, hence V has no mixed neutrosophic integer set 

vector subspace over S = {0, 1}  Z. 

Example 2.2.16: Let V = {m + mI, m, mI | m  Z+}  N(Z); V 

is a mixed neutrosophic integer set vector space over the set 3Z+

 Z. W = {n + nI | n  2Z+ }  V  N (Z); W is not a mixed 

neutrosophic integer set vector subspace of V over the set 3Z +.

It is interesting to note that 0  V so V cannot have the zero 

element as the usual set vector space.  

In view of this we have the following example, definition and 

result.

Example 2.2.17: Let V = {9, 9I, 0, 2 + 3I, 4 + 5I, 7, –81, 27, 

51I, 91I}  N(Z). V is a mixed neutrosophic integer set vector 

space over the set S = {0, 1}  Z. 

Take P = {0, 9, 7, –81, 27}  V, P is a set vector space over the 

set S = {0, 1}. We call P to be a pseudo neutrosophic integer set 

vector subspace of V over S.

DEFINITION 2.2.4: Let V = {x1, …, xn}  N(Z) be a mixed 
neutrosophic integer set vector space over the set S  Z. 
Suppose P  V such that (0)  P  Z and if P is a set vector 
space over S then we call P to be a pseudo mixed neutrosophic 
integer set vector subspace of V over S.  

We will illustrate this by some examples. 

Example 2.2.18: Let V = {n + nI, Z+ | n  Z}  N(Z) be a 

mixed neutrosophic integer set vector space over Z+ = S. Take P 

= 3Z+  V, P is a pseudo neutrosophic integer set vector 

subspace of V over S.
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Example 2.2.19: Let V = {nI, mZ+ | n, m  Z+}  N(Z) be a 

mixed neutrosophic integer set vector space over S = Z+. Take P 

= {mZ+ | m  Z+}  V, P is a pseudo neutrosophic integer set 

vector subspace of V over Z+ .

Example 2.2.20: Let V = {0, 3I, 4 + 3I, 2 + I, –I, 3 – 8I, 8 + 5I, 

7, 250, 49, –560, 2069, 42I + 3}  N(Z) be a mixed 

neutrosophic integer set vector space over the set S = {0, 1} 

Z. Take P = {0, 7, 2069, –560}  V, P is a pseudo neutrosophic 

integer set vector subspace over the set S = {0, 1}  Z. 

Now we proceed onto define pseudo pure neutrosophic integer 

set vector subspace. 

DEFINITION 2.2.5: Let W = {x1, …, xn}  N(Z) be a mixed 
neutrosophic integer set vector space over the set S  Z. Let V 

 W, where V  PN(Z) (V a subset of W containing only 
elements from PN(Z)). If V is a pure neutrosophic integer set 
vector space over the set S  Z, then we define V to be a pseudo 
pure neutrosophic integer set vector subspace of W. 

We illustrate this by some examples. 

Example 2.2.21: Let V = {nI, 3Z+ | n  N} be a mixed 

neutrosophic integer set vector space over the set Z +  Z. Take 

P = {nI | n  N} V; P is a pure neutrosophic integer set vector 

space over the set Z+. P is clearly a pseudo pure neutrosophic 

integer set vector subspace of V over the set Z+.

Example 2.2.22: Let W = {3I, 0, 46 + 7I, 91I + 27, 5I, 7, 982, 

47I, 61, -257, 96 + 2I}  N (Z) be a mixed neutrosophic integer 

set vector space over the set S = {0, 1}  Z. Take V = {0, 7, 

982, 61, -257}  W. V is a pseudo neutrosophic integer set 

vector subspace of W over S. 

Example 2.2.23: Let V = {mI, mZ+ | m  N}  N(Z) be a 

mixed neutrosophic integer set vector space defined over the set 
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P = Z+  Z. Take P = {mI | m  Z+}  V. P is a pseudo pure 

neutrosophic integer set vector over the set Z+ = P.

Now these concepts cannot be even imitated in case of pure 

neutrosophic integer set vector space V as it cannot contain a 

proper subset which is mixed(i.e., integers). Now we proceed on 

to define yet another substructure of both pure and mixed 

neutrosophic integer set vector spaces. 

DEFINITION 2.2.6: Let V = {x1, …, xn} be a mixed neutrosophic 
set vector space over the set S  Z. Let W  V be a proper 
subset of V, if there exists a proper subset T  S such that W is a 
mixed neutrosophic integer set vector space over T then we call 
W to be a mixed neutrosophic integer subset vector subspace of 
V over the subset T of S. If W  V is such that W is a proper 
subset of PN(Z) and W is a pseudo mixed neutrosophic vector 
space over T, then we call W to be a pseudo mixed neutrosophic 
integer subset vector subspace of V over the subset T of S.

If W  V is such that W is a subset of Z and S has a proper 
subset of integers say B  Z (for B  S) and if W is a set vector 
space over B then we call W to be a pseudo set integer subset 
vector subspace of V over the subset B of S. 

We will illustrate this by the following examples. 

Example 2.2.24: V = {0,  I,  4I, (3 + 2I), (–5, 7I), (8 – 

25I),  20,  246,  284I, 261,  85,  98} be a mixed 

neutrosophic integer set vector space over the set S = {0, –1, 1} 

 Z. Consider W = {0, 4I, 3 + 2I, 246, 20}  V. Let T = {0, 1} 

 S  Z.

W is a mixed neutrosophic integer subset vector subspace of 

V over the subset T of S. Take X = { I, 4I, (3 + 2I), (8 – 

25I)}  V and the subset A = {–1, 1}  {0, 1, –1}, X is a 

pseudo pure neutrosophic integer subset vector subspace of V 

over the subset X of S. Consider Y = {0, 261, 85,  20,  98, 

246}  V. Take D = {–1, 1} {0, –1, + 1}, Y is a pseudo set 
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integer subset vector subspace of V over the set of integers {–1, 

1}, a subset of S. 

Example 2.2.25: Let V = {3mI, n(2I + 2), Z+ | m, n  Z+} be a 

mixed neutrosophic integer set vector space over the set S = Z+

 Z.

Take W = {n(2I+ 2), Z+| n Z+}; W is a mixed neutrosophic 

integer subset set vector subspace over 3Z+  Z+ . Take X = 

{5Z+}  V, X is a pseudo set integer subset vector subspace of 

V over the subset 2Z+  Z+. Consider Y = {3mI | m  Z+}  V; 

V is a pseudo pure neutrosophic integer subset of the vector 

subspace V over the subset 6Z+ of Z+.

Now having seen several new substructures of a mixed 

neutrosophic integer set vector space we now proceed on to 

define the notion of mixed neutrosophic integer set linear 

algebra over a subset of integers.  

DEFINITION 2.2.7: Let V = {x1, …, xn} be a mixed neutrosophic 
integer set vector space over the set S  Z+. If on V we can 
define a closed binary operation ‘+’ such that for all xi, xj  V, 
xi + xj  V then we define V to be a mixed neutrosophic integer 
set linear algebra over S. 

We illustrate this situation by some examples. 

Example 2.2.26: Let V = {3mI, 0, 3m, 3m + 3mI | m  Z+}, V 

is a mixed neutrosophic integer set linear algebra over the set Z+

 Z. 

Example 2.2.27: Let

V = 
mI 0 0 0

, m Z
0 mI 0 0

be a mixed neutrosophic integer set linear algebra over the set 

Z+  Z.

Example 2.2.28: Let
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V = 
mI mI mI 0 0 0 mI mI mI

, , m Z
0 0 0 m m m m m m

.

V is a mixed neutrosophic integer set linear algebra over the set 

3Z+  Z.

Example 2.2.29: Let V = {0, nI, n | n  Z}, V is not a mixed 

neutrosophic integer set linear algebra over any subset of Z. It is 

only a mixed neutrosophic set vector space over every proper 

subset of Z and including Z.  

In view of this we have the following theorem. 

THEOREM 2.2.1: Let V be a mixed neutrosophic integer set 
linear algebra over a subset S of Z. Then V is a mixed 
neutrosophic set vector space over the subset S of Z. 

Proof: Clear from the definition of mixed neutrosophic integer 

set linear algebra over S. 

COROLLARY 2.2.1: A mixed neutrosophic integer set vector 
space V over a set S (S  Z) in general is not a mixed 
neutrosophic integer set linear algebra over S. 

Proof: The proof is given using an example.  

Consider V = {2, 0, 2I, 4I, 3I + 1, 2I – 27, 28, 41I – 38, 1} 

 N(Z). V is a mixed neutrosophic integer set vector space over 

the set S = {0, 1}  Z. Clearly V is not closed under addition 

for 2 + 2I  V, 2I – 27 + 28  V and so on.  

Thus a mixed neutrosophic integer set vector space in 

general is not a mixed neutrosophic integer set linear algebra 

over S. Hence the claim. 

Now we proceed onto define substructures in mixed 

neutrosophic integer set linear algebra. 

DEFINITION 2.2.8: Let V be a mixed neutrosophic integer set 
linear algebra over the set S (S  Z). Let W be a subset of V 
such that W itself is a mixed neutrosophic integer set linear 
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algebra over S; then we call W to be a mixed neutrosophic 
integer set linear subalgebra of V over the set S  Z. 

We now illustrate this situation by some examples. 

Example 2.2.30: Let V = {5nI, 0, 5n, 5nI + 5n | n  N} be a 

mixed neutrosophic integer set linear algebra over the set S = 

{0, 1}  Z. Take W = {0, 25n, 25nI, 25n + 25nI | n  N}  V; 

W is clearly a mixed neutrosophic integer set linear subalgebra 

of V over the set S = {0, 1}. 

Example 2.2.31: Let V = {0, m + mI | m  Z+} be a mixed 

neutrosophic integer set linear algebra of V over S = mZ+  Z. 

Take W = {0, 3m + 3mI | m  Z+}  V; clearly W is a mixed 

neutrosophic integer set linear subalgebra of V over S = mZ+.

Now we proceed onto define the notion of yet another new 

substructure.

DEFINITION 2.2.9: Let V be a mixed neutrosophic integer set 
linear algebra over the subset S  Z. Let W  V be such that W 

 Z. If W itself is a set linear algebra over the set S then we call 
W to be a pseudo integer set linear subalgebra over S; S  Z.

We shall illustrate this by some examples. 

Example 2.2.32: Let V = {3nI + 3n, 3nI, 3n | n  Z+}  N(Z) be 

a mixed neutrosophic integer set linear algebra over the set S = 

Z+  Z. P = {3n | n  Z+}  V is a pseudo integer set linear 

subalgebra of V over S  Z. 

Example 2.2.33: Let V = {2Z + 2ZI, 2Z, 2ZI}  N(Z) be a 

mixed neutrosophic integer set linear algebra over the set S = 

Z+. Take W = {2Z+}  V; W is a pseudo integer set linear 

subalgebra of V over S = Z+.

Example 2.2.34: Let V = {2ZI, 2Z, 2Z + 2ZI}  N(Z) be a 

mixed neutrosophic integer set linear algebra over the set S = 
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7Z +  Z. Take P = {16Z}  V; P is a pseudo integer set linear 

subalgebra of V over S = 7Z +  Z.

DEFINITION 2.2.10: Let V be a pure neutrosophic integer set 
vector space over the set S  Z. If in addition for every x, y  V; 
x + y  V we call V to be a pure neutrosophic integer set linear 
algebra over the set S  Z. 

 We illustrate this situation by some examples. 

Example 2.2.35: Let V = {2ZI}  PN(Z) be pure neutrosophic 

integer set linear algebra over the set S = Z+  Z.

Example 2.2.36: Let V = {3ZI}  PN(Z). V is a pure 

neutrosophic integer set linear algebra over the set 3Z+  Z. 

Example 2.2.37: Let

V = 
2ZI 4Z

4Z 8ZI
.

V is a pure neutrosophic integer set linear algebra over 2Z +  Z. 

Example 2.2.38: Let V = {mZ + mZI | m  Z}  PN(Z). V is a 

pure neutrosophic integer set linear algebra over 5Z+  Z. 

Now we proceed onto describe the substructure of pure 

neutrosophic integer set linear algebra. 

DEFINITION 2.2.11: Let V be a pure neutrosophic integer set 
linear algebra over a set S  Z. Let W  V be a proper subset of 
V; if W is pure neutrosophic integer set linear algebra over S; 
then we call W to be a pure neutrosophic integer set linear 
subalgebra of V over the set S. 

We shall illustrate this situation by some examples. 

Example 2.2.39: Let V = {3Z + 3ZI}  PN(Z) be a pure 

neutrosophic integer set linear algebra over the set S = Z+  Z. 
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Take W = {6Z + 6ZI}  V  PN(Z); W is a pure neutrosophic 

integer set linear subalgebra of V over the set S. 

Example 2.2.40: Let

V = 
2Z 3ZI

3ZI 2Z

be a pure neutrosophic integer set linear set linear algebra over 

the set S = Z+.

Take

W = 
8Z 12ZI

12ZI 8Z

W is a pure neutrosophic integer set linear subalgebra of V over 

the set S = Z+.

Example 2.2.41: Let

V = 
3Z 3Z 3Z

4ZI 4ZI 4ZI
 PN(Z), 

be a pure neutrosophic integer set linear algebra over the set S = 

3Z.

Take

W = 
6Z 6Z 6Z

8ZI 8ZI 8ZI
 V

to be a proper subset of V. W is a pure neutrosophic integer set 

linear subalgebra of V over 3Z.  

Now we proceed onto define yet another type of substructure in 

pure neutrosophic integer set linear algebra. 

DEFINITION 2.2.12: Let V be a pure neutrosophic integer set 
linear algebra over the set S  Z. Let W be a proper subset of V 
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and T  S be a proper subset of S. If W is a pure neutrosophic 
integer set linear algebra over the set T, (T  S) then we call W 
to be a pure neutrosophic integer subset linear subalgebra of V 
over the subset T of S. 

We illustrate this definition by some examples. 

Example 2.2.42: Let V = {3Z + 3ZI}  PN(Z)  {0} be a pure 

neutrosophic integer set linear algebra over S = Z+ . Take W = 

{27Z + 27ZI}  V and T = 3Z+  Z+ = S. W is a pure 

neutrosophic integer subset linear subalgebra of V over the 

subset T of S. 

Example 2.2.43: Let

V = 
2ZI Z

Z 4ZI

V is a pure neutrosophic integer set linear algebra over S = Z. 

Take

W = 
10ZI 5Z

5Z 20ZI
 V, 

W is a pure neutrosophic integer subset linear subalgebra of V 

over the subset T = Z+  Z = S. 

It is pertinent to mention here that pure neutrosophic integer set 

linear algebras do not have proper pseudo neutrosophic integer 

substructures. It is also important to mention here that every 

pure neutrosophic integer set linear algebra is a pure 

neutrosophic integer set linear algebra.  

We prove the later part of the claim by the following example: 

Example 2.2.44: Let V = {2I + 2, 0, 5 + 5I, 7I, -28I, 19-21I} 

PN (Z) be a pure neutrosophic integer set vector space over the 

set S = {0, 1}  Z. We see V is not a pure neutrosophic integer 

set linear algebra as 5 + 5I + 7I = 5 + 12I  V, –28I + 7I = –21I 
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 V and so V is not an integer set linear algebra of S = {0, 1} 

Z.

We now proceed onto define two more new concepts on the 

integer set Z. 

DEFINITION 2.2.13: Let V  NP(Z) be a pure neutrosophic 
integer set linear algebra over a set S  Z. If V has no pure 
neutrosophic integer subset linear subalgebra then we call V to 
be a pure neutrosophic integer set simple linear algebra. 

We first illustrate this by some examples. 

Example 2.2.45: Let V = {nI | n  Z \ {0}} be the pure 

neutrosophic integer set linear algebra over S = {0, 1}. V is not 

a pure neutrosophic integer set simple linear algebra.  

Example 2.2.46: Let

V = 
nI mI

m,n Z
mI nI

.

V is a pure neutrosophic integer set simple linear algebra over S 

= {0, 1}. 

DEFINITION 2.2.14: Let V  NP(Z) be a pure neutrosophic 
integer set linear algebra over the set S  Z. If V has no proper 
subset W  V  NP(Z) such that W is a pure neutrosophic 
integer set linear subalgebra or W is not a pure neutrosophic 
integer subset linear subalgebra for any subset T  S  Z over 
any subset T  S  Z; then we call V to be pure neutrosophic 
integer set weakly simple linear algebra. 

We illustrate this by some simple examples. 

Example 2.2.47: Let

V = 
pI 0

p Z
0 pI



30

be a pure neutrosophic integer set linear algebra over {0, 1} = S 

 Z. Since S has no proper subsets, V is a pure neutrosophic 

integer set weakly simple linear algebra over S = {0, 1}  Z. 

Example 2.2.48: Let

V = 
nI 0 tI

n, t,m,p,q Z
mI qI pI

be a pure neutrosophic integer set linear algebra over the set S = 

{0, 1}  Z. It is easily verified V is a pure neutrosophic integer 

set weakly simple linear algebra. 

Now we proceed onto define the notion of set neutrosophic 

integer set linear transformation and set neutrosophic integer set 

linear operator. 

DEFINITION 2.2.15: Let V and W be any two mixed 
neutrosophic integer set vector spaces over the same set S  Z. 
Let T be a map from V into W satisfying the following 
conditions:

(1) T(I) = I 
(2) T(s ) = sT( ) for all s  S and for all  V and 

T( )  W. 

We define T to be a set neutrosophic integer linear 
transformation of V into W. If V = W then we call the set 
neutrosophic integer set linear transformation to be the set 
neutrosophic integer set linear operator on V.  

We illustrate this by simple examples. 

Example 2.2.49: Let V = {8I, 0, 5I, 22I, 46, 3 + 25I} and W = 

{0, 46 + I, 8I 22I + 3, 7I, 21 5I 25I, 63I} be mixed neutrosophic 

integer set vector space over the set S = {0, 1}  Z. Let T: V 

W be a map such that  

T(I) = I 
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T(8I) = 8I 

T(0) = 0 

T(5I) = 5I 

T(22I) = 22I + 3 

T(46) = 21 

T(3 + 25I) = 25I 

T(I) = I. 

Clearly T(0.x) = 0.T(x) i.e.,  

T(0) = 0 and T(1x) = 1 T(x) = T (x); 

as 0.x = 0 and 1.x = x for all x  V. 

Example 2.2.50: Let V = {0, 2nI + 2n | n  Z+} be a pure 

neutrosophic integer set vector space over Z+. Define the map T 

: V  V as

T (0) = 0 

T (I) = I 

T(2nI + 2n) = 2(n + 2)I + 2(n + 2), 

 i.e., T(x) = 2x for all x  V. Clearly T is a linear operator on V. 

Note: It is interesting and important to note that V and W can be 

both mixed neutrosophic integer set vector spaces or both can 

be pure mixed neutrosophic integer set vector spaces or one can 

be mixed neutrosophic integer set vector space and other can be 

pure neutrosophic integer set vector space; still the definition of 

the set neutrosophic integer set linear transformation remains 

the same.  

The only main criteria is that T(I) = I for any set 

neutrosophic integer set linear transformation T from V to W 

except in case of the zero linear transformation 0(I) = 0; but 

however this special transformation is of no use to the real 

world problems or applications.  

Now we proceed onto give the definition of set neutrosophic 

integer set linear transformation of mixed neutrosophic integer 

set linear algebras and pure neutrosophic integer set linear 

algebras.

DEFINITION 2.2.16: Let V and W be any two mixed 
neutrosophic integer set linear algebras defined over the same 
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set S. Let T be a set neutrosophic integer set linear 
transformation from V to W such that T: V  W is a semigroup 
homomorphism with respect to addition then we define T to be a 
set neutrosophic integer set linear algebra transformation from 
V to W. If V = W then we define T to be a set neutrosophic 
integer set linear algebra operator from V to W. 

 We illustrate this by some examples. 

Example 2.2.51: Let V = {2nI, 2n, 2m + 2tI | m, t, n  Z+ {m, t 

and n need not be taking always distinct values}} and  

W = 
2nI 0 0 0 2mI 0

, , n,m, t Z
0 0 0 2n 0 2t

be two mixed neutrosophic integer set linear algebras over S = 

{0,1}. Let T : V  W be defined as 

T (2nI) = 
2nI 0

0 0

T(2n) = 
0 0

0 2n

T (2m + 2tI) = 
2tI 0

0 2m

for 2nI, 2n, 2m + 2tI  V we see T is a set neutrosophic integer 

set linear algebra transformation of V to W.  

Example 2.2.52: Let

V = 
2n 0 0 2mI 2n 2mI

, , m,n Z
0 2n 2mI 0 2mI 2n
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be a mixed neutrosophic integer set linear algebra over the set S 

= {0, 1}. Let T: V  V be defined by 

T
2n 0

0 2n
 = 

2n 2 0

0 2n 2

T
0 2mI

2mI 0
 = 

0 2mI 2I

2mI 2I 0
.

Clearly T is a set neutrosophic integer set linear algebra 

operator over the set S = {0,1}. 

Example 2.2.53: Let V = {(2n + 2nI) | n  Z+} and

W = 
2n 2nI 0

n Z
0 2n 2nI

be two pure neutrosophic integer set linear algebras over the set 

S = {0,1}. Define T: V  W by  

T(2n + 2nI) = 
2n 2nI 0

0 2n 2nI
;

T is a set neutrosophic integer set linear algebra transformation 

of V into W.  

Example 2.2.54: Let

V = 
2n 2nI

n Z
2nI 2n

be a pure neutrosophic integer set linear algebra over the set S = 

{0,1}  Z. Let T : V  V be defined by  
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T = 
2n 2nI

2nI 2n
 = 

2n 2 2nI 2

2nI 2 2n 2
.

T is easily verified to be a set neutrosophic integer set linear 

operator on V. 

It is left as a problem for the reader to prove HomS (V, W) is a 

set of all neutrosophic integer set vector spaces over S  Z 

where V and W are mixed (pure) neutrosophic integer set vector 

spaces over the set S  Z. Let HomS (V, V) denote the 

collection of all set neutrosophic integer set linear operators of 

V over the set S  Z; where V is the pure (mixed) neutrosophic 

set vector space over S. What is the structure of HomS(V, V)?

If V and W are mixed (pure) neutrosophic integer set linear 

algebras defined over S, will HomS(V, W) be a mixed (pure) 

neutrosophic integer set linear algebras? 

Let us define some more properties of set neutrosophic integer 

set linear algebra. 

DEFINITION 2.2.17: Let T be a set neutrosophic integer set 
linear transformation from V to W. If atleast one vector 
subspace P of V is mapped into a vector subspace of W then we 
say T weakly preserves subspaces i.e., T(P) is a vector subspace 
of W for atleast one vector subspace P of V; we define T to be a 
set neutrosophic integer set weak subspace preserving linear 
transformation of V to W.  

If every subspace P of V is preserved by a set neutrosophic 
integer set linear transformation then we call T to a set 
neutrosophic integer set strong subspace preserving linear 
transformation of V to W. 

In an analogous way one can define these two concepts for 
set neutrosophic integer set linear operator on V. 

We illustrate these definitions by some examples. 

Example 2.2.55: Let V = {0, 3I + 2, 7I + 4, –2 + I, 80I, 92 – 8I, 

–47, –6I, –4, 50 – 2I} and W = {0, 6I + 4, –35 14I + 8, –4 + 2I, 
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–12I, –8, 25 – 9I,  – 48 + I, 97– 4I, –52I, –2I, 40I} be two mixed 

neutrosophic integer set vector spaces over the set S = {0,1} 

Z. Let T: V  W given by  

T(0) = 0 

T(3I + 2) = 6I + 4 

T(7I + 4) = 14I + 8 

T(–2 + I) = –4 + 2I 

T(81I) = 40I 

T(92 – 8I) = 97 – 4I 

T(– 47) = – 35 

T(– 6I) = – 12I 

T(– 4) = – 8 

T (50 – 2I) = – 2I. 

We see P = {0, 3I + 2, 7I + 4, –2 + I, –6I, –4} is a mixed 

neutrosophic integer set vector subspace of V. Also we see T(P) 

= {0, 6I + 4, 14I + 8, – 4 + 2I, –12I, – 8}  W is a mixed 

neutrosophic integer set vector subspace of W. So T is a set 

neutrosophic integer set weak linear transformation of V into 

W.

Example 2.2.56: Let V = {20, I, 0, 10I, 26 + I}  N(Z) be a 

mixed neutrosophic integer set vector space over S = {0, 1} 

Z. The mixed neutrosophic subspaces of V are  

P1 = {0,I, 20}, 

P2 = {0, I, 20, 10I} 

P3 = {0, I, 20 26 + I} 

P4 = {0, 10I, 20} 

P5 = {0, 10I, 20 26 + I} 

P6 = {0, 26 + I, 20} 

Define a set neutrosophic integer set linear operator T on such 

that T(0) = 0 and T(20) = 0 and others in any compatible way 

then T is not a set neutrosophic integer set weak linear operator 

on V or T is not a set neutrosophic integer set strong linear 

operator on V. Now define T1 : V  V as follows. 

T1 (0) = (0) 

T1 (20) = 20 
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T1 (I) = I 

T (10I) = 26 + I 

T1 is a set neutrosophic integer set weak linear operator on V.  

We shall discuss about the generating subset of a mixed (pure) 

neutrosophic integer set vector spaces. 

DEFINITION 2.2.18: Let V = {x1, …, xn} be a mixed (pure) 
neutrosophic integer set vector space over the set S  Z. 
Suppose T = {x1, …, xm | m  n}  V is such every xi  V can be 
represented as sxj for some s  S and xj  T i.e., xi = sxj, then 
we say T generates V over S and T is called the mixed (pure) 
neutrosophic integer set generator subset of V over S. 

Note: It may at times so happen that T = V.  

We shall illustrate this situation by some examples. 

Example 2.2.57: Let V = {0, 2I, 24, 2 + 3I, 41 – I, 37 + 44I} 

N(Z) be a mixed neutrosophic integer set vector space over S = 

{0, 1}  Z. T = {2I, 24, 2 + 3I, 41 – I, 37 + 44I}  V is the 

mixed neutrosophic integer set generator subset of V over the 

set S = {0, 1}. We see V  T. 

Example 2.2.58: Let V = {  3I,  1,  (22 + I),  (5I – 20), 

70I,  (8I + 4)}  N(Z) be a mixed neutrosophic integer set 

vector space over the set S = {–1, 1}. We see T = {3I, 1, 22 + I, 

5I – 20, 70I, 8I + 4}  V is a mixed neutrosophic integer set 

generator subset of V over the set S = {– 1, 1}.  We see V  T. 

In fact | V | = 12 and | T | = 6. 

Example 2.2.59: Let V = {3ZI, 8Z}  N(Z) be a mixed 

neutrosophic integer set vector space over Z. The mixed 

neutrosophic integer set generator subset of V over the set Z is 

given by T = {3I, 8}  V. We see | T | = 2 where as | V | = .

Example 2.2.60: Let V = {2nI | n  Z} be a pure neutrosophic 

integer set vector space over S = {0, 1}  Z. T = {2nI | n  Z \ 
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{0}}  V is the pure neutrosophic integer set generator of V 

over S = {0, 1}. 

Example 2.2.61: Let V = {2I, 9I, –8I, 14I, 27I + 4, 44 – 2I, 0, 

14I – 9}  PN(Z) be a pure neutrosophic integer set vector 

space with zero over S = {0,1}  Z. T = {2I, 9I, –8I, 14I, 27I + 

4, 44 – 2I, 14I – 9}  V i.e., V \ {0} = T is the pure 

neutrosophic integer set generator of V over S. 

Example 2.2.62: Let V = {3ZI} be the pure neutrosophic 

integer set vector space over the set S = Z. T = {3}  V is the 

pure neutrosophic integer set generator of V over S = Z. Thus  

| T | = 1.  

Remark: We see the pure (mixed) neutrosophic integer set 

generator of a vector space may be finite or infinite. The 

cardinality in some case depends on the set over which they are 

defined.

This is proved by the following examples: 

Example 2.2.63: Let V = {5ZI} be a pure neutrosophic integer 

set vector space over S = {0, 1}  Z. T = 5ZI \ {0} is the pure 

neutrosophic integer set generator of V over S. Clearly | T | = 

infact | T | = | V \ {0}|.  

Now we consider the same pure neutrosophic integer set vector 

space V over a different set S  Z and find the cardinality of the 

pure neutrosophic integer set generator of V. 

Example 2.2.64: Let V = {5ZI} be a pure neutrosophic integer 

set vector space over the set S = Z. Now T = {5I} is the pure 

neutrosophic integer generator of V over S = Z. Clearly | T | = 1. 

So we see depending on the set S over which V is defined the 

cardinality may be one or .

Now we define the pure (mixed) neutrosophic integer set 

generator of a pure (mixed) neutrosophic integer set linear 

algebra over the set S  Z.
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Let T  V; if every v  V can be represented as v = st or

v = i i

i

s t ,

for some si, s  S and ti, t  T then we define T to be a pure 

(mixed) neutrosophic integer set generator of V over S.  

We shall now illustrate this situation by some examples. 

Example 2.2.65: Let V = {n + nI | n  Z +  {0}}  PN(Z) be 

the pure neutrosophic integer set linear algebra over S = {0, 1}. 

T = {1 + 1I} is the pure neutrosophic integer set generator of V 

over S. Thus | T | = 1. 

Example 2.2.66: Let V = {n, nI, m + tI | m, n, t  Z}  N(Z) be 

a mixed neutrosophic integer set linear algebra over Z+  Z. 

Take T = { 1, I, 0}  V; T is a mixed neutrosophic integer set 

generator of V over Z+ . | T | = 5. 

Example 2.2.67: Let

V = 
nI 0

n,m,p Z
p mI

be a pure neutrosophic integer set linear algebra over Z. 

Take

T = 
I 0 0 0 0 0

, ,
0 0 0 I 1 0

 V; 

T is the pure neutrosophic integer set generator of the linear 

algebra over Z. 

If we change the set over which these spaces are defined then 

their generating set are also different. This is described by the 

following examples: 
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Example 2.2.68: Let V = {n + nI | n  Z+  {0}} be the pure 

neutrosophic integer set linear algebra over S = {0, 1}. T = {1 + 

I}  V is the pure neutrosophic integer set generator of V over 

S = {0, 1}. 

If we replace S = {0, 1} by M = Z+  {0}. We see T = {1 + I} 

V is the pure neutrosophic integer set generator of V over S = 

{0, 1}. 

Suppose V = {n + nI | n  Z+  {0}} is a pure neutrosophic 

integer set linear algebra over any subset S  Z+  {0}  Z 

have same T = {1 + I} to be the pure neutrosophic integer set 

generator of V over S.

Example 2.2.69: Let V = {2Z+, 0, mZ + nZI | m, n  Z+}

N(Z) be a mixed neutrosophic integer set linear algebra over Z+

 {0}; T = {2, m + nI | m, n  Z+}  V; T is the mixed 

neutrosophic integer set generator of V over Z +  {0}. 

We just wish to show that a V treated as a mixed (pure) 

neutrosophic integer set vector space in general has a distinct 

generator set from the same V treated as a mixed (pure) 

neutrosophic integer set linear algebra. 

The following example shows the above claim. 

Example 2.2.70: Take V = {m + mI | m  Z+  {0}}  PN(Z) a 

pure neutrosophic integer set vector space over S = {0, 1}  Z. 

T = V \ {0}  V is the pure neutrosophic integer set generator 

of V.

Clearly | T | = . Now V = {m + mI | m  Z +  {0}} is a 

pure neutrosophic integer set linear algebra over S = {0, 1}. T = 

{1 + I} is the pure neutrosophic set generator of V. We see | T | 

= 1. 

From this example the reader can understand the vast difference 

between the pure (mixed) neutrosophic integer set linear algebra 

V and pure (mixed) neutrosophic integer set vector space V 

(same V) over the same set S. 
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2.3 Neutrosophic-Neutrosophic Integer Set Vector Spaces 

In this section we introduce yet another new type of vector 

spaces called neutrosophic-neutrosophic integer set vector 

spaces. Here we cannot have two types of vector spaces. Recall 

N(Z) = {a + bI | a, b  Z} is the set of neutrosophic integers. 

DEFINITION 2.3.1: Let V = { 1, …, n} where i  N(Z); 1  i 
n. We say V is a neutrosophic-neutrosophic integer set vector 
space over S  N(Z) (S Z) if s i = i s  V for every i  V 
and s  S. We shall for easy representation write neutrosophic-
neutrosophic integer vector space as n-n integer set vector 
space.

We now illustrate this new structure by some examples. 

Example 2.3.1: Let V = {0, 1 + (2n – 1)I | n = 1, 2, …, }

N(Z). V is a n-n integer set vector space over S = {0, 1 + I, 1} 

N(Z).

Example 2.3.2: Let V = {I, 2I, 5I, 7I, 0, 8I, 27I}  N(Z). V is a 

n-n integer set vector space over S = {0, I}  N(Z).

Example 2.3.3: Let V = ZI  N(Z), V is a n-n integer set vector 

space over Z = {0, I}. 

Example 2.3.4: Let V = {ZI}  N(Z); V is a n-n integer set 

vector space over ZI  N(Z). 

Example 2.3.5: Let V = {0, 1 – I}  PN(Z)  {0} be the n-n 

integer set vector space over the set S = {0, 1, 1+2I}  N(Z). 

Note: It is important and interesting to note that if V is a n-n 

integer set vector space then V cannot contain any integer from 

Z; i.e., if any a  V then a  Z. 

DEFINITION 2.3.2: Let V be a n-n set vector space over a set S 
 N(Z). Suppose W is a proper subset of V and W is itself a n-n 
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set vector space over the same set S  N(Z); then we call W to 
be a n-n set vector subspace of V over S. 

We will illustrate this situation by some examples. 

Example 2.3.6: Let V = {ZI} be a n-n set vector space over the 

set S = Z+I. Take W = {2ZI}  V; V is a n-n set vector subspace 

of V over Z+I. 

Example 2.3.7: Let V = {0, m  mI | m  Z+} be the n-n set 

vector space over the set S = {0, 1, 1 – I}  N(Z). Take W = 

{2m  2mI | m  Z+} be the n-n set vector subspace of V over 

S  N(Z). 

Example 2.3.8: Let V = {ZI, m   mI | m  Z+} be a n-n set 

vector space over the set S = {0, 1, 1 – I}  N(Z). Take W = 

{ZI}  V; W is a n-n set subvector space of V over S. 

Now we will proceed onto define the notion to neutrosophic-

neutrosophic set linear algebra (n-n set linear algebra). 

DEFINITION 2.3.3: Let V be a n-n set vector space over S 
N(Z), a subset of N(Z). If V is such that for every a, b  V, a + 
b, b + a  V then we call V to be a neutrosophic-neutrosophic 
set linear algebra over S (n-n set linear algebra over S).

We first illustrate this definition by some examples before we 

prove some properties about them. 

Example 2.3.9: Let V = {m – mI | m  Z+} be a n-n set linear 

algebra over the set S = {1, 1 – I}  N(Z).

Example 2.3.10: Let V = {ZI}  PN(Z). V is a n-n set linear 

algebra over the set S = {0, 1, 1 – I}  N(Z). 

Example 2.3.11: Let
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V = 
ZI ZI

ZI ZI
,

V is a n-n set linear algebra over the set S = {0, 1, 1 – I}.  

It is important and interesting to note that as in case of linear 

algebra, n-n linear algebras is a set vector space but in general a 

n-n set vector space is not a n-n linear algebra. The following 

examples show that a n-n set vector space is not a n-n set linear 

algebra.

Example 2.3.12: Let V = {3I, 24I, 41I, 26I, 0, –13I, 48I} 

PN(Z). V is a n-n set vector space over the set S = {0, 1, I} 

N(Z). We see V is not a n-n set linear algebra over S; as 3I + 

24I = 27I  V and so on.  

Thus in general a n-n set vector space is not a n-n set linear 

algebra over S. Now we proceed onto define the new concept of 

n-n set linear subalgebra. 

DEFINITION 2.3.4: Let V be a n-n set linear algebra over the set 
S  N(Z). (S  Z). Suppose W is a subset of V such that W is a 
n-n set linear algebra over the set S  N(Z) the we call W to be 
a n-n set linear subalgebra of V over the set S. 

We will illustrate this situation by some examples. 

Example 2.3.13: Let V = {3ZI} be a n-n set linear algebra over 

the set S = Z+I. Take W = {9ZI}  V; W is a n-n set linear 

algebra of V over S.

Example 2.3.14: Let V = {m – mI | m  Z+} be a n-n set linear 

algebra over the set S = {0, 1, 1 – I}  N(Z). W = {3m – 3mI | 

m  Z+}  V is a n-n set linear subalgebra of V over S. 

Example 2.3.15: Let

V = 
m mI 0 m mI 0

, m Z
3Z I Z I 0 0
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be a n-n linear algebra over the set S = {0, 1, 1 – I}  N(Z). 

Take

W = 
m mI 0

m Z
0 0

 V; 

W is a n-n linear subalgebra over the set S = {0, 1, 1 – I}. 

Example 2.3.16: Let

V = 
0 n nI p pI

n,p, t Z
t tI 0 0

be a n-n set linear algebra over the set S = {0, 1, 1 – I}  N(Z).

W = 
0 2n 2nI 2p 2pI

n,p, t Z
2t 2tI 0 0

 V 

is a n-n set linear subalgebra of V over the set S. 

Now we proceed onto define yet another new substructure. 

DEFINITION 2.3.5: Let V be a n-n set linear algebra over S. 
Suppose W is a proper subset of V and W is only a n-n set 
vector space over S then we call W to be a pseudo n-n set vector 
subspace of V over S. 

 We will illustrate this by some simple examples. 

Example 2.3.17: Let

V = 
m mI 0 0 0 m mI 0

, , m Z
0 0 0 m mI 0 m mI

be a n-n set linear algebra over the set S = {0, 1, 1 – I}.  
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Take

W = 
m mI 0 0 0

, m 2Z
0 0 0 m mI

 V. 

W is a pseudo n-n set vector subspace of V over S.

Example 2.3.18: Let V = {m  mI | m  2Z+} be a n-n set linear 

algebra over the set S = {0, 1, 1 – I}  N(Z). Take W = {3 + 3I, 

3 – 3I, 5 – 5I, 5 + 5I, 27 + 27I, 0}  V.  W is only a pseudo n-n 

set vector space over the set S = {0, 1, 1 – I}  N(Z). 

Example 2.3.19: Let V = {2ZI, 2Z, 2nZ + 2mZI | m, n  Z+}

N(Z) be a n-n set linear algebra over the set S = {0, 1, 1 – I}. 

Take W = {2ZI, 2Z}  V; W is a pseudo n-n set vector 

subspace of V over the set S.

Now we define yet another new substructure. 

DEFINITION 2.3.6: Let V be a n-n set linear algebra over the set 
S  N(Z). Let W  V be a proper subset of V and T  S be a 
proper subset of S. If W is a n-n subset linear algebra over T 
then we call W to be a n-n subset linear subalgebra of V over 
the subset T of S. 

We will illustrate this by some simple examples. 

Example 2.3.20: Let

V = 
m mI 0 0 0 m mI 0

, ,
0 m mI 0 m mI 0 m mI

1 1 2 2

i

3 3 4 4 5 5

m m I m m I 0
m ,m Z {0};1 i 5

m m I m m I m m I

be a n-n set linear algebra over the set S = {0, 1, 1 – I}  N(Z).
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Take

W = 
0 m mI 0

m Z
m mI 0 m mI

 V. 

W is a n-n set linear algebra over the subset T = {0, 1 – I} of S. 

Hence W is a n-n subset linear subalgebra of V over T. 

Example 2.3.21: Let V = {2Z+I, 7Z+I, 3Z+I, 5Z+I}  N(Z) be a 

n-n set linear algebra over S = Z+ I. W = {2Z+I}  V is a n-n 

subset linear subalgebra of V over the subset P = 3Z+ I of S. 

We now proceed onto define the notion of pseudo n-n subset 

vector subspace of a n-n set linear algebra. 

DEFINITION 2.3.7: Let V be a n-n set linear algebra over the set 
S  N(Z). Let W be a subset of V and if W is a n-n set vector 
space over a subset T of S then we define W to be a pseudo n-n 
subset vector subspace of V over the subset T of S. 

We illustrate this definition by some examples. 

Example 2.3.22: Let V = {m – mI | m  Z+  {0}} be a n-n set 

linear algebra over the set S = {0, 1, 1 – I}  N(Z). Take W = 

{5 – 5I, 28 – 28I, 40 – 40I, 0, 18 – 18I}  V; W is a pseudo n-n 

subset vector subspace of V over the subset T = {0, 1 – I} of S.

Example 2.3.23: Let

V = 
m mI 0

m mI 0

such that m  Z+  {0} be a n-n set linear algebra over the set S 

= {0, 1, 1 – I}.  

Take

5 5I 0 8 8I 0 7 7I 0
W , , ,

5 5I 0 8 8I 0 7 7I 0
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25 25I 0 0 0
,

25 25I 0 0 0
 V; 

W is a pseudo n-n subset vector subspace of V over the subset T 

= {0, 1 – I} of S. 

Now we proceed onto define the notion of linear transformation 

and linear operator of n-n set vector spaces defined over a set S 

 N(Z).

DEFINITION 2.3.8: Let V and W be any two n-n set vector 
spaces over the same set S  N(Z). A map T: V  W is said to 
be a n-n set linear transformation of V into W if T (I) = I and T 
( ) = T ( ) for every  S and for every  V. If W = V in 
this definition we call T from V to V to be a n-n set linear 
operator of V. 

We illustrate this by some simple examples. 

Example 2.3.24: Let V = {2  2I, 8  8I, 27  27I, 45  45I, 0, 

35  35I} and W = {0, 1  I, 6  6I, 20  20I, 49  49I, 26 

26I, 11  11I, 8  8I, 17  17I} be two n-n set vector spaces 

defined over the set S = {0, 1, 1 –I}  N(Z). 

Define T: V  W by T (0) = 0; 

T(2   2I) = 6   6I 

T(8   8I) = 20   20I, 

T(27  27I) = 26  26I 

T(45  45I) = 49  49I and 

T(35  35I) = 11  11I. 

T is a n-n set linear transformation of V to W. 

Example 2.3.25: Let V = {0, 2m  2mI, 5m  5mI | m  Z+} be 

a n-n set neutrosophic vector space over S = {0, 1, 1 –I} and W 

= {27m + 27mI, 0, 8m + 8mI | m  Z+} be a set neutrosophic 

vector space over te set S = {0, 1, 1 – I}. 
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Define T: V  W as T (0) = 0. 

T(2m  2mI) = 8m  8mI. 

T(5m  5mI) = 27m + 27mI 

then T is a n-n set linear transformation of V into W.  

Now we give some examples of n-n set linear operators on V, V 

a n-n set vector space defined over the set S. 

Example 2.3.26: Let V = {7  7I, 0, 21  21I, 63  63I, 3I, 9I, 

27I, 45I, 63I, 15I} be a n-n set vector space over the set S = {0, 

1, 1 – I}. 

Define T: V  V by 

T(0) = 0 

T(I) = I 

T(7  7I) = 21  21I 

T(21  21I) = 63  63I 

T(63  63I) = 63I 

T(3I) = 9I 

T(9I) = 27I 

T(45I) = 15I 

T(27I) = 27I 

T(15I) = 45I and 

T(63I) = 63  63I. 

T is a n-n set linear operator on V. 

Example 2.3.27: Let V = {2ZI, 81ZI, 47ZI, 0} be a n-n set 

vector space over the set S = 2Z+ I.

T : V  V as follows: 

Define T (0) = 0 

T(2ZI) = 47ZI 

T(81ZI) = 2ZI 

T(47ZI) = 81ZI,

T is a n-n set linear operator on V. 

DEFINITION 2.3.9: Let V and W be n-n set linear algebra 
defined on the same set S  N(Z). A map T: V  W is said to a 
n-n set linear transformation from V to W if the following 
conditions are satisfied: 
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T(I) = I 
T( 1 + 2) = T ( 1) + T ( 2)

T( ) =  T ( )
for all 1, 2,  V and  S . If W = V then the n-n set linear 
transformation is defined to be a n-n set linear operator on V. 

We shall illustrate this situation by the following examples: 

Example 2.3.28: Let

V = 
m mI 0

m Z 0
0 0

and W = {m – mI | m  Z+  {0}} be two n-n set linear 

algebras over the set S = {0, 1, 1 – I}  N(Z).  

Define T: V  W by  

T
m mI 0

0 0
 = 2m – 2mI 

for every  

m mI 0

0 0
 V 

and T(0) = 0. Thus T is a n-n set linear transformation of V into 

W.

Example 2.3.29: Let V = {2ZI} and

W = 
2ZI 0

m Z 0
0 m mI

be two n-n set linear algebras over the set S = {0, 1, 1 – I} 

N(Z).

Define T: V  W by 
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T(2ZI) = 
2ZI 0

0 0
 and T(0) = 

0 0

0 0
,

T is a n-n set linear transformation of V into W. 

Example 2.3.30: Let

V = 

ZI 2ZI 3ZI

2ZI 0 0

3ZI 0 0

be a n-n set linear algebra over the set S = Z+  {0}. 

Define a map T : V  V

T

0 0 0

0 0 0

0 0 0

 = 

0 0 0

0 0 0

0 0 0

T

ZI 2ZI 3ZI

2ZI 0 0

3ZI 0 0

 = 

2ZI 4ZI 6ZI

4ZI 0 0

6ZI 0 0

.

It is easily verified that T is a n-n set linear operator on V. 

Example 2.3.31: Let V = {12ZI} be a n-n set linear algebra over 

the set S = 2Z+I  N(Z). 

Define T: V  V by T(12ZI) = 24ZI; it is easily verified to be a 

n-n set linear operator on V. 

DEFINITION 2.3.10: Let V and W be n-n set linear algebras 
over the set S  N(Z). If T: V  W be a n-n set linear 
transformation of V into W such that T preserves atleast one n-n 
set linear subalgebra of V then we define T to be a weak n-n set 
subalgebra preserving linear transformation. If T preserves 
every n-n set linear subalgebra of V then T we define T to be a 
strong n-n set subalgebra preserving linear transformation. If 
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W = V then we call T to be a strong (weak) n-n set subalgebra 
preserving operator on V. 

We shall illustrate these concepts by some examples. 

Example 2.3.32: Let V = {m – mI | m  Z+  {0}} and

W = 
m mI 0

m Z 0
m mI m mI

be two n-n set linear algebras over the set S = {0, 1, 1 – I} 

N(Z). If T: V  W be such that

T(m – mI) = 
m mI 0

m mI m mI

and

T(0) = 
0 0

0 0

then T is a strong n-n set subalgebra preserving linear 

transformation of V into W. 

Example 2.3.33: Let V = {ZI} and W = {5ZI} be two n-n set 

linear algebras over the set Z+ I  {0}. The map T: V  W 

given by T(0) = 0, T(I) = 5I is  a strong n-n set subalgebra 

preserving linear transformation of V into W. 

Example 2.3.34: Let V = {m – mI, 0 | m  Z+} be a n-n set 

linear algebra over the set S = {0, 1, 1 – 2I}. The map T: V  V 

such that T(m – mI) = 2m – 2mI, for every m – mI  V is a 

strong n-n set subalgebra preserving linear operator on V. 

Now we proceed onto define the notion of generator for n-n set 

vector space and n-n set linear algebra. 
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DEFINITION 2.3.11: Let V be a n-n set vector space over the set 
S  N(Z). Suppose B  V is a non empty subset of V such that 
every  V can be represented by  = sb for some b  B and s 

 S then we call B to be the n-n generator set (or n-n 
generating set) of V over the set S. 

We illustrate this by some simple examples. 

Example 2.3.35: Let V = {3  3I, 0, 7  7I, 15  15I, 20  20I} 

 N(Z) be a n-n set vector space over the set S = {0, 1, 1 – I} 

N(Z). Take B = {3 + 3I, 7 + 7I, 15 + 15I, 20 + 20I}  V. It is 

easily verified B is a n-n generator of V over the set S. 

Example 2.3.36: Let V = {2ZI, 0, 15ZI}  N(Z) be the n-n set 

vector space over the set S = Z+I  N(Z). Take B = { 2I, 15I,

0}  V, B is n-n generator set V over the set S. 

DEFINITION 2.3.12: Let V be a n-n set linear algebra over the 
set S  N(Z). Let C  V be a subset of V such that every element 

 V can be represented as  = sc or  = i is c  for some s, si

 S and c, ci  C then we call C to be a n-n generator set 
(generating set) of the n-n set linear algebra V over the set S.

 We illustrate this by some simple examples. 

Example 2.3.37: Let V = {m – mI | m  Z+  {0}} be a n-n set 

linear algebra over the set S = {0, 1, 1 – I}. Take C = {m – mI | 

m  Z+}  V is the n-n generator set of V over S. 

Example 2.3.38: Let V = {2ZI}  N(Z) be a n-n set linear 

algebra over the set S = Z+  N(Z). Let C = {  2I}  V, C is a 

n-n generator set of V over the set S = Z+  N(Z). When the n-n 

generator set C of V (V; n-n set linear algebra or V a n-n set 

vector space) has finite number of elements in C then we say V 

has n-n finite generator C. If C has infinite cardinality then we 

say V has n-n infinite generator set.  
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2.4 Mixed Set Neutrosophic Rational Vector Spaces and 
their Properties 

In the section we introduce the notion of mixed (pure) set 

neutrosophic rational vector space and describe some of their 

properties. Throughout this book Q(I) denotes the neutrosophic 

rational field; i.e., Q = Q(I) = {a + bI | a, b  Q}. PN(Q) 

contains only neutrosophic rational numbers of the form {a + bI 

| b  0 and a, b  Q}. So PN(Q) hereafter will be known as pure 

set neutrosophic rational numbers. 

DEFINITION 2.4.1: Let V  N(Q) (PN(Q)) be a proper subset of 
N(Q) or V contains elements from N(Q) (PN(Q)) (V Q). Let S 

 N(Q) be a proper subset of N(Q). We say V is a mixed (pure) 
set neutrosophic rational vector space over S if s  V for every 
s  S and  V.

Example 2.4.1: Let

V = 
2 2I

7 7
, 0, 

19 19I

2 2
,

27 27I

5 5
,

17I, 48 – 48I, 
28 28I

13 13
,

47I

5
 N(Q). 

Take

S = {0, 1, 
11 11I

7 7
, 1 – I}  N(Q). 

It is easily verified V is a pure set neutrosophic rational vector 

space over the set S. 

Example 2.4.2: Let

V = 
27 27 27I

0, , ,
5 5 5

48 48 48I
, ,

7 7 7

19I 8I
,

7 23
 N(Q) 

be a mixed set neutrosophic rational vector space over the set S 

= {0, 1, 1 – I}. 
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Now we proceed to define mixed (pure) set neutrosophic 

rational linear algebra over the set S  N(Q). 

DEFINITION 2.4.2: Let V  N(Q) (or V contains entries from 
N(Q)) be a mixed (pure) set neutrosophic rational vector space 
over a set S  N(Q). If in V we have for every v, u,  V u + v 
and v + u  V then we call V to be a mixed (pure) set 
neutrosophic rational linear algebra over the set S.

We shall illustrate this by the following examples: 

Example 2.4.3: Let V = {m – mI | m  Q}  PN(Q)  {0}. V 

is a pure set neutrosophic rational linear algebra over the set S = 

{0, 1, 1 – I, I}. 

Example 2.4.4: Let

V = 
QI m mI

m Q
m mI QI

;

V is a pure set neutrosophic rational linear algebra over S = {0, 

1, 1 – I}. 

Example 2.4.5: Let V = {QI, Q, Q + QI} = {mI, n, t + pI | m, n, 

t, p  Q}  N(Q). V is a mixed set neutrosophic rational linear 

algebra over S = {1, 0, 1 – I}.  

Remark: The following facts are interesting about these new 

structures.

(1) We can define them over Q or N(Q) or PN(Q); we do 

not want to distinguish it by different names. We have 

to show that they are different whenever the set over 

which they are defined are different. However the 

reader can know the difference by the context. 
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(2) We have just said S  N(Q) so S  Z or S  Q or S 

N(Q) and S  Q. But while studying the reader can 

understand over which they are defined. 

(3) Further we understand all mixed (pure) set neutrosophic 

integer vector spaces (linear algebras) are mixed (pure) 

set neutrosophic rational vector spaces (linear algebras). 

However the mixed (pure) set neutrosophic rational 

vector space (or linear algebra) in general is not a mixed 

(pure) set neutrosophic integer vector spaces (or linear 

algebras).

(4) The notion of n-n set integer vector space is merged in 

case of neutrosophic set rational vector space.  

However the difference in the structure is evident to any reader. 

Now we proceed onto define the substructures of these new 

structures.

DEFINITION 2.4.3: Let V be any mixed set neutrosophic rational 
vector space over the set S  N(Q). Let W be any proper subset 
of V. If W is a mixed set neutrosophic rational vector space over 
S, then we define W to be a mixed set neutrosophic rational 
vector subspace of V over S. 

We will illustrate this by some simple examples. 

Example 2.4.6: Let

V = 
5 5I

3 3
,

20 20I 20
, ,

7 7 7

21 21I
,

8 8

5

3
, 0, 

48 48I

19 19
,

122 122I 122
,

31 31 31
 N(Q) 

be a mixed set neutrosophic rational vector space over S = {0, 1, 

1 – I}. Take

W = 
20 20 20I

0, , ,
7 7 7

5 5 5I
,

3 3 3
 N(Q). 
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W is a mixed set neutrosophic rational vector subspace of V 

over S. It is interesting to note that every subset of V need not in 

general be a mixed set neutrosophic rational vector subspace of 

V over S. 

 For take

W1 = 
20

,
7

5 5I

3 3
 V; 

W1 is not a mixed set neutrosophic rational vector subspace of 

V over S as

20

7
(1 – I) =

20 20I

7 7
 W1 also 0.

5 5I

3 3
 = 0  W1.

Example 2.4.7: Let V = {m – mI, mI | m  Q+  {0}} be the 

pure set neutrosophic rational vector space over the set S = {0, 

1, I, 1 – I}  N(Q). Take W = {mI | m  Q+  {0}}  V; W is a 

pure set neutrosophic rational vector subspace of V over S. 

DEFINITION 2.4.4: Let V be a set neutrosophic rational linear 
algebra over the set S  N(Q). Let W be a subset of V; if W is a 
set neutrosophic rational linear algebra over the set S  N(Q) 
then we call W to be a set neutrosophic linear subalgebra of V 
over the set S. 

We will illustrate this by some examples. 

Example 2.4.8: Let V = {0, m – mI | m  Q+} be a set 

neutrosophic set linear algebra over the set S = {0, 1, 1 – I} 

N(Q).

Take W = {0, 3m – 3mI | m  Z+}  V; W is a set 

neutrosophic rational linear subalgebra of V over S. Infact W is 

a set neutrosophic integer set linear subalgebra of V over S. 

Take W1 = {0, m – mI | m  {1/2n} | n  Z+}  V. W1 is a set 

neutrosophic rational linear subalgebra of V over S.  

Infact W1 is not a set neutrosophic integer set linear 

subalgebra of V over S. 
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Example 2.4.9: Let

V = 
m mI 0

p,m Q {0}
0 pI

be a set neutrosophic rational linear algebra over the set S = {0, 

1, I, 1 – I}.  

Take

W = 
m mI 0

m Q {0}
0 0

 V; 

W is a set neutrosophic rational linear subalgebra of V over S. 

W1 = 
0 0

p Q {0}
0 pI

is also a set neutrosophic rational linear subalgebra of V over S. 

DEFINITION 2.4.5: Let V be a set neutrosophic rational vector 
space over the set S. Suppose W  V is such that W is a set 
neutrosophic rational vector space over a proper subset T  S; 
then we call W to be a subset neutrosophic rational vector 
subspace of V over the subset T of S. 

We will illustrate this by some examples. 

Example 2.4.10: Let V = {5 – 5I, 0, 25I, 41 – 41I, 60 – 60I, 60, 

60I} be a set neutrosophic rational vector space over the set S = 

{0, 1, I, 1 – I}. W = {0, 60, 60I, 60 – 60I, 25I}  V is a subset 

neutrosophic rational vector subspace of V over {0, I, 1 – I} = T 

 S. 

Example 2.4.11: Let
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V = 
25I 0 0 9 9I 5I 21 21I

, , ,
0 4I 8 8I 0 48I 51 51I

0 0 5I 0 0 21 21I
, ,

0 0 48I 0 0 51 51I

be a set neutrosophic rational vector space over the set S = {0, 

1, I, 1-I}.

Take

W = 
0 0 5I 0 25I 0

, ,
0 0 48I 0 0 4I

 V 

is a subset neutrosophic rational vector subspace over T = {0, I} 

 S.

Now we proceed onto define yet another new substructure. 

DEFINITION 2.4.6: Let V be a set neutrosophic rational vector 
space over the set S. Let W  V be a proper subset of V if W is a 
set neutrosophic rational linear algebra over the set S; then we 
call W to be a pseudo set neutrosophic rational linear 
subalgebra of V over the set S.  

We illustrate this situation by some examples. 

Example 2.4.12: Let

V = {25p – 25pI, 25, 25I, 
17 17I

8 8
,

 0, 
8 8I 3I 4I

, ,
7 7 7 3

, 42I | p  Z+}

be a set neutrosophic rational vector space over the set S={0, 1, 

I, 1 – I}. Let W = {25p – 25pI, 0 | p  Z+}  V. W is a pseudo 

set neutrosophic rational linear subalgebra of V over the set S.  
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Example 2.4.13: Let

V = 
m mI 0 22 22I 42I 88I

, , , m Q {0}
0 m mI 83 83 13 9

be a set neutrosophic rational vector space over the set S = {0, 

1, I, 1-I}.

Take

W = 
m mI 0

m Q {0}
0 m mI

 V, 

W is a pseudo set neutrosophic rational linear subalgebra of V 

over the set S. 

DEFINITION 2.4.7: Let V be a set neutrosophic rational linear 
algebra over the set S. Let W  V be a set neutrosophic rational 
linear algebra over a proper subset T of S. We define W to be a 
subset neutrosophic rational linear subalgebra of V over the 
subset T of S. 

We will illustrate this situation by some examples. 

Example 2.4.14: Let V = {m – mI | m  Q+  {0}} be a set 

neutrosophic rational linear algebra over the set S = {Z+I, 0, 1 – 

I, 1}  N(Q). Choose W = {m – mI | m  Z+  {0}}  V; W is 

a subset neutrosophic rational sublinear algebra over the subset 

T = {2Z+ I, 0}  S.

Example 2.4.15: Let

V = 
2ZI m mI

m Q
m mI 3ZI

be a set neutrosophic rational linear algebra over the set {1 – I, 

1, 2 – 2I, 5 – 5I, –19I + 19} = S.  



59

Take

W = 
16ZI 2m 2mI

m Q
5m 5mI 15ZI

 V; 

W is a subset neutrosophic rational linear subalgebra over the 

set T = {1 – I, 1, 19 – 19I}  S. 

As in case of neutrosophic integer set vector spaces (linear 

algebras) we can define the notion of set neutrosophic linear 

transformation, set neutrosophic linear operator, set 

neutrosophic subspace (sublinear algebra) preserving linear 

transformation and linear operator. Interested reader can 

construct examples of them as the analogous definition are 

identical. Now we proceed on to give the notion of set 

neutrosophic real set vector spaces and set neutrosophic real set 

linear algebra.  

Throughout this book N(R) will denote the set of all 

neutrosophic reals, i.e., N(R) = {a + bI | a, b  R}; PN(R) 

denote the pure neutrosophic reals i.e., elements of the form {a 

+ bI | b  0; a, b  R}. Clearly PN(R)  N(R), R  N(R) but R 

PN(R) and R  I  = N(R) in our usual notation. 

DEFINITION 2.4.8: Let V  N(R) (or PN(R)) we say V is a set 
neutrosophic real vector space over a set S  N(R) if for every v 

 V and for every s  S, sv, vs  V. 

We will illustrate this by some examples. 

Example 2.4.16: Let V = {r – rI | r  R+ {0}}  N(R); V is a 

set neutrosophic real vector space over the set S = {R+I}

PN(R).

Example 2.4.17: Let

V = 
RI 0

m R
0 m mI
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take S = {R+I}. V is a set neutrosophic real vector space over 

the set S. 

It is interesting to note that all neutrosophic integer set vector 

spaces and set neutrosophic rational vector spaces are also set 

neutrosophic real vector spaces. However when we work with 

real world problems according to need we can choose any of 

these set neutrosophic vector spaces.  

Further, as we do not need all the axioms of a neutrosophic 

vector space to be satisfied by these structures these structures 

can be realized as the most generalized structures in 

neutrosophic vector spaces. 

DEFINITION 2.4.9: Let V be a subset of N(R) or PN(R) (or has 
entries from N(R) or PN(R)). We say V is a set neutrosophic 
real linear algebra if  

1. for every u, v  V, u + v and v +u  V and
2. for every s  S and v  V; v s and sv  V. 

 All set neutrosophic real linear algebras are set neutrosophic 

real vector spaces but a set neutrosophic real vector space in 

general need not be a set neutrosophic real linear algebra. 

We shall illustrate this by some simple examples. 

Example 2.4.17: Let

V = 
2 2I 0

19I 19 0.14 0.14I
,

20 20I 0

7 7I 11 11I

23 23I
0

3 3

3I 41 41I

,
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46 46I

5 5
, –11 2 I + 11 2 , 4I, 

17 17I
,0

5 5

be a set neutrosophic real vector space over the set S = {1, 1 – I, 

5 – 5I}.  

We see clearly V is not a set neutrosophic real linear 

algebra over S. 

Example 2.4.18: Let

V = {(mI, 0, 4m – 4mI, 
8m 8mI

3 3
)| m  Z+}  N(R) 

be a set neutrosophic real linear algebra over the set 

S = {1, 1 – I, 
2 2I

7 7
,

5 5I

3 3
}.

Example 2.4.19: Let

V = 

mI 0

m R3m 3m
m mI

2 2

be a set neutrosophic real linear algebra over the set 

S = {1, 1 – I, 
41 41I

7 7
,

2 2I

7 7
,

21 21I

41 41
}.

Now all substructures pseudo substructures and set neutrosophic 

real transformation, set neutrosophic real operator can be 

defined as in case of neutrosophic integer set vector space and 

set neutrosophic rational vector space. 

The following results can be easily proved by the reader. 
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(1) Set neutrosophic real vector space is not a set 

neutrosophic rational vector space or a neutrosophic 

integer set vector space. 

(2) {The class of neutrosophic integer set vector space} 

{The class of set neutrosophic rational vector space} 

{The class of set neutrosophic real vector space} – 

prove.

(3) Study set neutrosophic real linear transformation of set 

neutrosophic real vector spaces V and W over a set S. 

(4) Study and obtain some interesting properties about set 

neutrosophic real linear operator of the set neutrosophic 

real vector space V over the set S. 

(5) Obtain interesting results about set neutrosophic real 

linear transformation(operator) which preserves 

subspaces.

Next we proceed onto define the new notion of 

neutrosophic modulo integers. Zn  I  = {a + bI | a, b  Zn} = 

N(Zn) will denote the neutrosophic modulo integers. PN(Zn) = 

{a + bI | b  Zn \ {0}} denotes the pure neutrosophic modulo 

integers.

DEFINITION 2.4.10: Let V  N(Zn) or a subset of PN(Zn) (V can 
be a set with has entries from N(Zn) or PN(Zn). Let S  N(Zn).
We say V is a set neutrosophic modulo integer vector space if 
for every v  V and s  S vs for sv is in V. 

We will illustrate this by some examples. 

Example 2.4.20: Let V = {0, 2, 6, 4, 6I, 8I, 10I}  N(Z12) and S 

= {0, 3}  N12. V is a set neutrosophic modulo integer vector 

space over the set S. 

Example 2.4.21: Let V = {0, 2I, 8I, 6I, 4I, 2, 4, 6, 8}  N(Z10)

and S  {0, 1, 2, I, 2I}  N(Z10). V is a set neutrosophic modulo 

integer vector space over the set S. 
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Example 2.4.22: Let V = {0, 1I, 2I, 3I, 4I, 5I, 6I}  N(Z7). S = 

{0, 1, I}  N(Z7). V is a set neutrosophic modulo integer vector 

space over the set S. 

DEFINITION 2.4.11: Let V  N(Zn) (or V has entries from N(Zn)) 
and S  N(Zn). If V in addition being a set neutrosophic modulo 
integer vector space over S satisfies the condition, that for every 
pair v, u  V, u + v and v + u  V; then we call V to be a set 
neutrosophic modulo integer linear algebra over S.

We illustrate this by some simple examples. 

Example 2.4.23: Let V = {0, I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 9I, 10I} 

 N(Z11) and S = {0, 1, I, 5, 3, 2I, 6I, 8I}  N(Z11). V is a set 

neutrosophic modulo integer linear algebra over S. 

Example 2.4.24: Let V = {0, 2I, 4I, 6I, 8I, 10I, 12I, 14I, 16I} 

N(Z18), S = {0, 1, 2, 4, 8, 2I, 6I, 10I}. V is a set neutrosophic 

modulo integer linear algebra over S. 

Example 2.4.25: Let V = {0, 1 + 9I, 2 + 8I, 3 + 7I, 4 + 6I, 5I, 8 

+ 2I, 7 + 3I, 6 + 4I, I + 9}  N(Z10). V is a set neutrosophic 

modulo integer linear algebra over S = {0, 1, 1 + 9I, I+ 9} 

N(Z10).

It is left as an exercise for the reader to prove “A set 

neutrosophic modulo integer vector space in general is not a set 

neutrosophic modulo integer linear algebra and every set 

neutrosophic modulo integer linear algebra is a set neutrosophic 

modulo integer vector space”. 

Example 2.4.26: Let V = {I, 0, 2I, 8I, 24I, 17I, 17, 22I} 

N(Z25) and S = {0, 1, I}  N(Z25). V is a set neutrosophic 

modulo integer vector space over S only and is not a set 

neutrosophic modulo integer linear algebra over S. 

Now we proceed on to define set neutrosophic modulo 

integer vector space. 
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DEFINITION 2.4.12: Let V  N(Zn) be a set neutrosophic 
modulo integer vector space over the set S  N(Zn). Suppose W 

 V is a proper subset of V such that W is a set neutrosophic 
modulo integer vector space over S then we define W to be a set 
neutrosophic modulo integer vector subspace of V over S.

We will illustrate this by some examples. 

Example 2.4.27: Let V = {2, 0, 4I, 26I, 14I, 4, 12I, 20I, 20, 24, 

24I}  N(Z28) be a set neutrosophic modulo integer vector 

space over the set S = {0, 1, I}  N(Z28). Take W = {0, 4I, 12I, 

20I, 26I, 14I}  V; W is a set neutrosophic modulo integer set 

vector subspace of V over S. 

Example 2.4.28: Let V = {3I, 0, 6I, 21I, 9I, 3, 9, 6, 18I} 

N(Z27) and S = {0, 1, 3I, 3}  N(Z27). V is a set neutrosophic 

modulo integer vector space over the set S. Take W = {0, 3, 3I, 

6I, 18I, 9I}  V; W is a set neutrosophic modulo integer vector 

subspace of V over the set S. 

Now we proceed onto define the notion of subset neutrosophic 

modulo integer vector subspace of V over a subset T of S. 

DEFINITION 2.4.13: Let V  N(Zn) be a set neutrosophic 
modulo integer vector space over the set S  N(Zn). Let W  V; 
W is said to be a subset neutrosophic modulo integer vector 
space of V over the subset T of S if W is a set neutrosophic 
modulo integer vector space over the set T. 

We will illustrate this by some examples. 

Example 2.4.29: Let V = {0, 3I, 12, 4I, 5I, 4, 12I, 10I, 5, 3} 

N(Z15) be a set neutrosophic modulo integer vector space over 

the set S = {0, 3, 3I, 5, 5I}  N(Z15). Take W = {0, 3I, 3, 5I, 5} 

 V and T = {0, 3, 3I}  S. W is a subset neutrosophic modulo 

integer vector subspace of V over the subset T of S.
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Example 2.4.30: Let V = {0, 1, I, 18, 18I, 16, 16I, 13, 13I, 20, 

20I}  N(Z23) be a set neutrosophic modulo integer vector 

space over the set S = {0, 1, I}  N(Z23). Take W = {0, 20, 20I, 

16, 16I, 13, 13I}  V and T = {0, I}  S, W is a subset 

neutrosophic modulo integer vector subspace of V over the 

subset T of S. 

It is important and interesting to note that all set neutrosophic 

modulo integer vector spaces have only finite number of 

elements in them. It also implies the set neutrosophic generator 

subset of a set neutrosophic modulo integer vector space is 

always finite. 

DEFINITION 2.4.14: Let V  N(Zn) be a set neutrosophic 
modulo integer vector space over the set S  N(Zn). Let W  V 
be such that W is a set neutrosophic modulo integer linear 
algebra over S then we call (or define) W to be a pseudo set 
neutrosophic modulo integer linear subalgebra of V over S.  

We will illustrate this situation by some examples. 

Example 2.4.31: Let V = {0, 2I, 4I, 6I, 8I, 10I, 12I, 14I, 16I, 

18I, 17, 17I, 11, 11I, 19I}  N(Z20) and S = {0, 1, 2I, I} 

N(Z20). V is a set neutrosophic modulo integer vector space over 

S.

Take W = {0, 2I, 4I, 6I, 8I, 10I, 12I, 14I, 16I, 18I}  V; W 

is a pseudo set neutrosophic modulo integer linear subalgebra of 

V over the set S. 

Take W1 = {0, 4I, 8I, 12I, 16I}  V; W1 is a pseudo set 

neutrosophic modulo integer linear subalgebra of V over S. 

Example 2.4.32: Let V = {0, 3I, 3, 6I, 9I, 12I, 15I, 18I, 21I, 24I, 

27I, 12, 18, 21}  N(Z30) be a set neutrosophic modulo integer 

vector space over the set S = {0, 1, I}  N(Z30).

Take W = {0, 3I, 6I 9I, 12I, 15I, 18I, 21I, 24I, 27I}  V. W 

is a pseudo set neutrosophic modulo integer linear subalgebra of 

V over S. 
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Now we proceed on to define the notion of substructures in set 

neutrosophic modulo integer linear algebras.  

DEFINITION 2.4.15: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over the set S  N(Zn). Suppose 
W  V and if W is a set neutrosophic modulo integer linear 
algebra over the same set S  N(Zn); the we define W to be a set 
neutrosophic modulo integer linear subalgebra of V over the set 
S.

We shall illustrate this situation by some examples. 

Example 2.4.33: Let V = {0, I, 2I, 3I, 4I, …, 23I}  N(Z24) be a 

set neutrosophic modulo integer linear algebra over the set S = 

{0, 1, I, 2I}  N(Z24). Take W = {0, 2I, 4I, 6I, 8I, 10I, 12I, 14I, 

16I, 18I, 20I, 22I}  V; W is a set neutrosophic modulo integer 

linear subalgebra of V over the set S  N(Z24).

Example 2.4.34: Let V = {7nI, 0 | n = 1, 2, …, 6}  N(Z49); i.e., 

V = {0, 7I, 14I, 21I, 28I, 35I, 42I}  N(Z49) over the set S = {0, 

3, 1, I, 2I}  N(Z49). V is a set neutrosophic modulo integer 

linear algebra. But V has no set neutrosophic modulo integer 

sublinear algebra over S. 

Example 2.4.35: Let V = {0, I, 2I, …, (p – I)I}  N(Zp) be a set 

neutrosophic modulo integer linear algebra over S = {0, 1, 2I, 

3I, I, 5I}  N(Zp). V has no set neutrosophic modulo integer 

linear subalgebras.

Now we proceed onto define pseudo set neutrosophic modulo 

integer vector subspace of a set neutrosophic modulo integer 

vector linear algebra. 

DEFINITION 2.4.16: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over the set S  N(Zn). Suppose 
W  V; W is a subset of V such that W is a set neutrosophic 
modulo integer vector space over S then we define W to be a 
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pseudo set neutrosophic integer vector subspace of V over the 
set S. 

Example 2.4.36: Let V = {0, I, 2I, 4I, 3I, …, 24I}  N(Z25) be a 

set neutrosophic modulo integer linear algebra over the set S = 

{0, 1, I, 1-I}  N(Z25). Take W = {0, I, 4I, 2I, 24I}  V; W is a 

pseudo set neutrosophic modulo integer vector subspace of V 

over the set S. 

Example 2.4.37: Let V = {0, 1 + 6I, I + 6, 2 + 5I, 2I + 5, 3 + 4I, 

4 + 3I}  N(Z7) be a set neutrosophic modulo integer set linear 

algebra over the set S = {0, 1, I, 1 + 6I}  N(Z7). We see W = 

{0, 2 + 5I, 3 + 4I}  V is a pseudo set neutrosophic modulo 

integer vector subspace of V over the set S.

It is left as a research problem for the reader to characterize 

those set neutrosophic modulo integer linear algebra V over a 

set S such that every subset of V is a pseudo set neutrosophic 

modulo integer vector subspace of V over the set S. Now we 

proceed onto define the notions of subset neutrosophic modulo 

integer linear subalgebra and pseudo subset neutrosophic 

modulo integer vector subspace of a set neutrosophic modulo 

integer linear algebra over the set S.

DEFINITION 2.4.17: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over the set S  N(Zn). Let W  V 
be a set neutrosophic modulo integer vector space over a subset 
T of S. We call W to be a pseudo subset neutrosophic modulo 
integer vector subspace of V over the subset T  S. 

We will illustrate this by some examples. 

Example 2.4.38: Let V = {0, 1 + 28I, 28 + I, 2 + 27I, 27 + 2I, 3 

+ 26I, 26 + 3I, 4 + 25I, 25 + 4I, 5 + 24I, 24 + 5I, 6 + 23I, 23 + 

6I, 7 + 22I, 22 + 7I, 21 + 8I, 8 + 21I, 9 + 20I, 20 + 9I, 19 + 10I, 

10 + 19I, 11 + 18I, 18 + 11I, 17 + 12I, 12 + 17I, 13 + 16I, 16 + 

13I, 14 + 15I, 15 + 14I}  N(Z29) be a set neutrosophic modulo 

integer linear algebra over the set S = {0, 1, I, 1 + 28I} 

N(Z29).
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Take W = {0, 1 + 28I, 9 + 20I, 15 + 14I, 12 + 17I, 7 + 22I, 

3 + 26I}  V and T = {0, 1, I}  S; W is a pseudo subset 

neutrosophic modulo integer vector subspace of V over the 

subset T of S. 

Example 2.4.39: Let V = {0, I, 2I, 3I, …, 26I}  N(Z27) be a set 

neutrosophic modulo integer linear algebra over the set S = {0, 

1, I, 1 + 26I}  N(Z27). Take W = {0, I, 3I, 6I, 14I, 11I, 10I} 

V and T = {0, 1, 1+26I}  S. W is a pseudo subset neutrosophic 

modulo integer vector subspace over the subset T of S. 

DEFINITION 2.4.18: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over a set S  N(Zn). Suppose W 

 V be such that W is a set neutrosophic modulo integer linear 
algebra over a subset T of S with cardinality of T greater than 
one i.e., |T| > 1, then we call W to be a subset neutrosophic 
modulo integer linear subalgebra of V over the subset T of S.  

We will illustrate this by some simple examples. 

Example 2.4.40: Let V = {0, I, 2I, 3I, 4I, … , 48I}  N(Z49) be 

a set neutrosophic modulo integer linear algebra over the set S = 

{0, 1, I, 7 + 24I}  N(Z49). Take W = {0, 7I, 14I, 21I, 28I, 35I, 

42I}  V; and T = {0, 7 + 42I}  S. W is a subset neutrosophic 

modulo integer linear subalgebra of V over the set T  S. 

Example 2.4.41: Let V = {0, 1 + 14I, 14 + I, 2 + 13I, 13 + 2I, 

12I + 3, 3I + 12, 4I + 11, 11I + 4, 10I + 5, 5I + 10, 6 + 9I, 6I + 

9, 7I + 8, 8 + 7I}  N(Z15) be a set neutrosophic modulo integer 

linear algebra over the set S = {0, 1, I, 1 + 14I, 14 + I} 

N(Z15). Take W = {1 + 14I, 14 + I, 0}  V and T = {0, 1, I}; W 

is a subset neutrosophic modulo integer linear subalgebra of V 

over the subset T  S. 

Now we study some more properties of set neutrosophic 

modulo integer linear algebra.  
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DEFINITION 2.4.19: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over the set S  N(Zn). If V has 
no proper subset W such that W is a set neutrosophic modulo 
integer linear subalgebra of V over the set S then we call W to 
be a simple set neutrosophic modulo integer linear algebra or 
set neutrosophic modulo integer simple linear algebra. 

We illustrate this situation by some simple examples. 

Example 2.4.42: Let V = {0, I, 2I, 3I, 4I, 6I, 7I, 8I, 9I, 10I} 

N(Z11) be a set neutrosophic modulo integer linear algebra over 

the set S = {0, 1, I, 1 + 10I, 10 + 1I, 5 + 6I}  N(Z11). V has no 

proper subset W such that W is a set neutrosophic modulo 

integer linear subalgebra of V. Thus V is a simple set 

neutrosophic modulo integer linear algebra over the set S. 

Example 2.4.43: Let V = {0, 1 + 40I, 40 + I}  N(Z41) be a set 

neutrosophic modulo integer linear algebra over the set S = {0, 

1, 4 + 37I, 37 + 4I, I}  N(Z41). V is a simple set neutrosophic 

modulo integer linear algebra over S. 

We now proceed onto define the notion of weakly simple set 

neutrosophic modulo integer linear algebra.  

DEFINITION 2.4.20: Let V  N(Zn) be a set neutrosophic 
modulo integer linear algebra over a set S  N(Zn). If V has no 
proper subset W such that W is a subset neutrosophic modulo 
integer linear subalgebra over any proper subset T of S then we 
call W to be a weakly simple set neutrosophic modulo integer 
linear algebra over the set S. 

We will illustrate this situation by some simple examples. 

Example 2.4.44: Let V = {0, I, 2I, …, 30I}  N(Z31) be a set 

neutrosophic modulo integer linear algebra over the set S = {0, 

I}. V is a weakly simple set neutrosophic modulo integer linear 

algebra over the set S.
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Example 2.4.45: Let V = {0, 3 + 12I}  N(Z15) be a set 

neutrosophic modulo integer set linear algebra over the set S = 

{0, I}  N(Z15). V is a weakly simple set neutrosophic modulo 

integer linear algebra over S. 

THEOREM 2.4.1: Let V  N(Zn) be a set neutrosophic modulo 
integer linear algebra over a set S  N(Zn), | S | = 2 then V is a 
weakly simple set neutrosophic modulo integer linear algebra 
over S. 

Proof: Since | S | = 2 even if W  V is such that W is a set 

neutrosophic modulo integer linear subalgebra over S it cannot 

be a subset neutrosophic modulo integer linear subalgebra over 

a subset T of S as | S | = 2 and | T | > 1 is not possible unless | T | 

= | S |. Hence the claim. 

THEOREM 2.4.2: Let V = {0, I, …, (p – 1)I }  N(Zp) where p is 
a prime be a set neutrosophic modulo integer linear algebra 
over a set S  N(Zp). V is both a simple set neutrosophic modulo 
integer linear algebra and a weakly simple set neutrosophic 
linear algebra.

Proof: We see V has no subset W such that W is a set 

neutrosophic modulo integer linear subalgebra over S. So V is a 

simple set neutrosophic modulo integer linear algebra. 

Now since V has no set neutrosophic modulo integer linear 

subalgebras even if | S | > 2 still we cannot find W in V such 

that W is a set neutrosophic modulo integer inear algebra over 

any proper subset of S. Hence the claim. 

Now we proceed onto define the notion of set neutrosophic 

linear transformation of V, W  N(Zn) V and W neutrosophic 

modulo integer vector space and set neutrosophic linear 

operator on when W = V. 

DEFINITION 2.4.21: Let V and W be two set neutrosophic 
modulo integer vector spaces over a set S  N(Zn). A map T: V 

 W such that T(s ) = sT( ) for all s  S and  V is defined 
to be a set neutrosophic modulo integer linear transformation V 
to W.
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Let N(HomS(V, W)) be the collection of all set neutrosophic 
modulo integer linear transformations from V to W then 
|NS(Hom (V, W)| < . If W = V then we call T: V  V to be a 
set neutrosophic modulo integer linear operator on V. 

Clearly |NS(Hom(V, V))| <  where NS(Hom(V, V)) denotes 
the collection of all set neutrosophic modulo integer linear 
operators from V to V.

The interested reader is expected to construct examples. 

DEFINITION 2.4.22: Let V and W be two set neutrosophic 
modulo integer linear algebras over the set S  N(Zn). A map T: 
V  W is said to be a set neutrosophic modulo integer linear 
transformation of these linear algebras V and W if  

(1) T(x + y) = T(x) + T(y) 
(2) T( x) =  T (x); 

for all x, y  V and for all  S. 
If V = W, we call the map T to be a set neutrosophic modulo 

integer linear operator of V. 

DEFINITION 2.4.23: Let V and W be two set neutrosophic 
modulo integer linear algebras over the set S  N(Zn).

A set neutrosophic modulo integer linear transformation T 
is said to be a strong set neutrosophic modulo integer 
subalgebra preserving linear transformation if T preserves set 
neutrosophic modulo integer linear subalgebras of V, i.e., if P is 
a set neutrosophic modulo integer linear subalgebra of V and if 
T(P) = Q then Q is a set neutrosophic modulo integer linear 
subalgebra of W and this is true for every set neutrosophic 
modulo integer linear subalgebra P of V.  

If atleast one set neutrosophic modulo integer linear 
subalgebra P of V is preserved under a set neutrosophic modulo 
integer linear transformation T1 then we call T1 to be a set 
neutrosophic modulo integer subalgebra preserving linear 
transformation of V to W. 

It is left as an exercise for the reader to prove the following 

theorem: 
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THEOREM 2.4.3: Every strong set neutrosophic modulo integer 
linear subalgebra preserving linear transformation of V to W 
where V and W are set neutrosophic modulo integer vector 
spaces over a set S  N(Zn) is a set neutrosophic modulo integer 
linear subalgebra preserving linear transformation of V and W.

Prove the converse is not true.

Several interesting results on set neutrosophic modulo 

integer linear algebras over a set S  N(Zn). The task of 

obtaining interesting and innovative results is left as an exercise 

for the reader.

We give an example of a different type of set neutrosophic 

modulo integer vector spaces. 

Example 2.4.46: Let

V = 

3I 4I 7I 2I 5I 9I 10I 0 0

0 2I 9I , 0 10I 7I , 9I 7I 0

0 0 10I 0 0 I 2I I 4I

,

3I 0 0 3I 7I 9I 0 0 0 0 0 0

0 8I 0 , 0 0 0 , 8I I 7I , 0 0 0

0 0 10I 0 0 0 0 0 0 6I 7I I

where the entries of the neutrosophic matrices are from N(Z11).

Take S = {0, 1, I, 1 + 10I, 10 + I}  N(Z11). V is a set 

neutrosophic modulo integer vector space over the set S 

N(Z11).

Example 2.4.47: Let

V = {0, 3I, 

7I 8I
2I 0 12I 3I 0

, , 9I 0
7I 9I 0 4I 5I

10I 11I

, 4I,
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3I 10 2I 10 0

4I 5I 0

6I 7I 0

8I 0 0

where the entries in V are from N(Z13). Take S = {0, 1, I, 1 + 

12I, I + 12, 10I + 3, 3I + 10}  N(Z13). V is a set neutrosophic 

modulo integer vector spaces over the set S  N(Z13).

It can also so happen that S is also a collection of 

neutrosophic matrices. 

In view of this we define the new concept of set 

neutrosophic modulo integer matrix vector spaces and set 

neutrosophic modulo integer linear algebras. 

DEFINITION 2.4.24: Let V = {Any collection of m  n matrices 
with entries from N(Z)} and S  N(Z); if V is such that for every 
M  V and s  S, sM and Ms  V then we define V to be a set 
neutrosophic integer matrix vector space over the set S. ( m and 
n can vary depending on S). 

We will exhibit this by some examples. 

Example 2.4.48: Let

V = 
3I 0 14I 7I I 42I 16I 12I

, , ,
4I 7I 4I 2I 23I 55I 98I 9I

,

(2I, 4I, 7I), (0 0 7I 14I), (0 0 0 11I 14I -I),  

2I 0 3I 16I 2I 0 0

4I I 14I , 4I I I 2I

0 5I 7I 33I 11I 0 7I

the entries of the matrices are from N(Z). Take S = {1, I} 

N(Z), V is a set neutrosophic integer matrix vector space; which 
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we can also call as set neutrosophic integer mixed vector space 

over S. 

Example 2.4.49: Let

V = 

I 4I 0 0 0 0 I 0 9I

2 3I 0 , 0 0 0 , 7 4I 0

1 0 5I 0 0 0 1 0 2

,

0 I 2 110I 43I 470

3 4 5 , 81 73I 1

6 7 8I 0 0 97

be the set of 3  3 matrices with entries from N(Z). Let  

S = 

1 0 0 I 0 0 0 0 0

0 1 0 , 0 I 0 , 0 0 0 , 0, 1

0 0 1 0 0 I 0 0 0

.

V is also a set neutrosophic integer matrix vector space over S 

which is clearly not a mixed one.  

On similar lines we can define set neutrosophic rational 

matrix vector space over a set S or set neutrosophic real matrix 

vector space over S or a set neutrosophic complex matrix vector 

space over S or set neutrosophic modulo integer matrix vector 

space over S. Here we do not demand S to be a collection of 

neutrosophic numbers it can be matrices or row vectors. 

We shall illustrate each one of these by examples. 

Example 2.4.50: Let

V = 
5 9I 41I 15I

, 0, , 0 , 0 9I,25, , ,
7 17 7 8

(19I, 225, 0, I, –47, 5521), 
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0 2I

1 0 , (0,0,0,0), (0,0,0,0,0), (0,0,0,0,0,0),

I 1

7I 2I 15 1 7

3I 7 19I 2I 11
 ,

0 0
3I 0 0 0 0 0 0

, 0 0 , ,
I 11 2I 9 0 0 0 0 0

0 0

be a collection of some matrices with entries from N(Q) = Q

I . V is a set neutrosophic rational matrix vector space over the 

set S = {0, 1}  N(Q). Infact V is a set neutrosophic rational 

mixed matrix vector space over S. 

Example 2.4.51: Let

V = 

3I
0 I 0

7

7I
0 4I 0

9
,

9I
5I 7I 8I

7

4I 11I 12I
I

5 3 11

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

,

4I
I 0 I

7

12I
7I 8I 0

5

14I 0 9I 0

12I 140I
0 0

7 23

,

17I 0 0 0

0 15I 4 0 0

5I 7I 8I 9I 7

15I 21I
0 0

4 10

,
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71
15I 0 0

4

5I
0 19I 0

14

I
0 0 11I

7

0 0 0 21I

be the 4  4 neutrosophic matrices with entries from N(Q).  

Take

S = {0, 1, I, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

.

V is a set neutrosophic rational matrix vector space which is 

clearly not a mixed one.  

Example 2.4.52: Let

V = {( 2 I, 3I, 0, I), ( 17 I, 13 I, 14 I, 0, 0, 0, I), (0, 0, 0, 

0), (0, 0, 0, 0, 0, 0, 0), ( 8 I, 7 I, 0, I, 5 I), (0, 0, 0, 0, 0),  

(I, 6I, 5 I, 6 x, – 3 I),

I 2I 0

0 7I 3I

5I 6I 5I

,

10I 3I

0 14I
,

3I 2I

0 7I

91I 5I

be a set of neutrosophic matrices with entries from the set N(R). 

Take S = {I, 1, 1 – I, 3  – 3 I}  N(R). Clearly V is a set 

neutrosophic real matrix vector space over the set S. 
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 Clearly V is a set neutrosophic real mixed matrix vector space 

over the set S. 

Example 2.4.53: Let

V = 

3I 0 0

7I 5I 0

11I I 10I

,

2I 0 7I

8I 3I 0

14I 0 17I

,

0 0 0

0 0 0

0 0 0

,

I 4I I

3I I I

I 5I 7I

,

I 15I 4I

0 5I 13I

0 0 26I

be the set of 3  3 set neutrosophic matrix from the set N(R). 

Take

S = 

0 0 0 I 0 0

0 0 0 , 0 I 0

0 0 0 0 0 I

,

1 0 0

0 1 0

0 0 1

,

1 I 0 0

0 1 I 0 , 0, I, 1

0 0 1 I

.

Clearly V is set neutrosophic real matrix vector space over S.  

Example 2.4.54: Let

V = {(3 + 4i, a + bI, 1 – I, 5i + 2I, (6 + 5i) + (3 – 4i)I, 0), 
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0 0

0 0
, (c + dI, I, e + fI, 0, 7 + 4i), 

a bI 0

0 c dI
, (0, 0, 0, 

0, 0), 
0 0 0 0

0 0 0 0
,

3 4i x yI 0 10 I

14I 10 51U 17I 0

be a set of mixed matrices with entries from N(C). Take S = {0, 

1}  N(C). V is a set neutrosophic complex matrix vector space 

over the set S. Infact V is a set neutrosophic complex mixed 

matrix vector space over the set S. 

Example 2.4.55: Let

V = 
(5 3i)I 0

0 7I
,

0 0

0 0
,

(12 7i)I 17I

0 (3 5i)I
,

3I 0

0 (7 i)I
,

5I 4I

(5 i)I I
,

7iI 18iI

14I ( 3 4i)I

be a set of 2  2 neutrosophic matrices from the set N(C). Take  

S = {0, 1, I, 
0 0

0 0
,

1 0

0 1
,

I 0

0 I
;

clearly V is a set neutrosophic complex matrix vector space 

over the set S.

Now we proceed on to describe the set neutrosophic modulo 

integer vector spaces. 

Example 2.4.56: Let

V = {(I, 3I, 10I), (0, 4I, 0, 0, 5I), (I, I, I), 
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(9I, 5I, 3I, 4I, 6I, I, 0), 
3I 0

I 2I
,

3I I 3I I

I 3I I 3I
,

2I I

0 3I

4I 5I

0 7I

be a collection of mixed neutrosophic matrices with entries from 

the set N(Z11). Take S = {1, I, 1 + 10I, 10 + I)  N(Z11). V is a 

set neutrosophic modulo integer mixed matrix vector space over 

the set S. 

Example 2.4.57: Let

V = 

3I 4I 4I 3I 0 0 6I I

6I 2I I 5I 0 0 5I 4I
, , , ,

I 5I 6I 2I 0 0 2I 3I

2I I 5I 6I 0 0 4I 2I

I 6I 5I 2I 2I 5I

2I 3I 3I I 4I 6I
, ,

5I 4I 4I 6I 3I I

3I 5I I 4I 6I 3I

be a 4  2 neutrosophic matrices from the set N(Z7). Take S = 

{0. 1, I, 1 + 6I, I + 6, 2I + 5, 5 + 2I}  N(Z7). V is a set 

neutrosophic modulo integer matrix vector space over S. Clearly 

V is not a mixed one. 

Now we proceed onto define the simple notion of set 

neutrosophic real (integer, modulo integer, rational, complex) 

matrix linear algebra and set neutrosophic real (integer, modulo 

integer, rational, complex) mixed matrix linear algebra does not 

exist as in case of vector spaces. 
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We will define for one type of set say reals and the same 

definition holds good for all types of sets. 

DEFINITION 2.4.25: Let V be a collection of n  m real 
neutrosophic matrices 1  m, n <  with entries from N(R) once 
m and n are chosen they are fixed such that V is closed under 
matrix addition. Let S  N(R). If for every v  V and s  S, vs, 
sv  V then we call V to be a set neutrosophic real matrix linear 
algebra over the set S. 

On similar lines, integer, rational, complex and modulo integer 

linear algebras can be defined. 

We will illustrate these types by some examples. 

Example 2.4.58: Let

V = 
mI nI

m,n,s, t Z
tI sI

be a set of 2  2 neutrosophic matrices with real entries. Take  

S = {(1, I, 
1 0 I 0

,
0 1 0 I

.

V is a set neutrosophic integer matrix linear algebra over S. 

Example 2.4.59: Let

V = 

0 0 nI nI

0 0 nI nI
, n Z

0 0 nI nI

0 0 nI nI
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be a collection of all 4  2 neutrosophic matrices with entries 

from the set of neutrosophic integers N(Z). Take S = {0, 1, I, 5I, 

4, 8, 43, 7I, – 14I, 47I, – 2I}  N(Z).

Clearly V is a set neutrosophic integer matrix linear algebra 

over the set S.

Example 2.4.60: Let V = {(m  mI, m  mI, m  mI, …, m 

mI) | m  Q+  {0}} be a 1  n neutrosophic rational row 

vector. Take S = {0, Q+ I, Q+}  N(Q). V is a set neutrosophic 

rational matrix linear algebra over the set S. 

Example 2.4.61: Let

V = 

mI 0 0

mI mI 0 m Q {0}

mI mI mI

be the collection of 3  3 lower triangular neutrosophic matrices 

with entries from the set N(Q). Set  

S = {0, 1, 

I 0 0 1 0 0

0 I 0 , 0 1 0 , I

0 0 I 0 0 1

V is a set neutrosophic rational matrix linear algebra over set S. 

Example 2.4.62: Let

V = 

mI

mI

mI
m R {0}

mI

mI

mI
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be the collection of 5  1 real neutrosophic column matrix. Let 

S = {0, 1, I, R+, N(R+)}  N(R). V is a set neutrosophic real 

matrix linear algebra over the set S.  

Example 2.4.63: Let

V = 
mI mI 0 0 mI mI

, , m,n R {0}
0 0 mI mI nI nI

be the special collection of 2  2 real neutrosophic matrices. 

Take

S = {0, 1, I, (1 – I), (r – rI) | r  R+,
1 0 I 0

,
0 1 0 I

.

We see V is a set neutrosophic real matrix linear algebra over 

the set S. 

Next we proceed onto give some examples of set neutrosophic 

modulo integer matrix linear algebra. 

Example 2.4.64: Let

V = 

I 2I 2I 4I 3I 6I 4I 8I

3I 4I 6I 8I 0 3I 3I 7I
, , , ,

5I 6I I 3I 6I 0 2I 6I

7I 8I 5I 7I 3I 6I I 5I

5I I

6I 2I
,

7I 3I

8I 4I

6I 3I 7I 5I 8I 7I 0 0

0 6I 3I I 6I 5I 0 0
, , ,

3I 0 8I 6I 4I 3I 0 0

6I 3I 4I 2I 2I I 0 0
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be a special collection of neutrosophic matrices with entries 

N(Z9). Take S = {0, 1, I, 1 + 8I, 8 + I, 3 + 6I, 6 + 3I}  N(Z9). V 

is a set neutrosophic modulo integer matrix linear algebra over 

the set S. 

Example 2.4.65: Let V = {(2I, 3I, 4I, 6I, 7I, 10I, I), (4I, 6I, 8I, I, 

3I, 9I, 2I), (6I, 9I, I, 7I, 10I, 8I, 3I), (8I, I, 5I, 2I, 6I, 7I, 4I), (10I, 

4I, 9I, 8I, 2I, 6I, 5I), (I, 7I, 2I, 3I, 9I, 5I, 6I), (3I, 10I, 6I, 9I, 5I, 

4I, 7I), (5I, 2I, 10I, 4I, I, 3I, 8I), (7I, 5I, 3I, 10I, 8I, 2I, 9I) (9I, 

8I, 7I, 5I, 4I, I, 10I), (0, 0, 0, 0, 0, 0, 0) be a 1  7 neutrosophic 

row vector with entries from N(Z11)}. Take S = {0, 1, I, 1 + 8I, 

8 + I, 3 + 8I, 8 + 3I}  N(Z11). V is a set neutrosophic modulo 

integer matrix linear algebra over the set S.  

Now we give some examples of set neutrosophic complex 

matrix linear algebra over a set S  N(C). 

Example 2.4.66: Let V = {(mI, mI, …, mI) | m  C} be a 1  n 

complex neutrosophic row vector with entries from the set 

N(C). Take S = {0, 1, I}  N(C). V is a set neutrosophic 

complex matrix linear algebra over the set S.  

Example 2.4.67: Let

V = 
aI 0 aI 0 aI 0 aI bI aI

, , a,b C
0 aI 0 aI 0 aI bI aI bI

be a collection of 2  3 neutrosophic complex matrices with 

entries from N(C). Let S = {0, I, 1, (1 – I)}  N(C). Clearly V is 

a set neutrosophic complex matrix linear algebra over the set S. 

 Having defined set neutrosophic matrix vector spaces and 

linear algebras we can define their substructures, linear 

transformations and linear operators analogously. This can be 

taken up as a simple exercise by the reader. 

These matrix structures have applications in fields which 

include economic models, and neutrosophic bidirectional 

associative memories. 
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Next we proceed onto define the notion of set neutrosophic 

integer polynomial vector spaces and linear algebras.  

DEFINITION 2.4.26: Let N(Z) denote the set of neutrosophic 
integers. Let

N(Z)[x] = 
0

( )
m

i
i i

i
n x n N Z  

and x an indeterminate and m  Z+  {0}, N(Z)[x] denotes the 
neutrosophic integer coefficient polynomials in the variable x. 
Similarly N(Q)[x] denotes the neutrosophic rational coefficient 
polynomials in the variable x and N(R)[x], the neutrosophic 
real coefficient polynomials in the variable x, N(C)[x] the 
neutrosophic complex coefficient polynomial in the variable x 
and N(Zn)[x] the neutrosophic modulo integer coefficient 
polynomial in the variable x.  

Further we see 

N(Z)[x]  N(Q)[x]  N(R)[x]  N(C)[x] 

the containment is strict; we will define only for one; viz. 

neutrosophic integers coefficient polynomials vector space and 

linear algebra. The reader can take the simple exercise of 

defining using other coefficients. However we will give 

examples for all cases which will make the situation simple and 

easy to understand. 

DEFINITION 2.4.27: Let V  N(Z)[x], and S  N(Z). We say V is 
a set neutrosophic integer coefficient polynomial vector space 
in the variable x if s  and s  V for every  V and s  S. 

We will illustrate this by some simple examples. 

Example 2.4.68: Let

V = {(3 + I)x3 + (7 – 3I)x2 – 5Ix + 12 – 17I, 

Ix6 + (1 – I)x5 – 7Ix3 + (15 – 21I)x2 – 10Ix + 3, 0, Ix7, 21x3,
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(3 + 5I)x21, 27, –3 + 29I, 49I}  N(Z)[x]. 

Take S = {0, 1}  N(Z). V is a set neutrosophic integer 

coefficient polynomial vector space over the set S. 

The main advantage of using these structures is when we get a 

solution for certain equations which is not in the vector space V 

we can include it in V arbitrarily provided its scalar 

multiplication with S alone is compatible and nothing more. 

This sort of flexibility cannot be enjoyed by any of the algebraic 

structures. Hence these structures have advantage over them. 

Example 2.4.69: Let V = {Z+I[x]; that is Z+I[x] consists of all 

polynomials in the variable x with coefficients from Z+I}

N(Z).

Take S = 3Z+I  N(Z). V is a set neutrosophic integer 

coefficient polynomials vector space over the set S. 

The reader is given the task of defining set neutrosophic rational 

coefficient (real coefficient, complex coefficient and modulo 

integer coefficient) vector spaces over a suitable set S 

analogously.  

We will give examples of these four types of vector spaces.  

Example 2.4.70: Let V = {Q+I[x]  {0}}  N(Q)[x]. Take S = 

{Q+, Q+I}  N(Q). V is a set neutrosophic rational coefficients 

polynomial vector space over the set S. 

Example 2.4.71: Let

V = 
n

i

i i i

i 0

(m m I)x m Q  N(Q)[x]. 

Take S = Q+  N(Q). V is a set neutrosophic rational coefficient 

polynomial vector space over the set S.  

Example 2.4.72: Let
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V = {(
7

5
 – 8I)x3 , (

3 14

7 9
II)x14,

(
27 43

I
13 7

)x,
801

7
Ix7, 43x6, 2011Ix12,

27I + 3 (3 + 7I) x8 – 4Ix7 + 

48x5 – (50 – I)x3 + Ix2 – (27 – I) x + 48}  N(Q) [x]. 

Take S = {0, 1}  N(Q), V is a set neutrosophic rational 

coefficient polynomials vector space over the set S. 

Example 2.4.73: Let

V = 
n

i

ii i

i 1

a C(a a I)x  N(C) [x]. 

Set S = {0, 1}  N(C). V is a set neutrosophic complex 

coefficient polynomial vector space over S. 

Example 2.4.74: Let V = {0, 1, (5 – 3I)x, [(5 + 2i) + (14 + 5i)I] 

x3 – [(–3 + 2i) + (4 – i)I]x2 + [(11 + 8i) + (3 – 11i)I] x + (3 – i) + 

17 + 4i, [(11 + 4i) + (21 – 5i)I) x27, 28, 4I, (11 + 48i)I} 

[N(C)[x]. Set S = {0, 1}  N(C). V is a set neutrosophic 

complex coefficient polynomial vector space over S. 

Example 2.4.75: Let

V =
n

i

ii i

i 1

n I and a R(a a I)x  N(R) [x]. 

Set S = {0, 1, I, b – bI | b  R+}  N(R). V is a set neutrosophic 

real coefficient polynomial vector space over the set S.

Example 2.4.76: Let

V = {a0x + a1x
2 + … + anx

n, 0, 1, 
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5 x + 17Ix2 + (3I + 27)x3 – (4I – 3 ) x4

+ 48I x5 – 27, x3, 21 x7, (48I – 4) x3

+ ( 41  – 7I) x2 – 20  where ai  R + }  N(R) [x]. 

Take S = {0, 1}  N(R). V is a set neutrosophic real coefficient 

polynomial vector space over S. 

Example 2.4.77: Let

V = {0, I + x, Ix + 1, 

2x + Ix2 + 3x + 3Ix 2x – 3Ix I + 1 + 

(3 + 2I)x + 3I – 2)x2 + 3x3 + Ix4 + x5}

 N(Z4) [x]. 

Set S = {0, 1}  N(Z4). V is a neutrosophic modulo integer 

coefficient polynomial vector space over the set S. 

Example 2.4.78: Let

V = 
9

i

i i i 5

i 0

(m m I)x m Z .

Let S = {0, 1, I, 1 + 4I, I + 4}  N(Z5). V is a set neutrosophic 

modulo integer coefficient polynomial vector space over the set 

S.

Now we proceed onto define the notion of set neutrosophic 

polynomial linear algebra over a set S. 

DEFINITION 2.4.28: Let V  N(Z)[x] and S  N(Z). We say V is 
a set neutrosophic integer coefficient polynomial linear algebra 
over the set S if V is a set neutrosophic integer coefficient 
polynomial vector space and V is a semigroup with respect to 
addition; that is for a, b  V, a + b and b + a  V.
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We can define analogously set neutrosophic real coefficient or 

rational coefficient or complex coefficient or modulo integer 

coefficient linear algebra over a set S.  

This task is left for the reader. However to make the concept 

clear we give examples of all these types of set neutrosophic 

polynomial linear algebras. 

Example 2.4.79: Let

V = 
n

i

i i i

i 0

(m m I)x m Z ,n N  N(Z)[x]. 

Set S = {0, 1, I, m – mI}  N(Z). V is a set neutrosophic integer 

coefficient polynomial linear algebra over the set S. 

Example 2.4.80: Let

V = 
n

i

i i

i 0

m Ix m Z {0}  N(Z)[x] 

and let S = {3Z+I, 13Z+}  N(Z). V is a set neutrosophic integer 

coefficient polynomial linear algebra over the set S. 

Example 2.4.81: Let

V = 
m

i

ii i

i 1

a Q {0}(a a I)x  N(Q)[x] 

and S = {0, 1, 1 – I, 5/7 – 5/7I}  N(Q). V is a set neutrosophic 

rational coefficient polynomial linear algebra over the set S. 

Example 2.4.82: Let

V = 
n

i

i i

i 0

a Ix a Z {0}  N(Q) [x] 
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and S = {0, 1, 3Z + I}  N(Q). V is a set neutrosophic rational 

coefficient polynomial linear algebra over the set S. 

Example 2.4.83: Let

V = 
i i

n
i

in n
i 0

1 I
x n Z {0}

2 2

 N(R) [x]  

and let S = {m – mI | m  R + }  N(R). V is a set neutrosophic 

real coefficient polynomial linear algebra over the set S. 

Example 2.4.84: Let

V = 

i
n

i

i 0

p
p R {0}; q RIx

q
 N(R)[x] 

 and S = {pI | p  R +  {0}}  N(R). V is a set neutrosophic 

real coefficient linear algebra over the set S. 

Example 2.4.85: Let

V = 
n

i

7

i 0

(m mI)x m Z  N(Z7) [x] 

and S = {Z7I}  N(Z7). V is a set neutrosophic modulo integer 

coefficient polynomial linear algebra over the set S. 

Example 2.4.86: Let

V = 
n

i

23

i 0

mIx m Z  N(Z23) [x] 
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and S = {– mI + m | m  Z23}  N(Z23). V is a set neutrosophic 

modulo integer coefficient polynomial linear algebra over S. 

The interested reader is expected to define the properties like 

substructures, pseudo substructures, linear transformations and 

linear operators, analogously for set neutrosophic polynomial 

linear algebras of all types. 
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Chapter Three  

NEUTROSOPHIC SEMIGROUP LINEAR
ALGEBRA

In this chapter we for the first time introduce the notion of 

neutrosophic semigroup vector space, neutrosophic group vector 

space and the analogous neutrosophic linear algebras and 

describe a few of its properties. This chapter has two sections. 

Section one introduces the notion of neutrosophic semigroup 

vector spaces and section two introduces the notion of 

neutrosophic group vector spaces and their properties. Notions 

about neutrosophic semigroups and neutrosophic groups are 

given in chapter one of this book. 

3.1 Neutrosophic Semigroup Linear Algebras 

In this section we introduce the notion of neutrosophic 

semigroup linear algebras and neutrosophic semigroup vector 

spaces. Several interesting properties about them are derived. 
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DEFINITION 3.1.1: Let V be a neutrosophic set of integers (V 
N(Z)). S any additive semigroup with 0. We call V to be a 
semigroup neutrosophic vector space or neutrosophic 
semigroup vector space over S if the following conditions hold: 

(1) s  V for all s  S and  V. 
(2) 0.  = 0  V for all  V and 0  S; 0 is the zero vector. 
(3) (s1 + s2)  = s1  + s2  for all s1, s2  S and  V.

Note: Even if S is just a semigroup without zero then also V is a 

neutrosophic semigroup vector space. The condition (2) of the 

definition will become superfluous.  

We will illustrate this situation by some examples. 

Example 3.1.1: Let V = {1-I, 0, 25I, 37, 8 + 8I, 47I, 52 – 3I, 46 

+ 23I, 3}  N(Z). Take S = {0, 1, 1 – I}  N(Z). Clearly S is 

not a semigroup neutrosophic vector space over S. 

Thus we see here in example 3.1.1, S is not a semigroup. 

Example 3.1.2: Let V = {3Z+ I}  N(Z) and S {Z+  {0}}, a 

semigroup under addition with 0. V is a neutrosophic semigroup 

vector space over the semigroup S. 

Example 3.1.3: Let V = {3ZI, 5ZI, 2ZI}  N(Z) and S = Z the 

semigroup under addition. V is a neutrosophic semigroup vector 

space over the semigroup S.  

Example 3.1.4: Let V = {m – mI | m  Q+  {0}} and S = {QI} 

be the semigroup under addition. V is a neutrosophic semigroup 

vector space over the semigroup S. 

Example 3.1.5: Let V = {QI}  N(Q) and S = {m – mI | m 

Q+  {0}}  N(Q). V is a neutrosophic semigroup vector space 

over the semigroup S. 
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Example 3.1.6: Let V = {RI}  N(R) and S = R+  {0}  R the 

semigroup under addition. V is a neutrosophic semigroup vector 

space over the semigroup S.  

Example 3.1.7: Let V = {m – mI | m  R+  {0}} and S = Q+

{0} the semigroup under addition. V is a neutrosophic 

semigroup vector space over the semigroup S or semigroup 

neutrosophic vector space over the semigroup S. 

Example 3.1.8: Let V = {0, 1 + 4I, I + 4, 2 + 3I, 3 + 2I} 

N(Z5) and S = {Z5I}  N(Z5) be a semigroup, V is a 

neutrosophic semigroup vector space over the semigroup S. 

Example 3.1.9: Let V = {Q+I, ZI}  N(R) and S = Z the 

semigroup under addition. V is a neutrosophic semigroup vector 

space over the semigroup S.  

Now we proceed onto define substructures. 

DEFINITION 3.1.2: Let V  N(R) and S  N(R) where S is a 
semigroup under addition such that V is a neutrosophic 
semigroup vector space over the semigroup S.  

Suppose W  V is a proper subset of V such that W is itself 
a neutrosophic semigroup vector space over the semigroup S 
then we call W to be a neutrosophic semigroup vector subspace 
of V or neutrosophic semigroup subvector space of V over the 
semigroup S.

We will illustrate this situation by some examples. 

Example 3.1.10: Let V = {Q+I, ZI}  N(Q) and S = {Z+I}

N(Q), a semigroup under addition. V is a neutrosophic 

semigroup vector space over S. Take W = {Z+ I}  V.

It is easily verified W is a neutrosophic semigroup subvector 

space of V over S. 

Example 3.1.11: Let
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V = 
3ZI 0

,m mI,0 m Q
0 2ZI

and 2  2 matrices with diagonal elements from 3ZI and 2ZI} 

and S = Z+I  {0} be a semigroup under addition. V is a 

neutrosophic semigroup vector space over S. Take W = {m – 

mI, 0 | m  Q+}  V. W is a neutrosophic semigroup vector 

subspace of V over S.

DEFINITION 3.1.3: Let V be a neutrosophic semigroup vector 
space over the semigroup S. Suppose W  V be a proper subset 
of V and T  S be a proper subsemigroup of S with | T | > 1 
such that W is a neutrosophic semigroup vector space over the 
semigroup S then we call W to be a neutrosophic subsemigroup 
vector subspace of V over the subsemigroup T of S. 

We will illustrate this situation by some examples. 

Example 3.1.12: Let V = {ZI, R+I}  N(R) and S = {Z+I} be a 

neutrosophic semigroup vector space over S. Take W = {R+ I} 

 V and T = {3Z+ I}  {Z+ I}  S be a subsemigroup of S. W is 

a neutrosophic subsemigroup vector subspace of V over the 

subsemigroup T of S.  

Example 3.1.13: Let V = {R+I, QI, m – mI | m  Z+}  N(R) 

and S = {Q+I} be a semigroup. Take W = {QI, m – mI | m 

Z+}  V and T = {Z+ I}  S. W is a neutrosophic subsemigroup 

vector subspace of V over the subsemigroup T of S. 

We see if a neutrosophic semigroup vector space has no 

neutrosophic subsemigroup vector subspace over the semigroup 

S then we define them to be simple. 

DEFINITION 3.1.4: Let V be a neutrosophic semigroup vector 
space over the semigroup S. If V has no neutrosophic 
subsemigroup vector subspace over any subsemigroup T of the 
semigroup S then we call V to be a neutrosophic semigroup 
simple vector space over S. 
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We will illustrate this situation by some examples. 

Example 3.1.14: Let V = {(0 0 0), (1 I 0), (I I I), (0 I I ), (1 0 1), 

(I I 0), ( I I I 0), (0 0 0 I), (1 1 0 I), (1 I 0 1), (1 1 1 1), (0 0 0 0)} 

be a neutrosophic semigroup vector space over the semigroup S 

= {0, 1} where (1 + 1) = 1 . It is easily verified S has no 

subsemigroup T such that | T | > 1. So V is a neutrosophic 

semigroup simple vector space over S. 

Example 3.1.15: Let

V = 
1 1 0 1 I I 1 1 1 1 1 0

, , , , ,
1 I I 0 0 1 I I 0 0 I I

0 0 0 0 0 1 1 1
, ,

0 0 0 0 0 0 0 0

be a neutrosophic semigroup over the semigroup S = {0, 1} with 

1 + 1 = 1. V is also a neutrosophic semigroup simple vector 

space over S. 

Example 3.1.16: Let V = {(I I I), (0 0 0)} be a neutrosophic 

semigroup vector space over the semigroup S = {0, 1} with 1 + 

1 = 1. V is a neutrosophic semigroup simple vector space over 

S.

DEFINITION 3.1.5: Let V be a neutrosophic semigroup vector 
space over the semigroup S. If V itself is a neutrosophic 
semigroup under addition, then we call V to be a neutrosophic 
semigroup linear algebra over the semigroup S, if s( 1 + 2) = 
s 1 + s 2 for all 1, 2 in V and for all s  S. 

We will illustrate this by some examples. 

Example 3.1.17: Let V = {Z+I  {0}}  {Z+I  {0}}  {Z+I

{0}}  {Z+I  {0}}. Take S = {3Z+I  {0}}  N(Z). Both V 
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and S are semigroups under addition. So V is a neutrosophic 

semigroup linear algebra over the semigroup S. 

Example 3.1.18: Let

V = 
a b c g

a,b,c,d,e,f ,g,h N(Q)
d e f h

and S = {Q+I  {0}}. Both V and S are semigroups. Thus V is a 

neutrosophic semigroup linear algebra over the semigroup S. 

The following theorem is left as an exercise for the reader to 

prove.

THEOREM 3.1.1: Every neutrosophic semigroup linear algebra 
is a neutrosophic semigroup vector space; but in general a 
neutrosophic semigroup vector space is not a neutrosophic 
semigroup linear algebra. 

Now we proceed onto define the substructures in neutrosophic 

semigroup linear algebras. 

DEFINITION 3.1.6: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S.

Suppose W  V be a proper subset of V and W is a 
neutrosophic semigroup linear algebra over S then we call W to 
be a neutrosophic semigroup linear subalgebra of V over the 
semigroup S. 

 We will illustrate this situation by some simple examples. 

Example 3.1.19: Let

V = 
1 2 3 4

i

5 6 7 8

a a a a
a N(Q);1 i 8

a a a a
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be a neutrosophic semigroup under matrix addition and S = Z+ I 

 {0}  N(Q) be a semigroup, V is a neutrosophic semigroup 

linear algebra over the semigroup S.  

Take

W =
1 2 3

i

4

a a 0 a
a N(Q);1 i 4

a 0 0 0
 V; 

W is a neutrosophic semigroup linear subalgebra of V over the 

semigorup S.  

Example 3.1.20: Let V = {(Q+I  {0})  (QI)  (Q+I  {0}) 

QI} be a neutrosophic semigroup under component wise 

addition. Take S = (Q+I  {0})  N(Q), a semigroup. V is a 

neutrosophic semigroup linear algebra over the semigroup S. 

Choose W = {(0}  QI  (Q+I  {0})  {0}}  V, W is a 

neutrosophic semigroup linear subalgebra of V over the 

semigroup S. 

DEFINITION 3.1.7: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S and W  V be such that W is a 
proper subset of V and W is a neutrosophic semigroup linear 
algebra over the proper subsemigroup T of S, then we call W to 
be a neutrosophic subsemigroup linear subalgebra of V over the 
subsemigroup T of the semigroup S. 

We shall illustrate this by some examples. 

Example 3.1.21: Let

V = 
a b

a,b,c,d N(Q)
c d

and S = (Q+I  {0}) be neutrosophic semigroups. V is a 

neutrosophic semigroup linear algebra over the semigroup S. 

Take
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W = 
a b

a,b,c,d Q I {0}
c d

 V 

and T = (Z+I  {0})  S. W is a neutrosophic subsemigroup 

linear subalgebra of V over the subsemigroup T of the 

semigroup S.  

Example 3.1.22: Let V = N(Q)[x] that is the collection of 

polynomials in the variable x with coefficients from N(Q). 

Clearly V is a neutrosophic semigroup under addition. Take S = 

(Q+I  {0})  N(Q), S is also a semigroup. We see V is a 

neutrosophic semigroup linear algebra over the semigroup S. 

Suppose

W = {All polynomials in V of the form 
n

2i

i i

i 0

a x a N(Q);n N  V. 

W is also a neutrosophic subsemigroup of V. Take T = (Z+I

{0})  S. T is also a semigroup. We see W is a neutrosophic 

subsemigroup linear subalgebra of V over the subsemigroup T 

or the semigroup S. 

We shall define simple neutrosophic semigroup linear algebra 

of neutrosophic semigroup simple linear algebras. 

DEFINITION 3.1.8: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. If V has no proper neutrosophic 
subsemigroup linear subalgebras then we define V to be a 
neutrosophic semigroup simple linear algebra (or simple 
neutrosophic semigroup linear algebra) over the semigroup S.  

We will illustrate this by some simple examples. 

Example 3.1.23: Let

V = 3

a b e
a,b,c,d,e,f N(Z )

c d f
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be a neutrosophic semigroup under matrix addition modulo 3. 

Take S = Z3, a semigroup under addition. V is a simple 

neutrosophic semigroup linear algebra over the semigroup S. 

For S = Z3 has no proper subsemigroups.  

Example 3.1.24: Let V = {N(Z5)  N(Z5)  N(Z5)  N(Z5)

N(Z5)} be a neutrosophic simple semigroup linear algebra over 

the semigroup Z5.

It is easily verified V is a simple neutrosophic semigroup linear 

algebra over the semigroup Z5.

DEFINITION 3.1.9: Let V be a simple neutrosophic semigroup 
linear algebra over the semigroup S. If V has no neutrosophic 
semigroup linear subalgebras then we call V to be doubly 
simple neutrosophic semigroup linear algebra or neutrosophic 
semigroup doubly simple linear algebra. 

We shall illustrate these situations by some examples. 

Example 3.1.25: Let V = {N(Z7)  N(Z7)  N(Z7)  N(Z7)} be a 

neutrosophic semigroup linear algebra over the semigroup S = 

Z7. V is a neutrosophic semigroup simple linear algebra over S 

but V is not a doubly simple neutrosophic semigroup linear 

algebra over S as W = {0}  N(Z7)  N(Z7)  {0}  V is a 

neutrosophic semigroup linear subalgebra of V over S. 

Example 3.1.26: Let V = {0, 1 + I}  N(Z2) be a neutrosophic 

semigroup linear algebra over Z2 = S. V is a doubly simple 

neutrosophic semigroup linear algebra over S = Z2.

Example 3.1.27: Let V = {Z7I}  N(Z7) and S = Z7. V is doubly 

simple neutrosophic semigroup linear algebra over S = Z7.

Now we proceed on to define for neutrosophic semigroup vector 

spaces we can define the basis and generating set. 
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DEFINITION 3.1.10: Let V be a neutrosophic semigroup vector 
space over the semigroup S under addition. Let T = { 1, …, n}

 V be a subset of V; we say T generates the neutrosophic 
semigroup vector space V over S if every element  V can be 
got as  = s i; i  T and s  S. 

Example 3.1.28: Let V = {3Z+I  {0}} be a neutrosophic 

semigroup vector space over the semigroup Z+  {0}. Take T = 

{3I} V, T is generates V over S.  

Example 3.1.29: Let V = Z25I modulo integers 25. S = {0, 5, 10, 

15, 20}  Z25 is a semigroup under addition modulo 25. V is a 

neutrosophic semigroup vector space over the semigroup S.  

T = {1I, 2I, 3I, 4I, 6I, 7I, 8I, 9I, 11I, 12I, 13I, 14I, 16I, 17I, 

18I, 19I, 21I, 22I, 23I, 24I} is a generating set of V over S.  

We will illustrate by some examples that the generating set of V 

is dependent in general on the semigroup over which V is 

defined.

Example 3.1.30: Let V = Z20I be a neutrosophic semigroup 

vector space over the semigroup S = {0,10}. The generating set 

of V over S is T = {1I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 9I, 11I, 12I, 13I, 

14I, 15I, 16I, 17I, 18I, 19I}. 

If we take S1 = {0, 5, 10, 15} to be the semigroup over 

which the same V is defined we see the generating set of V over 

S1 is T1 = {1I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 9I, 11I, 12I, 13I, 14I, 15I, 

16I, 17I, 18I, 19I}. We see T1  T. 

Thus in general the generating set of a neutrosophic 

semigroup vector space is dependent on the semigroup over 

which it is defined. 

Now we proceed onto define the generating set of a 

neutrosophic semigroup linear algebra for which we also need 

the concept of independent set. 

DEFINITION 3.1.11: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. T = { 1, …, n}  V is an 
independent set if i  s j, i  j for some s  S and
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k
1

m

i i
i

s ;

i   k  n, m < n, and si  S. We say T is a generating subset of 
V if T is a linearly independent set and every element  V can 
be represented as

 = 
1

n

i i
i

s ;

si  S; 1  i  n.

We will illustrate this by some examples. 

Example 3.1.31: Let V = Q+I  {0} be a neutrosophic 

semigroup linear algebra over the semigroup S = Z+I  {0}. V 

is an infinite generating set over the semigroup S. 

Example 3.1.32: Let V = Q+I  {0} be the neutrosophic 

semigroup linear algebra over the semigroup S = Q+I  {0}. V 

is generated by the set B = {1} over S = Q+I  {0}. 

DEFINITION 3.1.12: Let V be a neutrosophic semigroup vector 
space over the semigroup S. Let W  V be such that W is a 
neutrosophic semigroup linear algebra over S, then we call W 
to be a pseudo neutrosophic semigroup linear subalgebra of V 
over S.
 If V has no pseudo neutrosophic semigroup linear 
subalgebras then we call V to be a pseudo simple neutrosophic 
semigroup vector space or pseudo neutrosophic semigroup 
simple vector space. 

We shall illustrate these situations by some simple examples. 

Example 3.1.33: Let

V = 1 2 3 4 i

a b
,(a a a a ) a,b,c,d,a Q I {0};1 i 4

c d

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}. 
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Take

W = i

a b
a Q I {0};1 i 4

c d
 V. 

W1 is also a pseudo neutrosophic linear subalgebra of V over 

the semigroup S. 

Example 3.1.34: Let V = {(Q+I  {0})[x], m – mI | m  Z+} be 

a neutrosophic semigroup vector space over the semigroup S = 

Z+I  {0}. W = {m – mI | m  Z+}  V is a pseudo 

neutrosophic semigroup linear subalgebra of V over the 

semigroup S.  

Example 3.1.35: Let V = {I, 0, 1}  N(Z2) be a neutrosophic 

semigroup vector space over the semigroup S = Z2. V has 

pseudo neutrosophic semigroup linear subalgebra over S = Z2 so 

V is a pseudo neutrosophic semigroup simple vector space over 

the semigroup S. 

Now we proceed onto define the notion of semigroup linear 

transformation. 

DEFINITION 3.1.13: Let V and W be any two neutrosophic 
semigroup vector spaces over the same semigroup S. We say a 
map T from V to W is a neutrosophic semigroup linear 
transformation if T(c ) = cT ( ) for all c  S and  V.

Example 3.1.36: Let

V = 
a b

a,b,c,d Q I {0}
c d

and W = {Q+I  {0}  Q+I  {0}} be two neutrosophic 

semigroup vector spaces over the semigroup Z+I  {0}. 

Define T : V  W by  
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T
a b

c d
 = (a, d) 

T is a neutrosophic semigroup linear transformation of V to W. 

Example 3.1.37: Let

V = {Q+I  {0}  Q+I  {0}  Q+I  {0}  Q+I  {0}} 

and

W = 
a b e

a,b,c,d,e,f Q I {0}
c d f

be two neutrosophic semigroup vector spaces define over the 

semigroup S = Q+I  {0}.  

Define T: V  W by  

T(a, b, c, d) = 
a 0 b

c d 0
,

T is a neutrosophic semigroup linear transformation of V to W. 

When the domain space and the range space are the same 

that is V = W then we call the neutrosophic semigroup linear 

transformation as neutrosophic semigroup linear operator on V.  

We will illustrate this by some examples. 

Example 3.1.38: Let

V =

1 2 3

4 5 6 i

7 8 9

a a a

a a a a R I {0};1 i 9

a a a

be a neutrosophic semigroup vector space over the semigroup 

Q+I  {0}. 

Define T : V  V by 
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T

1 2 3 1 2 3

4 5 6 5 6

7 8 9 9

a a a a a a

a a a 0 a a

a a a 0 0 a

It is easily verified T is a neutrosophic semigroup linear 

operator on V. 

Example 3.1.39: Let V = {Q+I  {0}  Q+I  {0}  Q+I  {0} 

 Q+I  {0}  Q+I  {0}} = {(a1, a2, a3, a4, a5) | ai  Q+I  {0}; 

1  i  5} be a neutrosophic semigroup linear algebra over the 

semigroup S = Z+I  {0}. 

Define T : V  V by 

T (a1, a2, a3, a4, a5) = (0, a2, a3, 0, a5).

It is easily verified that T is a neutrosophic semigroup linear 

operator on V. 

We see in case of neutrosophic semigroup linear algebras V and 

W over a semigroup S we need an additional condition to be 

satisfied by the neutrosophic semigroup linear transformation  

T: V  W; T(cu + ) = cT(u) + T( ); c  S and u,  V. 

We will illustrate this by some examples. 

Example 3.1.40: Let

V = 
1 2 3

i

4 5 6

a a a
a R I {0};1 i 6

a a a

and

W = 

1 2

3 4 i

5 6

a a

a a a R I {0};1 i 6

a a

be two neutrosophic semigroup linear algebras over the 

semigroup S = R+I  {0}. Let T: V  W be defined as  
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T
1 2 3

4 5 6

a a a

a a a
 = 

1 2

3 4

5 6

a a

a a

a a

.

It is easily verified T is a neutrosophic semigroup linear 

transformation of V to W. 

Example 3.1.41: Let

V = 

1 2 3

4 5 i

6

a a a

0 a a a Z I {0};1 i 6

0 0 a

and W = {(Z+I  {0})  (Z+I  {0})  (Z+I  {0})} = {(a1, a2,

a3) | ai  Z+I  {0}; 1  i  3} be a two neutrosophic semigroup 

linear algebras over the semigroup S = 2Z+I  {0}. 

Define a map T : V  W by

T = 

1 2 3

4 5

6

a a a

0 a a

0 0 a

 = (a1, a4, a6).

It is easily verified T is a neutrosophic semigroup linear 

transformation from V to W. 

Example 3.1.42: Let

V = 

1 2

3 4

i

5 6

7 8

a a

a a
a Q I {0};1 i 8

a a

a a

be a neutrosophic semigroup linear algebra over the semigroup 

S = Z+I  {0}.
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Define T: V  V by  

T

1 2 1

3 4 3 4

5 6 6

7 8 7

a a a 0

a a a a

a a 0 a

a a a 0

.

It is easily verified T is a neutrosophic semigroup linear 

operator on V. 

Example 3.1.43: Let

V = 
n

i

i

i 0

a x n I

and ai  Q+I  {0}; i.e., all polynomials in the variable x with 

coefficient from Q+I  {0}} be a neutrosophic semigroup linear 

algebra over the semigroup S = Z+I  {0}.

Define T: V  V by  

T
n

i

i

i 1

a x
n

2i

2i

i 1

a x

It is easily verified T is a neutrosophic semigroup linear 

operator on V. 

Let T be a neutrosophic semigroup linear transformation from V 

into W. We say T is set invertible if there exist a neutrosophic 

semigroup linear transformation U from W into V such that U.T 

and T.U are neutrosophic semigroup identity maps on V and W 

respectively. If T is neutrosophic semigroup invertible, the map 

U is called the neutrosophic semigroup inverse of T and is 

unique and is denoted by T-1.

The following theorem is left as an exercise for the reader to 

prove.
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THEOREM 3.1.2: Let V and W be two neutrosophic semigroup 
vector spaces over the semigroup S and T be a neutrosophic 
semigroup linear transformation from V into W. If T is 
invertible the inverse map T –1 is a neutrosophic semigroup 
linear transformation from W onto V. 

DEFINITION 3.1.14: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. Let W  V be a neutrosophic 
subsemigroup linear subalgebra over the subsemigroup P of S. 
P a proper subsemigroup of the semigroup S. Let T: V  W be 
a map such that T (  + u) = T( ) T( ) + T(u) for all u,  V 
and T ( )  P. We call T a pseudo neutrosophic semigroup 
linear operator on V. 

Interested reader is requested to construct examples. 

DEFINITION 3.1.15: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. Let W be a neutrosophic 
semigroup linear subalgebra of V over S. Let T be a 
neutrosophic linear operator on V. T is said to be a 
neutrosophic semigroup linear projection on W if  T( ) = w; w 

 W and T( u + ) =  T(u) + T( ), T(u) and T( )  W for all 
 S and u,  V. 

We will illustrate this by a simple example. 

Example 3.1.44: Let V = {(Z+I  {0})  (Z+I  {0})  (Z+I

{0})  (Z+I  {0})}. V is a neutrosophic semigroup linear 

algebra over the semigroup Z+I  {0}. Let W = (2Z+I  {0}) 

(2Z+I  {0})  {0}  {0}  V be a neutrosophic semigroup 

linear subalgebra of V over Z+I  {0}.

Define T: V  V by  

T (x, y, z, w) = (2x, 2y, 0,0) 

It is easily verified that T is a neutrosophic semigroup linear 

projection of V onto W.  
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DEFINITION 3.1.16: Let V be a neutrosophic semigroup vector 
space over the semigroup S. Let W  V be a neutrosophic 
semigroup vector subspace of V over the semigroup S. A 
neutrosophic linear operator T on V is said to be a neutrosophic 
semigroup projection operator of a subspace  of V onto W if for 
T : V  W; T (V)  W that is T ( ) = w for every  V and 
w W. 

We will illustrate this by a simple example. 

Example 3.1.45: Let

V = 
1 2 3 4 i i

1 2 3 4

0 0 0 0a a a a a b Q I {0}
,

b b b b0 0 0 0 1 i 4

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I {0}.

Let

W = 
1 2 3 4

i

a a a a
a Q I {0};1 i 4

0 0 0 0
 V 

be a neutrosophic semigroup vector subspace of V over the 

semigroup S. Let T : V  V be defined by 

T
1 2 3 4 1 2 3 4a a a a a a a a

0 0 0 0 0 0 0 0

and

T
1 2 3 4

0 0 0 0 0 0 0 0

b b b b 0 0 0 0
;

then T is a neutrosophic semigroup projection of V on W. 

We will now define the concept of direct union of neutrosophic 

semigroup vector subspaces of a neutrosophic semigroup vector 

space.
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DEFINITION 3.1.17: Let V be a neutrosophic semigroup vector 
space over the semigroup S. Let W1, W2, …, Wn be a collection 
of neutrosophic semigroup vector subspaces of V; if V =  Wi

and Wi  Wj =  or {0} if i  j then we say V is the direct union 
of the neutrosophic semigroup vector subspaces of the 
neutrosophic semigroup vector space V over S. 

We will illustrate this by some examples. 

Example 3.1.46: Let

1 2 3

i i i

1 2 3

1 2 3

a a a 0 0 0 0 0 0
a b c Z I {0}

V 0 0 0 , b b b , 0 0 0
1 i 3

0 0 0 0 0 0 c c c

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}.  

Take

W1 = 

1 2 3

i

a a a

0 0 0 a Z I {0};1 i 3

0 0 0

W2 = 1 2 3 i

0 0 0

b b b b Z I {0};1 i 3

0 0 0

and

W3 = i

1 2 3

0 0 0

0 0 0 c Z I {0};1 i 3

c c c

be a neutrosophic semigroup vector subspaces of V over the 

semigroup S. Clearly V = W1  W2  W3 and
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Wi  Wj = 

0 0 0

0 0 0

0 0 0

, if i  j; 1  i, j  3. 

Thus V is a direct union of neutrosophic semigroup vector 

subspaces of V over the semigroup S.  

Example 3.1.47: Let

1 2 i j k t

1

3 4

1 22

5 6 1 2 3

3 43

7 8

4

9 10

x x a ,b ,c , x Q I {0}
a

x x 1 i 4,
c ca

V , x x , b b b , 1 j 3,
c ca

x x 1 k 4,
a

x x 1 t 10.

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}.  

Take

W1 = 

1

2

i

3

4

a

a
a Q I {0};1 i 4

a

a

,

W2 = {(b1 b2 b3) | bj  Q+I  {0}; 1  i  3}, 

W3 = 

1 2

3 4

5 6 i

7 8

9 10

x x

x x

x x x Q I {0};1 i 10

x x

x x

and
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W4 = 
1 2

i

3 4

c c
c Q I {0};1 i 4

c c

be neutrosophic semigroup vector subspaces of V over the 

semigroup S. Clearly V = W1  W2  W3  W4 and Wi  Wj = 

 if i  j; 1  i, j  4. 

Now we proceed onto define the analogous notion for 

neutrosophic semigroup linear algebras. 

DEFINITION 3.1.18: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. We say V is the direct sum of 
neutrosophic semigroup linear subalgebras W1, W2, …, Wn of V 
if

(1) V = W1 + … + Wn

(2) Wi  Wj = {0} or  if i  j 1  i, j  n. 

We will illustrate this situation by some simple examples. 

Example 3.1.48: Let

V = 

1 2

3 4 i

5 6

a a

a a a Q I {0};1 i 6

a a

be a neutrosophic semigroup linear algebra over the semigroup 

S = Z+I  {0}. 

 Take 

W1 = 

1

1 6

6

a 0

0 0 a ,a Q I {0}

0 a

,
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W2 = 

2

2

0 a

0 0 a Q I {0}

0 0

,

W3 = 3 3 6

5

0 0

a 0 a ,a Q I {0}

a 0

and

W4 = 4 4

0 0

0 a a Q I {0}

0 0

be neutrosophic semigroup linear subalgebras of V over the 

semigroup S. 

V = W1 + W2 + W3 + W4

and

Wi  Wj = 

0 0

0 0

0 0

if i  j; 1  i, j  4. This V is a direct sum of neutrosophic 

semigroup linear subalgebras. 

A neutrosophic semigroup linear algebra is strongly simple if it 

cannot be written as a direct sum of neutrosophic semigroup 

linear subalgebras and has no proper neutrosophic semigroup 

linear subalgebras. 

Example 3.1.49: Let V = {0, I, 2I, 3I, …, 10I}  N(Z11) be a 

neutrosophic semigroup linear algebra Z11I. Clearly V is a 

strongly simple neutrosophic linear algebra. 

In view of this we have a nice theorem which guarantees a class 

of strongly simple neutrosophic linear algebras. 
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THEOREM 3.1.3: Let V = {0, I, 2I, …, (p – 1)I | p is any prime} 
 N(Zp) and S = ZpI be the semigroup. Clearly V is a strongly 

simple neutrosophic semigroup linear algebra. 

Proof: Since V has no proper neutrosophic semigroup linear 

subalgebras we see V cannot be written as a direct sum of 

neutrosophic semigroup linear subalgebras.  

Hence the claim. 

In the next section we proceed on to define neutrosophic group 

vector spaces and neutrosophic group linear algebras. 

3.2 Neutrosophic Group Linear Algebras 

In this section we introduce the notion of neutrosophic group 

linear algebras. Already the notion of neutrosophic groups have 

been introduced in the chapter one of this book. We give several 

interesting properties about them. Infact we illustrate these new 

concepts by examples so that the reader can follow them easily. 

DEFINITION 3.2.1: Let V be a non empty subset (say N(R), N(C) 
or N(Zn) or N(Q) or N(Z)). Let G be a group under addition. We 
call V to be neutrosophic group vector space over G if the 
following conditions are true. 

(1) For every v  V and g  G, gv and vg is in V. 
(2) 0.v = 0 for every v  V, 0 the additive identity of G. 

Example 3.2.1: Let V = {0, 2I, 4I, 6I, 8I, 10I} be a subset of 

N(Z12) and G = {0, I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 10I, 9I, 11I} 

N(Z12) be a group under addition modulo 12. V is a 

neutrosophic group vector space over the group G. 

Example 3.2.2: Let

V = 
1 2 3 4

1 2 3 4

0 0 0 0 b b b b
, ,

a a a a 0 0 0 0
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i j k

1 2 3

0 0 0 a b
, a ,b ,c ,a,b,c,d QI

c c c c d
;

1  i  4, 1  j  4 and 1  k  3} 

and G = QI  N(Q) be a group under addition. V is a 

neutrosophic group vector space over the group G.  

Example 3.2.3: Let V = {(0, a1, 0, a2, 0, a3), (b1, b2, b3, b4), (c1,

c2, c3) | ai, bj, ck  ZI; 1  i  3, 1  j  4 and 1  k  3} and G = 

ZI be a group under addition. V is a neutrosophic group vector 

space over G.  

Example 3.2.4: Let

V = 

1 2 3

1 1

2 2

3 3

0 0 0 0 x x x
a b

, a b , 0 0 , 0 0 0 ,
0 0

0 0 a b 0 0 0

4 5 i i i

6

0 0 0

0 x x a ,b ,x RI;1 i, j 3 and 1 k 6

x 0 0

and G = QI a group under addition. V is a neutrosophic group 

vector space over the group G. 

DEFINITION 3.2.2: Let V be a neutrosophic group vector space 
over the group G. Suppose W  V be a proper subset of V. We 
say W is a neutrosophic group vector subspace of V if W is itself 
a neutrosophic group vector space over G. 

We shall illustrate this situation by some examples.  

Example 3.2.5: Let V = {(2ZI)[X] and (5ZI)[x]; be polynomials 

with coefficients from 2ZI and 5ZI respectively} and G = ZI a 
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group under addition. V is a neutrosophic group vector space 

over G. Take W = {(2ZI)[x]}  V; W is a neutrosophic group 

vector subspace of V over the group G. 

Example 3.2.6: Let

V = 

i j1 1 4

2 2 5 6

3 3 7

a , b RI;a 0 0 b 0 0 0 0 b

a 0 0 , 0 b 0 , b 0 b 1 i 3;

a 0 0 0 0 b 0 b 0 1 j 7;

;

be a neutrosophic group vector space over the group G = ZI.  

Take

W = 

4

5 6 4 5 6 7

7

0 0 b

b 0 b b ,b ,b ,b RI

0 b 0

 V; 

W is a neutrosophic group vector subspace of V over the group 

G.

Now we proceed onto define the concept of linearly 

independent subset of a neutrosophic group vector space. 

DEFINITION 3.2.3: Let V be a neutrosophic group vector space 
over the group G.

We say a proper subset P of V to be a linearly dependent 
neutrosophic subset of V if for any p1, p2 in P (p1  p2) p1 = ap2

or p2 = a1 p1 for some a, ai  G. If for no distinct pair of 
elements p1, p2  P we have a1, a2  G such that p1 = a1 p2 or p2
= a2 p1 then we say P is a linearly independent neutrosophic 
subset of V.

We will illustrate this by some examples. 

Example 3.3.7: Let
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V = 

1 2

1 2 1 2

1 2

a a 0 0 0 0

0 0 , a a , 0 0 a ,a ZI

0 0 0 0 a a

be a neutrosophic group vector space over the group ZI.  

Take

P = 

2I 4I I 2I 6I 12I 5I 10I

, , ,0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 V. 

P is a linearly dependent neutrosophic subset of V. 

Take

Q = 

0 0 I 4I 0 0

I I , 0 0 , 0 0

0 0 0 0 5I 6I

 V. 

Q is a linearly independent neutrosophic subset of V over G. 

Take

T = 

8I I 0 0 0 0

0 0 , 7I 8I , 0 0

0 0 0 0 I 7I

 V, 

T is also a linearly independent neutrosophic subset of V over 

G.

Now we will define the notion of generating neutrosophic 

subset of a neutrosophic group vector space over a group G. 

DEFINITION 3.2.4: Let V be a neutrosophic group vector space 
over the group G. Suppose T is a subset of V which is a linearly 
independent neutrosophic subset of T and if T generates V that 
is using t  T and g  G we can get every v  V as v = gt then 
we call T to be a generating neutrosophic subset of V over G. 
The number of elements in G gives the dimension of V. If T is of 
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finite cardinality we say V is of finite dimension. If T is of 
infinite cardinality we say V is of infinite dimension. 

Example 3.2.8: Let

V = 
1 1

i i

1 1

a 0 0 b
, a ,b ZI

a 0 0 b

be a neutrosophic group vector space over the group ZI = G. 

Take

T = 
I 0 0 I

,
I 0 0 I

 V; 

T is generating neutrosophic subset of V. Clearly V is finite 

dimensional we can have independent neutrosophic subsets of V 

but they may not be generating subsets of V which will be 

illustrated.

Example 3.2.9: Let

V = 
1 2

i i

1 2

0 0a a
, a ,b ZI;1 i 2

b b0 0

be a neutrosophic group vector space over the group G = ZI. We 

have several linearly independent neutrosophic subsets of V but 

V cannot be finitely generated over G. Thus dimension of V 

over G is infinite.  

Take

T = 
0 0 0 0 0 0 I 0 0 I I I

, , , , ,
I 0 0 I I I 0 0 0 0 0 0

is a linearly independent neutrosophic subset of V but T cannot 

generate V over G. 
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Example 3.2.10: Let V = {(a a a a a a) | a  QI} be a 

neutrosophic group vector space over the group QI = G. T = (I I 

I I I I)}  V is the generating subset of V over QI. 

Example 3.2.11: Let V = {(a a a a a a) be such that a  QI} be a 

neutrosophic group vector space over the group G = ZI. Clearly 

V is of infinite dimension over ZI.  

However we have several finite linearly independent 

subsets of V. 

DEFINITION 3.2.5: Let V be a neutrosophic group vector space 
over the group G. Let W  V be a proper subset of V. H  G be 
a proper subgroup of G. If W is a neutrosophic group vector 
space over H then we call W to be a neutrosophic subgroup 
vector subspace of V over the subgroup H of G.  

We will illustrate this by some simple examples. 

Example 3.2.12: Let

V = {(a a a), 

x

a b y
,

c d z

w

| a, b, c, d, x, y, z, w,  QI} 

be a neutrosophic group vector space over the group G = QI. 

Take

W = 
a b

a,b,c,d QI
c d

contained in V and H = ZI  G be a subgroup of G; clearly W is 

a neutrosophic subgroup vector subspace of V over the 

subgroup H = ZI of G. 

Example 3.2.13: Let V = {QI  QI  QI} = {(x, y, z) | x, y, z 

QI} be a neutrosophic group vector space over the group G = 

ZI. Let W = {QI  QI  {0}} = {(x, y, 0) | x, y  QI}  V; W is 
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a neutrosophic subgroup vector subspace of V over the 

subgroup H = 2ZI of G. 

Example 3.2.14: Let

V = 

i j1 2 3 6

4 5 1 2

6 3 4 5

a ,b QIa a a 0 0b

0 a a , b b 0 1 i 6

0 0 a b b b 1 j 6

be a neutrosophic group vector space over the group G = QI. 

Take

W = 

1 2 3

4 5 i

6

a a a

0 a a a ZI; 1 i 6

0 0 a

contained in V. Let H = ZI  G be a subgroup of G. Clearly W 

is a neutrosophic subgroup vector subspace of V over the 

subgroup H of G. 

Example 3.2.15: Let V = {Z6I  Z6I  Z6I  Z6I} be a 

neutrosophic group vector space over the group G = Z6I. Take 

W = {(0 0 0), (I I I), (3I, 3I, 3I)}  V; W is a neutrosophic 

subgroup vector subspace of V over the subgroup H = {0, 3I} 

G. Clearly W is not a neutrosophic group vector subspace of V 

over the group G.  

In the view of this we have the following theorem. 

THEOREM 3.2.1: Let V be a neutrosophic group vector space 
over the group G. If W is a neutrosophic group vector subspace 
of V then W need not be a neutrosophic subgroup vector 
subspace of V. 

The proof is left as an exercise for the reader. 
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THEOREM 3.2.2: Let V be a neutrosophic group vector space 
over a group G. Suppose S  V is a neutrosophic subgroup 
vector subspace of V then S need not in general be a 
neutrosophic group vector subspace of V over G.

This proof is also left as an exercise for the reader. 

Next we proceed onto define a neutrosophic duo subgroup 

vector subspace. 

DEFINITION 3.2.6: Let V be a neutrosophic group vector space 
over the group G. Let W  V. If W is a neutrosophic subgroup 
vector subspace over a proper subgroup H of G as well as W is 
a neutrosophic group vector subspace of V over G then we call 
W to be a neutrosophic duo subgroup vector subspace of V. 

We will illustrate this by some examples. 

Example 3.2.16: Let

V = 

1

1 2

2 3 i

3

4 5 6

a 0 0
a a

, a a 0 a QI;1 i 6
0 a

a a a

be a neutrosophic group vector space over the group G = QI. 

Let

W = 
1 2

i

3

a a
a QI;1 i 3

0 a
 V 

be a neutrosophic group vector subspace of V over the group G. 

It is easy to verify W is also a neutrosophic subgroup vector 

subspace of V over the subgroup H = ZI  QI  G. Thus W is a 

neutrosophic due subgroup vector subspace of V. 

Example 3.2.17: Let V = {(x1, x2, x3, x4) | xi  QI; 1  i  4} be 

a neutrosophic group vector space over the group G = ZI. Take 

W = {(0, x2, x3, 0)| x2, x3  QI}  V. W is a neutrosophic group 
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vector subspace of V over G and W is also a neutrosophic sub-

group vector subspace of V over the subgroup H = ZI  QI = G. 

Thus W is a neutrosophic duo subgroup vector subspace of V.  

The following theorem is evident from the very definition.  

THEOREM 3.2.3: Let V be a neutrosophic group vector space  
over the group G; if W is a neutrosophic duo subgroup vector 
subspace of V then W is both a neutrosophic group vector 
subspace of V as well as W is a neutrosophic subgroup vector 
subspace of V. 

DEFINITION 3.2.7: Let V be a neutrosophic group vector space 
over the group G. Suppose V has no neutrosophic subgroup 
vector subspace then we call V to be a neutrosophic simple 
group vector space. 

We will illustrate this situation by some examples. 

Example 3.2.18: Let V = {Z11I  Z11I  Z11I  Z11I  Z11I} = 

{(x, y, z, w, t) / x, y, z, w, t,  Z11I}. V is a neutrosophic simple 

group vector space over the group G = Z11I.

Example 3.2.19: Let

V = 23

a b
a,b,c,d Z I

c d

be a neutrosophic group vector space over the group G = Z23I. V 

is a neutrosophic simple group vector space over G as G has no 

proper subgroups.  

We have the following nice theorem which guarantees the 

existence of neutrosophic simple group vector spaces. 

THEOREM 3.2.4: Let V be a neutrosophic group vector space 
over a group G, which has no proper subgroups other than G 
and {0}, then V is a neutrosophic simple group vector space 
over G.
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Proof: Follows from the fact that G has no proper subgroup for 

a proper subset W to be a neutrosophic subgroup vector 

subspace; we need a proper subgroup in G over which W is a 

group vector space. 

If G has no proper subgroup the existence of neutrosophic 

subgroup vector subspace is impossible. 

We will now give a large class of neutrosophic simple group 

vector spaces. 

THEOREM 3.2.5: Let V = ZpI  ZpI  …  ZpI – n times be a 
neutrosophic group vector space over the group ZpI = G, where 
p is a prime. V is a neutrosophic simple group vector space over 
G = ZpI.

Proof: Clear from the fact that ZpI has no proper subgroups. 

DEFINITION 3.2.8: Let V be a neutrosophic group vector space 
over the group G. Let W  V and S  G where S is a semigroup 
under +. If W is a neutrosophic semigroup vector subspace of V 
over S then we call W to be a neutrosophic pseudo semigroup 
vector subspace of V over S.

We will illustrate this by some simple examples. 

Example 3.2.20: Let V = ZI  ZI  ZI be a neutrosophic group 

vector space over the group G = ZI. W = ZI  ZI  {0}  V. W 

is a neutrosophic pseudo semigroup vector subspace of V over 

the subsemigroup S = Z+I  {0}  ZI. 

Example 3.2.21: Let

V = {(QI  QI  QI  QI), 
a b

c d
 | a, b, c, d  QI} 

be a neutrosophic group vector space over the group G = QI. 

Let
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W = 
a b

a,b,c,d QI
c d

 V 

is a neutrosophic pseudo semigroup vector subspace of V over 

the semigroup Z+I  {0}  QI = G. 

Example 3.2.22: Let

V = 

a

b

c

, [a b c d e] | a, b, c, d, e  RI} 

be a neutrosophic group vector space over the group G = QI. 

Take W = {(a, b, c, d, e) | a, b, c, d, e  RI}  V be a 

neutrosophic pseudo semigroup vector subspace of V over the 

semigroup Z+I  {0}  QI = G. 

We now proceed onto define the notion of neutrosophic group 

linear transformation.  

DEFINITION 3.2.9: Let V and W be two neutrosophic group 
vector spaces defined over the same group G. A map T from V 
to W will be called as the neutrosophic group linear 
transformation; if  T( ) = T( ) for all  G and for all 
V.

We will illustrate this by some simple examples. 

Example 3.2.23: Let V = ZI  ZI  ZI and W = QI  QI  QI 

QI  QI be two neutrosophic group vector spaces over the group 

G = ZI. Let T : V  W be defined by T (x, y, z) = (z, y, x, y, z) 

for all (x, y, z)  V. Clearly T is a neutrosophic group linear 

transformation of V into W. 

Example 3.2.24: Let
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V = 
a b

a,b,c,d QI
c d

and

W = 

a

b

c

d

 |  a, b, c, d  QI} 

be a neutrosophic group vector spaces over the group G = QI.  

Define T : V  W by 

T
a b

c d
=

a

b

c

d

;

T is a neutrosophic group linear transformation of V into W.  

DEFINITION 3.2.10: Let V be a neutrosophic group vector space 
over the group G. Let T from V to V be a neutrosophic linear 
transformation then we call T to be a neutrosophic group linear 
operator on V. 

We will illustrate this by some examples. 

Example 3.2.25: Let V = {(a, b, c, d) | a, b, c, d  QI} be a 

neutrosophic group vector space over G = QI. Define T from V 

to V by T(a, b, c, d) = (d, c, b, a). Clearly T is a neutrosophic 

group linear operator on V. 

Example 3.2.26: Let

V = 

a b c

d e f a,b,c,d,e,f ,g,h,i RI

g h i
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be a neutrosophic group vector space over the group G = ZI. 

Define T : V  V by  

T

a b c

d e f

g h i

 = 

a 0 c

d e 0

0 0 i

.

It is easily verified T is a neutrosophic group linear operator on 

V. Define N(MG (V,W)) = {collection of all neutrosophic group 

linear transformations from V to W; V and W neutrosophic 

group vector spaces over the group G} and N(MG(V,V)) = {set 

of all neutrosophic group linear operators from V to V, V a 

neutrosophic group vector space over G}. The reader is 

expected to study the algebraic structure of N(MG(V,W)) and 

N(MG(V,V)). 

We now proceed onto the notion of neutrosophic group linear 

algebra over a group. 

DEFINITION 3.2.11: Let V be a neutrosophic group vector space 
over the group G. If V is again a neutrosophic group under the 
operation of addition, then we call V to be a neutrosophic group 
linear algebra over G.  

Example 3.2.27: Let

V = 

a a a

a a a a QI

a a a

.

V is a neutrosophic group linear algebra over the group ZI = G.  

Example 3.2.28: Let V = {(x, y, z) | x, y, z  QI} be a 

neutrosophic group linear algebra over the group G = QI. 

It is important to mention at this juncture that every 

neutrosophic group linear algebra is a neutrosophic group vector 

space over a group G but however a neutrosophic group vector 
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space over a group G in general is not a neutrosophic group 

linear algebra over a group G.  

We will illustrate this by an example. 

Example 3.2.29: Let

V = 
a b 0 0 a 0 0 d

, , , a,b,c,d,e QI
0 0 c d 0 c e 0

be a neutrosophic group vector space over the group G = QI. 

We see V is not a group under matrix addition. Thus V is only a 

neutrosophic group vector space over the group G and V is not a 

neutrosophic group linear algebra over the group G. 

We proceed onto define the notion of dimension of a 

neutrosophic group linear algebra. 

DEFINITION 3.2.12: Let V be a neutrosophic group linear 
algebra over the group G. X  V be a proper subset of V, we 
say X is a linearly independent subset of V if X = {x1, …, xn}, for 

some xi  G; 1  i  n; 
1

n

i i
i

x = 0 if and only if each i = 0. A 

linearly independent subset X of V is said to be a generator of V 
if every element v of V can be represented as 

v = 
1

n

i i
i

x ; i  G (1  i  n). 

We will illustrate this situation by some examples. 

Example 3.2.30: Let V = {(x, y, z) | x, y, z  Z2I; Z2 = {0, I}} 

be a neutrosophic group linear algebra over the group Z2I = G. 

V is generated by the set X = {(I 0 0) (0 I 0), (0 0 I)}. Clearly X 

is a linearly independent subset of V over the group G = Z2I.

Example 3.2.31: Let
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V = 

1 2

3 4 i

5 6

a a

a a a ZI; 1 i 6

a a

be the neutrosophic group linear algebra over the group G = ZI. 

Let

X = 

I 0 0 I 0 0 0 0 0 0 0 0

0 0 , 0 0 , I 0 , 0 I , 0 0 , 0 0

0 0 0 0 0 0 0 0 I 0 0 I

 V 

is the generating subset of V over the group G = ZI. 

We now proceed into define substructures of neutrosophic 

group linear algebras. 

DEFINITION 3.2.13: Let V be a neutrosophic group linear 
algebra over the group G. Let W  V be a proper subset of V. 
We say W is a neutrosophic group linear subalgebra of V over 
G if W is itself a neutrosophic group linear algebra over G. 

We illustrate this situation by some examples. 

Example 3.2.32: Let

V = 

a b c

d e f a,b,...,i QI

g h i

be a neutrosophic group linear algebra over the group G = ZI. 

Take

W = 

a a a

b b b a,b,c QI

c c c

 V; 
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W is a neutrosophic group linear subalgebra of V over the group 

G.

Example 3.2.33: Let V = {(a, b, c) | a, b, c  QI} be a 

neutrosophic group linear algebra over the group G = ZI. Take 

W = {(a, b, c) | a, b, c  ZI  QI}  V; W is a neutrosophic 

group linear subalgebra of V over the group G. 

We will now proceed onto define the notion of direct sum of 

neutrosophic group linear subalgebra of a neutrosophic group 

linear algebra.  

DEFINITION 3.2.14: Let V be a neutrosophic group linear 
algebra over the group G. Let W1, W2, …, Wn be neutrosophic 
group linear subalgebras of V over the group G.  

We say V is a direct sum of the neutrosophic group linear 
subalgebras W1, W2, …, Wn if 

(1) V = W1 + … + Wn

(2) Wi  Wj = {0} if i  j; 1  i, j  n. 

 We will illustrate this by some examples. 

Example 3.2.34: Let V = Z14I  Z14I  Z14I be a neutrosophic 

group linear algebra over the group G = Z14I, the group under 

addition modulo 14. Let W1 = Z14I  {0}  {0}, W2 = {0}  Z14I

 Z14I be neutrosophic group linear subalgebras of V over the 

group G.

We see V = W1+W2 and W1  W2 = (0 0 0); if i  j; 1  i, j 

 3. 

Example 3.2.35: Let

V = 

a 0 0

b c 0 a,b,c,d,e,f QI

d e f
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be a neutrosophic group linear algebra over G = ZI, the group 

under addition. 

Take

W1 = 

a 0 0

0 0 0 a,f QI

0 0 f

,

W2 = 

0 0 0

b c 0 b,c QI

0 0 0

,

W3 = 

0 0 0

0 0 0 d QI

d 0 0

and

W4 = 

0 0 0

0 0 0 e QI

0 e 0

be neutrosophic group linear subalgebras of V over the group G. 

We see V = W1 + W2 + W3 + W4 and  

Wi  Wj = 

000

000

000

 i  j; 1  i, j  4. 

Now we proceed onto define the notion of pseudo direct sum of 

a neutrosophic linear algebra over the group G. 

DEFINITION 3.2.15: Let V be a neutrosophic group linear 
algebra over the group G. Suppose W1, W2, …,Wn are distinct 
neutrosophic group linear subalgebras of V over G. We say V is 
a pseudo direct sum if  
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(1) V = W1 + … + Wn

(2) Wi  Wj  {0} or  in general even if i  j 
(3) We need Wi’s to be distinct i.e., Wi  Wj  Wi or Wj if i 

 j; 1  i, j  n. 

We will illustrate this situation by some examples. 

Example 3.2.36: Let

V = 

1 2 3

4 5 6 i

7 8 9

a a a

a a a a QI; 1 i 9

a a a

be a neutrosophic group linear algebra over the group G = ZI. 

Take

W1 = 

1 2

5 1 2 5

a a 0

0 a 0 a ,a ,a QI

0 0 0

W2 = 

2

4 2 4

0 a 0

a 0 0 a ,a QI

0 0 0

W3 = 

1

4 1 4 7 8 9

7 8 9

a 0 0

a 0 0 a ,a ,a ,a ,a QI

a a a

and

W4 = 

1

4 5 6 1 4 5 6 8

8

a 0 0

a a a a ,a ,a ,a ,a QI

0 a 0

to be neutrosophic group linear subalgebras of V over the group 

G = ZI. We see V = W1 + W2 + W3 + W4
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But

W1  W2 = 

20 a 0

0 0 0

0 0 0

, W1  W3 = 

1a 0 0

0 0 0

0 0 0

,

W1  W4 = 

1a 0 0

0 0 0

0 0 0

, W2  W3 = 4

0 0 0

a 0 0

0 0 0

,

W2  W4 = 4

0 0 0

a 0 0

0 0 0

 and W3  W4 = 

1

4

8

a 0 0

a 0 0

0 a 0

and Wi Wj for i  j; 1  i, j  4. 

Thus V is a pseudo direct sum of neutrosophic group linear 

subalgebras over the same group G. 

Example 3.2.37: Let V = {Z24I  Z24I  Z24I  Z24I} be a 

neutrosophic group linear algebra over the group G = Z24I.

Take

W1 = {Z24I  Z24I  {0}  {0}}, 

W2 = {0  { Z24I}  Z24I  {0}} and 

W3 = {{0}  Z24I  Z24I  Z24I}

to be neutrosophic group linear subalgebras of V over G. We 

see V = W1 + W2 + W3

W1  W2 = {0}  Z24I  {0}  {0} 

W1  W3 = {{0}  Z24I  {0}  {0}} 

W2  W3 = {0}  {0}  Z24I  {0} 

Thus V is a pseudo direct sum of neutrosophic linear 

subalgebras of V over the group G. 
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Now we proceed onto define yet another new algebraic structure 

in neutrosophic group linear algebras over a group G. 

DEFINITION 3.2.16: Let V be a neutrosophic group linear 
algebra over the group G. Let W  V be a proper subgroup of 
V. Suppose H  G be a proper subsemigroup of G.  

If W is a neutrosophic semigroup linear algebra over the 
semigroup H then we call W to be a pseudo neutrosophic 
semigroup linear subalgebra of the neutrosophic group linear 
algebra V. 

We will illustrate this situation by some examples. 

Example 3.2.38: Let

V = 

a b c

d e f
a,b,...,m QI

g h i

k l m

be a neutrosophic group linear algebra over the group G = ZI. 

W = 

a a a

a a a
a QI

a a a

a a a

is a pseudo neutrosophic semigroup linear subalgebra of the 

neutrosophic group linear algebra over the semigroup Z+I

{0}.

Example 3.2.39: Let V = {QI  QI  QI  QI  QI  QI} be a 

neutrosophic group linear algebra over the group G = ZI. Take 

W ={QI  {0}  QI  {0}  QI  {0}}  V; W is a pseudo 

neutrosophic semigroup linear subalgebra of V over the 

semigroup S = 3Z+I  {0}  G. 



133

It may so happen that at times we may have neutrosophic group 

linear algebra V over a group G but may not have pseudo 

neutrosophic semigroup linear subalgebras of V. This is given 

by these classes of neutrosophic group linear algebras. 

Example 3.2.40: Let V = ZpI  ZpI  …  ZpI be a neutrosophic 

group linear algebra over the group G = ZpI (p a prime); V has 

no pseudo neutrosophic semigroup linear subalgebras. 

Example 3.2.41: Let V = {(aij)m n | aij  ZpI; p a prime} be a 

neutrosophic group linear algebra over the group G = ZpI. V has 

no pseudo neutrosophic semigroup linear subalgebra as G = ZpI

has no proper subset which is a semigroup under addition.  

Example 3.2.42: Let V = {ZpI [x] | p is a prime and ZpI[x] is a 

collection of polynomials in the variable x with coefficient from 

ZpI} be a neutrosophic group linear algebra over the group G = 

ZpI. V has no pseudo neutrosophic semigroup linear subalgebra 

as G = ZpI has no proper subset which is a semigorup.  

Now we proceed onto define yet another new algebraic structure 

of the neutrosophic group linear algebra. 

DEFINITION 3.2.17: Let V be a neutrosophic group linear 
algebra over the group G. Let P be a proper neutrosophic 
subset of V. P is just a set and it is not a closed structure with 
respect to addition. If P is a neutrosophic group vector space 
over G then we call P to be a neutrosophic pseudo group vector 
subspace of V over G.  

We will illustrate this by some simple examples. 

Example 3.2.43: Let

V = 
1 21 2

1 2 1 2

1 2 1 2

a a 0 0a a
, , a ,a ,b ,b QI

b b b b0 0

be a neutrosophic group linear algebra over the group G = ZI. 

Let
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W = 
1 2

1 2 1 2

1 2

0 0a a
, a ,a ,b ,b QI

b b0 0
 V; 

W is only a neutrosophic group vector space over the group G. 

Thus W is a pseudo neutrosophic group vector subspace of V 

over the group G.  

Example 3.2.44: Let

V = 

1 2 1 2

i

3 4 3 4

5 6 6 5

a a 0 0 0 0 a a
a QI

a 0 , 0 a , 0 0 , a a
1 i 6

0 0 0 a a 0 a a

be a neutrosophic group linear algebra over the group G = QI. 

Take

W = 4 6 4 5

6 5

0 0 0 0

0 0 , 0 a a ,a ,a QI

a 0 0 a

 V, 

W is a pseudo neutrosophic group vector subspace of V over the 

group G. 

Example 3.2.45: Let

V = 7

a b a 0 0 c
, , a,b,c,d Z I

c d 0 b d 0

be a neutrosophic group linear algebra over Z7I = G. 

W = 7

a 0 0 c
, a,b,c,d Z I

0 b d 0
 V 

is a pseudo neutrosophic group vector space over the group G. 
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Chapter Four  

NEUTROSOPHIC FUZZY
SET LINEAR ALGEBRA

In this chapter we introduce the new notion of neutrosophic set 

fuzzy linear algebra, neutrosophic semigroup fuzzy linear 

algebra and neutrosophic group fuzzy linear algebra.  

Recall, as fuzzy vector space (V, ) or V is an ordinary 

vector space V over a field F with a map : V  [0,1] 

satisfying of following conditions: 

(1)  (a + b)  min { (a), (b)}

(2) (– a) = (a) 

(3) (0) = 1 

(4) (ra) (a)

for all a, b V and r  F where F is a field.  

We now define the notion of neutrosophic set fuzzy linear 

algebra.
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DEFINITION 4.1: Let V be a neutrosophic set linear algebra 
over the set S. We say V with a map  is a neutrosophic fuzzy 
set linear algebra if 

 : V [0, 1]  [0, I]  = N([0, 1]) 

 (Here N([0, 1]) = {a + bI | a, b  [0, I]). (N([0, 1]) will be 
known as the fuzzy neutrosophic set or neutrosophic fuzzy set), 
such that  (a + b)  min(  (a), (b)) for all a, b  V and  

 (I) = I and is denoted by V  or V or V( ).
Since we known in the neutrosophic set vector space V 

merely we take V to be a set but in case of neutrosophic set 
linear algebra we assume V is closed with respect to some 
operation usually denoted as ‘+’ so the additional condition 

(a + b)  min( (a), (b)) is essential for every a, b V.

We will illustrate this situation by some examples. 

Example 4.1: Let V = Q+I be a neutrosophic set linear algebra 

over the set S = Z+I.

Define : V  N([0, 1]) 

(x) = 

I if x aI

1
I if x a bI and a b 1

a b

I 1 if x a bI and a b 1

 Clearly V  is a neutrosophic set fuzzy linear algebra. 

Example 4.2: Let

V = 
aI bI

a,b,c,d Z I
cI dI

be a neutrosophic set linear algebra over the set S = 10Z+I. 

Define : V  N([0, 1]) as follows:  
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aI bI

cI dI
 = 

1
I if a b

a

1
I if b d

b

1
I if c a

c

1
I if a d

d

We see V  is a neutrosophic set fuzzy linear algebra.  

DEFINITION 4.2: Let V be a neutrosophic set vector space over 
the set S. Let W  V be a neutrosophic set vector subspace of V 
defined over the set S. If  : W  N([0, 1]) then W  is called the 
neutrosophic fuzzy set vector subspace of V.

We now proceed onto define the notion of neutrosophic fuzzy 

set linear subalgebra. 

DEFINITION 4.3: Let V be a neutrosophic set linear algebra 
over the set S. Suppose W is a neutrosophic set linear 
subalgebra of V over S. Let : W  N([0, 1]). W is a 
neutrosophic set fuzzy linear subalgebra if (a+b)  min { (a),

(b)} for a, b  W. 

Now we proceed onto define the notion of neutrosophic fuzzy 

semigroup vector spaces. 

DEFINITION 4.4: A neutrosophic fuzzy semigroup vector space 
or a fuzzy neutrosophic semigroup vector space (V, ) or V
where V is an ordinary neutrosophic semigroup vector space 
over the semigroup S; with a map  : V  N([0, 1]) satisfying 
the following condition;   (ra)  (a) for all a  V and r  S. 

We will illustrate this by some examples. 
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Example 4.3: Let V = (a1I, a2I, a3I, a4I, a5I, a6I, a7I) | ai  Z+I, 1 

 i  7} be a neutrosophic set vector space over the set S = 5Z+I.

Define  : V  N([0, 1]) by  

(a1I, a2I, a3I, a4I, a5I, a6I, a7I) = 
1 7

1

a ... a
+ I 

for every (a1I, a2I, a3I, a4I, a5I, a6I, a7I) in V. V  is a neutrosophic 

set fuzzy vector space. 

Example 4.4: Let

V = 

1 2

3 4

5 6 i

7 8

9 10

a I a I

a I a I

a I a I | a QI, 1 i 10

a I a I

a I a I

be a neutrosophic set vector space over a set S = Z+I.

Define  : V  N([0, 1]) by 

1 2

3 4

5 6

7 8

9 10

a I a I

a I a I

a I a I

a I a I

a I a I

 = 

i

i

i

1
I if | a | Z

| a |

I 1 otherwise

0 if a 0;i 1,2, ,10

V  is a neutrosophic set fuzzy vector space. 

Example 4.5: Let

V = 
aI bI

aI,bI,cI,dI Z I {0}
cI dI
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be a neutrosophic set linear algebra over the set S = 3Z+I  {0}. 

Let  : V  N([0, 1]). Define   

aI bI

cI dI
 = 

1
I if a d 0

a d

1
I if b c 0

b c

1 if a d 0 and if b c 0

Example 4.6: Let V = {(a1I, a2I, a3I, a4I, a5I, a6I) | ai I  QI; 1 

i  6} be a neutrosophic set linear algebra over the set S = Z+I

{0}. Let W = {(a1I, a2I, a3I, a4I, a5I, a6I) | ai I  Z+I  {0}} be a 

neutrosophic set linear subalgebra of V over S.  

Define : W  N([0, 1]) by 

 (a1I, a2I, …, a6I) = 

i

i

i

I 1
if atleast one a 0 or 1

5

I if all a 's are 1

1 if all a 's are 0; 1 i 6

It is easily verified that W  or  (W) is a neutrosophic fuzzy set 

linear subalgebra. 

Example 4.7: Let

V = 
1 2 3

i

4 5 6

a I a I a I
a I RI;1 i 5

a I a I a I

be a neutrosophic set linear algebra over the set S = Z+I  {0}. 

Let

W = 
1 2 3

i

4 5 6

a I a I a I
a I Z I {0}; 1 i 6

a I a I a I
 V 

be a neutrosophic set linear subalgebra over S. 
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Define  : W  N([0, 1]) by 

1 2 3

4 5 6

a I a I a I

a I a I a I
 =

1 2 3

1 2 3

4 5 6

4 5 6

i

1
I if a a a 0

a a a

1
I if a a a 0

a a a

1 if a 0;1 i 6

W  is a neutrosophic set fuzzy linear subalgebra. 

Example 4.8: Let

V = {(a1I, a2I, a3I),

1 2

3 4

5 6

b I b I

b I b I

b I b I

| ai, bj  Z+I  {0}; 

 1  i  3; 1  j  6} be a neutrosophic set vector space over the 

set S = 3Z+I  {0}. Let W = {(a1I, a2I, a3I) | aiI  Z+I  {0}; 1 

i  3}. Define : W  N([0,1]) 

(a1I, a2I, a3I) = I + 
i

i

i

1
I if a 0; 1 i 3

a

1 if a 0; 1 i 3

W  is a neutrosophic set fuzzy vector subspace. 

Example 4.9: Let

V = 
1 2 3

1 2 3

0 0 0a I a I a I
,

b I b I b I0 0 0
,

(a1I, a2I, a3I, a4I) | bjI, aiI  Z+I  {0}} 

be a neutrosophic set vector space over the set S = 5Z+I  {0}. 

Let
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W = 
1 2 3

0 0 0

b I b I b I
, (a1I, a2I, a3I, a4I) | 

bjI, aiI  Z+I  {0}, 1  i  4 and 1  j  3}  V 

be a neutrosophic set vector subspace of V over S. 

Define

1 2 3

0 0 0

b I b I b I
 = 

i

i

i

1
I if b 0; 1 i 3

b

1 if b 0; 1 i 3

and

(a1I, a2I, a3I, a4I) = 

i

ii

i

i

i

1
I if a 0

a

1 if a 0

 W  is a neutrosophic set fuzzy vector subspace. 

Example 4.10: Let

V = 
1 2 1

3 2

a I a I 0 b I
,

0 a I b I 0
| ai, bj  Z+I  {0}; 

1  i  3 and 1  j  2} be a neutrosophic semigroup vector 

space over the semigroup S = 3Z+I  {0}.  

Let  : V  N([0,1]) be defined such that  

1 2

3

a I a I

0 a I
 = 

1 2 3

1 2 3

1 2 3

1
I if a a a 0

a a a

1 if a a a 0

and
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1

2

0 b I

b I 0
 = 

1 2

1 2

1 2

1
I if b b 0

b b

1 if b b 0

V  is a fuzzy neutrosophic semigroup vector space or 

neutrosophic fuzzy semigroup vector space or neutrosophic 

semigroup fuzzy vector space. 

Example 4.11: Let

V = 

1

2

3

4

a I

a I
,

a I

a I

 (b1I, b2I, b3I),
1 2 3

4

c I c I c I

0 c I 0
|

aiI, bjI, ckI  Z+I {0}; 1  i  4, 1  j  3 and 1  k  4} 

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}. Define  : V  N([0, 1]) as 

1

2

3

4

a I

a I

a I

a I

 =

1 2

1 2

3

3

4

4

i

1
I if a a 0

a a

1
I if a 0

a

1
I if a 0

a

1 if a 0;1 i 4

(b1I, b2I, b3I) = 
i

i

i

1
I if b 0; 1 i 3

b

1 if b 0; 1 i 3
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1 2 3

4

c I c I c I

0 c I 0
 = 

i

ii

i

i

i

1
I if c 0

c

1 if c 0

V  is a neutrosophic semigroup fuzzy vector space. 

Now we proceed onto define the notion of neutrosophic 

semigroup fuzzy vector subspace. 

DEFINITION 4.5: Let V be a neutrosophic semigroup vector 
space over the semigroup S. Let W  V be a neutrosophic 
semigroup vector subspace of V over S. We say W  is a 
neutrosophic semigroup fuzzy vector subspace if 

 : W  N([0,1]) 
such that 

(I) = I 
 (rx)  (x)  

for all x, y  W and r  S. 

We will illustrate this situation by some simple examples. 

Example 4.12: Let

V = 
1 2 3 4

1 2 3 4

0 0 0 0a a a a
,

b b b b0 0 0 0
|

ai, bj  QI; 1  i  4, 1  j  4} 

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}. Let  

W = 
1 2 3 4

0 0 0 0

b b b b
| bi  QI, 1  i  4}  V 

be a neutrosophic semigroup vector subspace of V over the 

semigroup S. 
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Define : W  N([0,1]) by  

1 2 3 4

0 0 0 0

b b b b
 =

i

i

i

1
I if b 0; 1 i 4

b

1 if b 0; 1 i 4

W  is a neutrosophic semigroup fuzzy vector subspace. 

Example 4.13: Let

V = 
n

i i

i 1

a Ix  ai I  Z+I  {0}; 1  i  n} 

be a neutrosophic semigroup vector space over the semigroup S 

= Z+I  {0}.  

Let

W = 
n

2i

i

i 1

a Ix  ai I  2Z+I  {0}}  V. 

W is a neutrosophic semigroup vector subspace of V over the 

semigroup S.  

Define  : W  N([0,1]) by  

n
2i

i

i 1

a Ix  = 

in
i

i

i 1

i

i

1
I if a 0

a

1 if a 0

W  is a neutrosophic semigroup fuzzy vector subspace. 

Now we define neutrosophic semigroup fuzzy linear algebra. 

DEFINITION 4.6: Let V be a neutrosophic semigroup linear 
algebra over the semigroup S. We say V  or V or V( ) is a 
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neutrosophic semigroup fuzzy linear algebra if  : V 
N([0,1]); such that  

 (x+y)  min(  (x),  (y)); 
 (rx) (x) 

for r  S and y, x  V. 

Example 4.14: Let V = {(Z+I {0})  (Z+I {0})  (Z+I {0}) 

 (Z+I {0})} be a neutrosophic semigroup linear algebra over 

the semigroup S = (2Z+I {0}). Define  : V  N([0,1]) where  

(a1I, a2I, a3I, a4I) = 
i

i

i

1
I if a 0; 1 i 4

a

1 if a 0; 1 i 4

V  is a neutrosophic semigroup fuzzy linear algebra. 

Example 4.15: Let V = {(a1I, …, a10I)| aiI  Z11I; 1  i  10} be 

a neutrosophic semigroup linear algebra over the semigroup S = 

Z11I. Define  : V  N([0,1]) 

(a1I, …, a10I) = 
i

i

i

1
I if a 0; 1 i 10

a

1 if a 0; 1 i 10

V  is a neutrosophic semigroup fuzzy linear algebra. 

Now we can define neutrosophic semigroup fuzzy linear 

subalgebra as in case of neutrosophic semigroup fuzzy vector 

subspaces. We leave this task to the interested reader. However 

we will illustrate that by some examples. 

Example 4.16: Let

V = 
1 2 4 1 2

3 5 3 4

a I a I 0 a I b I b I
, ,

0 a I a I 0 b I b I
|

aiI , bjI  QI for 1  i  5; 1  j  4} 
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be a neutrosophic semigroup linear algebra over the semigroup 

S = Z+I  {0}.

Take

W = 
1 2

3

a I a I

0 a I
 ai I  QI; 1  i  3}  V . 

W is a neutrosophic semigroup linear subalgebra of V over the 

semigroup S. 

Define  : W  N([0,1]) by  

1 2

3

a I a I

0 a I
 = 

i

i

i

i

1
I if a 0

a

I if a 0

1 if a 0

W  is a neutrosophic semigroup fuzzy linear subalgebra. 

Example 4.17: Let V = {QI [x] | all polynomials in the variable 

x with coefficients from QI} be a neutrosophic semigroup linear 

algebra over the semigroup S = Z+I  {0}.

Let W = {ZI [x] | all polynomials in the variable x with 

coefficients from ZI}  V. 

Define  : V  N([0,1]) by 

(p(x)) = 

1
I if deg(p(x)) 1

deg(p(x))

I if deg(p(x)) constant

1 if p(x) 0

where constant is a neutrosophic number.  

W  is a neutrosophic semigroup fuzzy linear subalgebra.  
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Now we proceed onto define the notion of neutrosophic group 

fuzzy linear algebra. Just we recall the definition of group fuzzy 

linear algebra.  

DEFINITION 4.7: Let V be a group linear algebra over the 
group G. Let  : V  [0,1] be such that 

 (a + b)  min( (a),  (b)) 
(–a) =  (a) 

(0) = 1 
(ra) =  (a) 

for all a, b  V and r  G; we call V  the group fuzzy linear 
algebra.

DEFINITION 4.8: Let V be a neutrosophic group vector space 
over the group G.  
Let  : V  N([0,1]) be such that  (ra)  (a) for all a  V 
and  (I) = I for all a  V. We call V  or V or V( ) to be the 
neutrosophic group fuzzy vector space. 

We will illustrate this situation by some examples. 

Example 4.18: Let

V = 

1

1 1

1

1

1

a I
a I b I

b I ,
0 c I

c I

, (a1I, b1I, c1I) | a1I, b1I, c1I  QI} 

be a neutrosophic group vector space over the group G = ZI. 

Define for x  V 

 (x) = 

1
I if a b c 1

a b c

I if a b c 1

1 if x has no neutrosophic component
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 V  is a neutrosophic group fuzzy vector space. 

Example 4.19: Let

V = 
n

2i

i

i 1

a Ix ,
m

5i

i

i 1

a Ix | ai  ZI} 

be a neutrosophic group vector space over the group G = ZI. 

Define

(p(x)) = 

1
I if deg(p(x)) 1

deg(p(x))

I if deg(p(x)) is neutrosophic constant

1 if deg(p(x)) is an interger

V  is a neutrosophic group fuzzy vector space. 

Example 4.20: Let

V = 

1 2

3 4

5 6

7 8

a I a I

a I a I

a I a I

a I a I

aiI  QI; 1  i  8} 

be a neutrosophic group linear algebra over the group G = ZI. 

Define  : V  N([0,1]) by 

1 2

3 4

5 6

7 8

a I a I

a I a I

a I a I

a I a I

 =

i

1
I if at least one of the a  is non zero 1 i 8

2

1 of all the entrires in the matrix is zero
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V  is a neutrosophic group fuzzy linear algebra.  

Example 4.21: Let

V = 
n

i

i

i 1

a Ix | aiI  QI; 1  i  n} 

be a neutrosophic group linear algebra over the group G = ZI. 

Define  : V  N([0,1]) 

n
i

i

i 1

a Ix  = 

1
I if deg(p(x)) 1

deg(p(x))

I if deg(p(x)) is a neutrosophic constant

1 if deg(p(x)) is a constant, i.e., p(x) = 0

V  or V is a neutrosophic group fuzzy linear algebra. 

Next we proceed onto define fuzzy substructures. 

DEFINITION 4.9: Let V be a neutrosophic group vector space 
over the group G. Let W  V be a neutrosophic group vector 
subspace of V over G. Define  : W  N([0,1]) as (ra) (a)
for all r  G and a  W. We call W  or W to be a neutrosophic 
group fuzzy vector subspace. 

We will illustrate this situation by some simple examples. 

Example 4.22:  Let

V = 
51 2 3

6 74

0 a I 0a I a I a I
,

a I 0 a I0 a I 0
| ai I  QI; 1  i  7} 

be a neutrosophic group vector space over the group G = ZI.  
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Let

W = 
5

6 7

0 a I 0

a I 0 a I
| aiI  QI, i = 5, 6, 7}  V 

be a neutrosophic group vector subspace of V over G. 

Define  : W  N([0,1]) by 

5

6 7

0 a I 0

a I 0 a I
 =

i

i

1
I if at least one a  is non zero; i 5,  6,  7

5

  1     if a 's are zero; i 5,  6,  7 

W  is a neutrosophic group fuzzy vector subspace of V. 

Example 4.23: Let

V = {(a1I, a2I, a3I),

1 2

3 4

5 6

7 8

a I a I

a I a I

a I a I

a I a I

,
1 2 3

4 5 6

a I a I a I

a I a I a I
|

aiI  QI; 1  i  8} 

be a neutrosophic group vector space over the group G = ZI. Let  

W = 
1 2 3

4 5 6

a I a I a I

a I a I a I
 V 

be a subspace of V.

Define : W  N([0, 1]) by  

1 2 3

4 5 6

a I a I a I

a I a I a I
 = i

i

1
I if a  0 for i 1,2,  ,  6

2

 1     if a 0; 1 i 6
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W  is a neutrosophic group fuzzy vector subspace. Now as in 

case of neutrosophic group fuzzy vector subspace we can define 

neutrosophic group fuzzy linear subalgebra. 

We will however give some examples of neutrosophic group 

fuzzy linear subalgebras. 

Example 4.24: Let

V = 

1 2 3

4 5 6

7 8 9

a I a I a I

a I a I a I

a I a I a I

  ai I  QI; 1  i  9} 

be a neutrosophic group linear algebra over the group G = ZI. 

Let

W = 

1 2 3

4 5 6

7 8 9

a I a I a I

a I a I a I

a I a I a I

| ai I  ZI; 1  i  9}  V 

be a neutrosophic group linear subalgebra over the group G = 

ZI.

Define  : W  N([0,1]) by 

1 2 3

4 5 6

7 8 9

a I a I a I

a I a I a I

a I a I a I

 =
i

i

i

1
I if a 0; 1 i 9

a

 1     if a 0; 1 i 9

 W  is a neutrosophic group fuzzy linear subalgebra. 

Example 4.25: Let

V = 
n

i

i i

i 0

a Ix a I QI
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be a neutrosophic group linear over the group G = ZI. Let  

W = 
n

i

i

i 0

a Ix | aiI  ZI}  V 

be a neutrosophic group linear subalgebra of V. 

Define  : W  N([0,1]) by  

n
i

i

i 1

a Ix  = (p(x)) = 

1
I if p(x) is not a constant

deg(p(x))

1 if p(x) is zero

I if p(x) is a neutrosophic integer

 W  is a neutrosophic group fuzzy linear subalgebra. 

DEFINITION 4.10: Let V be a neutrosophic group linear algebra 
over the group G. Let W  V, where W is a subgroup of V and 
H  G be a proper subgroup of G; so that W is a neutrosophic 
subgroup linear subalgebra of V over the subgroup H of G. Let 

 : W  N([0,1]) if W  is a neutrosophic group fuzzy linear 
algebra then we call W  to be a neutrosophic subgroup fuzzy 
linear subalgebra.  

We will illustrate this by some simple example. 

Example 4.26: Let

V = 
1 2

3

a I a I

a I 0
| ai  QI, 1  i  3} 

be a neutrosophic group linear algebra over the group G = ZI. 

Let
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W = 
1 2

3

a I a I

a I 0
| ai  ZI, 1  i  3}  V 

be a neutrosophic subgroup linear subalgebra of V over the 

subgroup H = 3ZI  G.

Define  : W  N([0,1]) 

1 2

3

a I a I

a I 0
 = i

i

1
I if a 0; 1 i 3

2

 1     if a 0; 1 i 3

W  is a neutrosophic subgroup fuzzy linear subalgebra. 

Example 4.27: Let

V = 
1 2

3 4

a I a I 0

a I 0 a I
| ai I  ZI, 1  i  4} 

be a neutrosophic group linear algebra over the group G = ZI. 

Let

W = 
1 2

3 4

a I a I 0

a I 0 a I
| aiI  5ZI, 1  i  4}  V 

be a neutrosophic subgroup linear subalgebra over the subgroup 

H = 10ZI  ZI. 

Define  : W  N([0,1]) 

1 2

3 4

a I a I 0

a I 0 a I
 = i

i

1
I if a 0; 1 i 4

5

 1     if a 0; 1 i 4

W  is a neutrosophic subgroup fuzzy sublinear algebra. 
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The importance of this structure is we do not demand 

neutrosophic field over which these structures are defined. Even 

a neutrosophic set is sufficient we know when we define fuzzy 

vector space or fuzzy linear algebra the field over which they 

are defined do not play any prominent role. 

Another advantage of working with these fuzzy 

neutrosophic vector spaces is in most of the cases they become 

fuzzy equivalent. 

Further our transformation to fuzzy set up demands only 

values from the set N [(0,1)] = {a + bI | a, b  [0,1]}. 

Further if we go for neutrosophic Markov process or 

Markov chains the probability matrix is a square matrix with 

positive entries from N([0,1]).  
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Chapter Five

NEUTROSOPHIC SET BIVECTOR SPACES

In this chapter we introduce the notion of neutrosophic set 

bivector spaces and neutrosophic group bivector spaces. We 

enumerate some of their properties. These are useful on the 

study of mathematical models. 

DEFINITION 5.1: Let V = V1  V2 where V1 and V2 are two 
distinct neutrosophic set vector spaces defined over the same set 
S. That is V1  V2 and V2  V1, we may have V1  V2 =  or non 
empty. We call V to be the neutrosophic set vector bispace or 
neutrosophic set bivector space over the set S. 

We will illustrate this by some examples. 

Example 5.1: Let V = V1  V2 where
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V1 = 
1 2 4

i

3 5

a I a I a I 0
, a I Q I {0};1 i 5

0 a I a I 0

and

V2 = 

1

2

1 2 3 i

3

4

a I

a I
a I a I a I , a I Z I

a I

a I

be neutrosophic set vector spaces over the set S = 5Z+I. V is a 

neutrosophic set bivector space over the set S. 

Example 5.2: Let

V = 

1 2 1 2 3

3 4 4 5 6 i j 12

5 6 7 8 9

a I a I b I b I b I

a I a I , b I b I b I a I,b I Z I

a I a I b I b I b I

{(a1I, a2I, a3I, a4I), 0, Z+I | aiI  Z+I  {0}, 1  i  4} = V1  V2

be such that V1 is a neutrosophic set vector space over the set S 

= {0, 1} and V2 is a neutrosophic set vector space over the set S 

= {0, 1}. Thus V is a neutrosophic set bivector space over the 

set S = {0, 1}.  

Now we proceed onto define substructure in neutrosophic set 

bivector spaces. 

DEFINITION 5.2: Let V = V1  V2 be a neutrosophic set bivector 
space defined over the set S. A proper biset W = W1  W2  V1

 V2 = V, (W1  V1 and W2  V2) such that W1 and W2 are 
distinct and each Wi is a neutrosophic set vector subspace of Vi

over the set S; 1  i  2 is called the neutrosophic set bivector 
subspace of V over the set S. 

We will illustrate this definition by some examples. 
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Example 5.3: Let

V = V1  V2 =  

1

2 1 2 3 4 5 i j

3

a I

a I , b I ,b I,b I, b I,b I a I,b I ZI;1 i 3;1 j 5

a I

1 2

i

3

a I a I
,ZI a I QI;1 i 3

a I 0

be a neutrosophic set bivector space over the set S = {0, 1}. 

Take W = W1  W2 = {[b1I, b2I, b3I, b4I, b5I| biI  ZI; 1  i  5} 

 {ZI}  V1  V2; W is a neutrosophic set bivector subspace of 

V over the set S = {0, 1}. 

Example 5.4: Let

V = V1  V2 = {3Z+I, 5ZI} 

1 2 3

i j1 2

4 5 6

a I a I a I
, a I,b I 5Z I {0};1 i 6;1 j 2b I,b I

a I a I a I

be a neutrosophic set bivector space over the set S = 10Z+I.

Take W = W1  W2 = {3Z+I}  {(b1I, b2I) | b1I, b2I  Z+I}  V1

 V2, W is a neutrosophic set bivector subspace of V over the 

set S = 10Z+I.

DEFINITION 5.3: Let V = V1  V2 be a neutrosophic set 
bivector space over the set S. Let X = X1  X2  V1  V2 = V, 
we say X is a bigenerating biset of V if X1 is the generating 
neutrosophic set vector space of V1 over S and X2 is the 
generating neutrosophic set vector space of V2 over S. The 
number of elements in X = X1  X2 is the bidimension of V and 
is denoted by |X| = (|X1|, |X2|) or |X1|  |X2|.

We will illustrate this by some examples. 
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Example 5.5: Let

V = V1  V2 = 

{(a, b, c), 
1 2 3

4 5 6

x x x

x x x
a, b, c, xi  N (Q); 1  i  6} 

 {(a, a, a, a, a), 

b

b

b

b

b

 | a, b  N (Z)} 

be a neutrosophic set bivector space over the set S = N (Z).

X = {(a, b, c), 
1 2 3

4 5 6

x x x

x x x
 a, b, c, xi  N(Q); 1  i  6} 

 {(1, 1, 1, 1, 1), 

1

1

1

1

1

}

= X1  X2

is the bigenerating biset of V over S. Clearly |X| = ( , 2). 

Example 5.6: Let

V = 
1 1 0 0 1 0 0 1 1 0 0 1

, , , , , ,
0 0 1 1 0 0 0 0 1 0 0 1
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1 0 0 1 0 0
, ,

0 1 1 0 0 0

{(0 0 1), (0 0 0), (1 1 0 0), (0 0 0 0), 

(1 1 1), (1 0 1), (0 0 1 1), (1 0 1 0)} 

= V1  V2

be a neutrosophic set bivector space over the set S = {0, 1}. 

X = X1  X2 = 

1 1 0 0 1 0 0 1 1 0 0 1
, , , , , ,

0 0 1 1 0 0 0 0 1 0 0 1

1 0 0 1
,

0 1 1 0

{(0 0 1), (1 1 0 0), (1 1 1), (0 0 1 1), (1 0 1) (1 0 1 0)} 

is the bigenerating biset of V over S. |X| = (|X1|, |X2|) = (8, 6); 

thus bidimension of V is finite. 

Now we have special substructures which we define in the 

following:

DEFINITION 5.4: Let V = V1  V2 be a neutrosophic set 
bivector space over the set S. Suppose W = W1  W2  V1  V2
= V is such that W is only a set bivector space over the set S, 
then we call W to be a pseudo neutrosophic set bivector 
subspace of V over S.

DEFINITION 5.5: Let V = V1  V2 be a neutrosophic set 
bivector space over the set S. Suppose W = W1  W2  V = V1

 V2 is such that W1 is a neutrosophic set vector subspace of V1
and W2 is just a set vector subspace of V2 then we call W to a 
quasi neutrosophic set bivector subspace of V over S. 
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We will illustrate the two definitions by some examples. 

Example 5.7: Let

V = V1  V2 = 
a b 0 0

, a,b,c,d N(Q)
0 0 c d

i j1

1 2 3 4 5 2

3

x , y N(Z);y

x , x ,x ,x ,x , y 1 i 5;

y 1 j 3

be a neutrosophic set bivector space over the set S = {0, 1}. 

Take

W = W1  W2 = 
a b 0 0

, a,b,c,d Q
0 0 c d

i j1

1 2 3 4 5 2

3

x , y N(Z);y

x , x ,x ,x ,x , y 1 i 5;

y 1 j 3

 V1  V2 = V; 

W is a pseudo neutrosophic set bivector subspace of V over S.

Example 5.8: Let V = V1  V2 = {N(Q)[x]; that is N(Q)[x] is 

the set of all polynomials in the variable x with coefficients 

from N(Q)} 

{(x, y, z), 

x

y

z

w

 x, y, z, w  N(Z7)}
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be a neutrosophic set vector bispace over the set S = {0, 1}. 

Take

W = W1  W2 = {Q[x]}  {(x, y, z) | x, y, z  Z7}

 V1  V2;

W is a pseudo neutrosophic set bivector subspace over the set S 

= {0, 1}.

At this juncture it is essential to make the following 

observations. 

THEOREM 5.1: Let V = V1  V2 be a neutrosophic set bivector 
space over the set S (where S = ZI or mZ+I, m  N or QI or Q+I
or RI, R+I, or CI or ZmI; m  and m {0, 1, …, n | n }). 
Then V has no pseudo neutrosophic set bivector subspace. 

Proof: Given the set over which the neutrosophic set bivector 

space V = V1  V2 is defined is a pure neutrosophic set then by 

the very definition of neutrosophic set bivector space both V1

and V2 cannot have a set vector subspace hence the claim. 

We will illustrate this by some examples. 

Example 5.9: Let V = V1  V2 = {N(Q)[x]; all polynomials in 

the variable x with coefficients from the neutrosophic set N 

(Q)}

1 2 5

3 4 6

a I a I a I

a I a I a I
, (aI, aI, aI, aI, aI) | ai, a  QI; 1  i  6} 

be a neutrosophic set bivector space over the set S = Z+I.

Clearly we have in V1 a subset W1 = {Q[x]} which is a proper 

subset of V1 but however Q[x] is not a set vector space over the 

set S = Z+I. Thus we see V does not have a pseudo neutrosophic 

set bivector subspace. 

Example 5.10: Let V = V1  V2 = {M5 6 = (mij) is the collection 

of all 5  6 matrices with entries from QI}  {(a1I, a2I, …, a11I) 
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| ai  ZI; 1  i  11} be a neutrosophic set bivector space over 

the set S = Z+I. Clearly V has no pseudo neutrosophic set 

bivector subspace. 

DEFINITION 5.6: Let V = V1  V2 where V1 is a neutrosophic 
set vector space over the set S and V2 is just a set vector space 
over the same set S. We call V to be a quasi neutrosophic set 
bivector space over S. 

Note: It is important to note the set S in the definition can only 

be a subset of reals or complex or rationals or integers and is 

never a neutrosophic subset. Thus for quasi neutrosophic set 

bivector space to be defined the set over which it is defined is 

only an ordinary set. 

We will illustrate this situation by some examples. 

Example 5.11: Let

V = V1  V2 = 
a b

a,b,c,d Q
c d

aI bI cI

dI 0 fI
| aI, bI, cI, dI, fI  ZI} 

be a quasi neutrosophic set bivector space over the set S = Z. 

Example 5.12: Let

V = V1  V2

=
i

1 2 3 4 5

a
a,b,c,x Q;

b , x x x x x
1 i 5

c

i j1 2 3

1 2

a I,b I ZI;0 0 0a I a I a I
,

b I 0 b I0 0 0 1 i 4,1 j 2



163

be a quasi neutrosophic set bivector space over the set S = 3Z+

 {0}.

It is important to note that quasi neutrosophic set bivector 

spaces can either have quasi neutrosophic set bivector subspaces 

or pseudo neutrosophic set bivector subspaces. Clearly quasi 

neutrosophic set bivector spaces do not contain neutrosophic set 

bivector subspaces. 

DEFINITION 5.7: Let V = V1  V2 be a quasi neutrosophic 
bivector space over the set S. Suppose W = W1  W2  V1  V2
is a proper subset of V and W is also a quasi neutrosophic 
bivector space over S then we define W to be a quasi 
neutrosophic bivector subspace of V over the set S. 

We will illustrate this by some examples. 

Example 5.13: Let

V = V1  V2

=

1 2

i j

1 2 3 3 4

4 5 6 5 6

7 8

b b
a ,b Q;

a a a b b
, 1 i 6

a a a b b
1 j 8

b b

 {(5ZI  5ZI  3ZI), (7ZI  13ZI  11ZI  17ZI)} 

be a quasi neutrosophic vector space over the set S = Z. Let  

W = W1  W2

=
1 2 3

4 5 6

a a a

a a a
 {(5ZI  5ZI  3ZI)} 

 V1  V2,

W is a quasi neutrosophic bivector subspace of V over the set S. 
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Example 5.14: Let

V = V1  V2 = 

1

2

3 i

4

5

a

a

Q Q , a a Z;1 i 5

a

a

1 2 1 2 3 i

3 4 4

a I a I a I a I a I a I QI;
,

a I a I 0 a I 0 1 i 4

be a quasi neutrosophic bivector space over the set S = 5Z.  

Take

W = W1  W2

=

1

2

3 i

4

5

a

a

a a Z;1 i 5

a

a

1 2

i

3 4

a I a I
a I QI;1 i 4

a I a I

 V1  V2,

W is a quasi neutrosophic bivector subspace of V over the set S. 

DEFINITION 5.8: Let V = V1  V2 be a quasi neutrosophic set 
bivector space over the set S. Choose W = W1  W2  V1  V2
such that W is a set bivector space over the set S then we call W 
to be a pseudo quasi neutrosophic set bivector subspace of V 
over the set S.  

We will illustrate this situation by some examples. 
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Example 5.15: Let

V = V1  V2

=
a b 0 a a 0 a b

, , , a,b,c Q
c 0 b c b c 0 c

aI bI aI 0 aI 0 aI 0 x 0 aI aI,bI ZI
, , , , ,

0 0 bI c bI c 0 bI y bI 0 x, y 5Z

 be a quasi neutrosophic set bivector space over the set S = 5Z+

 {0}. Take  

W = W1  W2

=
a b 0 a

, a,b,c Z
c 0 b c

x
x, y 5Z

y

 V1  V2;

W is pseudo quasi neutrosophic set bivector space over the 

set S. 

Example 5.16: Let 

V = V1  V2

=

a
a b

a b c b
, c d ,(a,b,c,d), a,b,c,d Z

d 0 0 c
0 0

d

a b
a,b,c,d N(Q)

c d

be a quasi neutrosophic set bivector space over the set S = Z. 

Take
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W = W1  W2 = 

a b c
,(a,b,c,d) a,b,c,d 5N

d 0 0

a b
a,b,c,d Q

c d

 V1  V2

is a pseudo quasi neutrosophic set bivector subspace of V over 

the set S. 

DEFINITION 5.9: Let V = V1  V2 be a quasi neutrosophic set 
bivector space over the set S. Suppose W = W1  W2  V1  V2
and W is a quasi neutrosophic set bivector space over the set T, 
T a proper subset of S, then we call W to be a quasi 
neutrosophic subset bivector subspace of V over the subset T of 
S.

We will illustrate this situation by some examples. 

Example 5.17: Let

V = V1  V2 = 20

a b
a,b,c,d N(Z )

c d

{Z20  Z20  Z20,

a

b

c

| a, b, c  Z20}

be a quasi neutrosophic set bivector space over the set S = Z20.

Take

W = W1  W2

= 20

aI bI
aI,bI,cI,dI Z I

cI dI
20

a

b a,b,c Z

c

 V1  V2;
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W is a quasi neutrosophic subset bivector subspace of V over 

the set T = {0, 5, 10, 15}  S. 

Example 5.18: Let

V = V1  V2

=
a b c

,(a,b,c,d,e, f ) a,b,c,d,e, f N(Q)
d e f

{(Z  Z  Z  Z), 

a

b

c

d

e

 | a, b, c, d, e  Z} 

be a quasi neutrosophic set bivector space over the set 2Z = S. 

Take

W = W1  W2 = 

a b c
,(a,b,c,d,e,f ) a,b,c,d,e,f N(Q)

d e f

 {(Z  Z  Z  Z)}  V1  V2,

W is a quasi neutrosophic subset bivector subspace of V over 

the set T = 10Z  S.

Now we proceed onto define the notion of neutrosophic set 

bilinear algebras. 

DEFINITION 5.10: Let V = V1  V2 be such that V1 is a 
neutrosophic set linear algebra over the set S and V2 is also a 
neutrosophic set linear algebra over the same set S, then we call 
V to be a neutrosophic set bilinear algebra over the set S only if 
V1  V2 and V2 V1 or V1  V2.

We will illustrate this situation by some examples. 
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Example 5.19: Let

V = V1  V2 = 

15

a b
a,b,c,d N(Z )

c d
 {Z15I  Z15I  Z15I  Z15I}

be a neutrosophic set bilinear algebra over the set S = Z15.

Example 5.20: Let

V = V1  V2

= {(a1I, a2I, a3I, a4I, a5I, a6I) | aiI  QI; 1  i  6}}

a b
a,b,c QI

0 c

be a neutrosophic set bilinear algebra over the set S = QI.  

Now we proceed onto define substructure of neutrosophic set 

bilinear algebras. 

DEFINITION 5.11: Let V = V1  V2 be a neutrosophic set 
bilinear algebra over the set S. Suppose W = W1  W2  V1
V2 is a proper bisubset of V and W itself is a neutrosophic set 
bilinear algebra over the set S then we call W to be a 
neutrosophic set bilinear subalgebra of V over the set S. 

We will illustrate this by some examples. 

Example 5.21: Let

V = V1  V2

=
a b

a,b,c,d N(Z)
c d

 {ZI  ZI  ZI  ZI}

(= {(aI, bI, cI, dI) | aI, bI, cI, dI  ZI}) 

be a neutrosophic set bilinear algebra over the set S = 5Z. Take  
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W = W1  W2

=
aI bI

aI,bI,cI,dI ZI
cI dI

 {ZI  ZI  {0}  {0}}

 V1  V2;

W is a neutrosophic set bilinear subalgebra of V over the set S = 

5Z.

Example 5.22: Let

V = V1  V2

= 22

a b c
a,b,c,d,e,f N(Z )

d e f

22

a b
a,b,c,d N(Z )

c d

be a neutrosophic set bilinear algebra over the set S = Z22.

Take

W = 22

a b c
a,b,c,d N(Z )

0 d 0

22

a b
a,b N(Z )

0 0

 = W1  W2  V1  V2;

W is a neutrosophic set bilinear subalgebra of V over the set S.  

We have the following result the proof of which is left as an 

exercise to the reader. 

THEOREM 5.2: Every neutrosophic set bilinear algebra V over 
a set S is always a neutrosophic set bivector space over the set S 
but however in general every neutrosophic set bivector space 
over a set S is not a neutrosophic set bilinear algebra over S.  
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DEFINITION 5.12: Let V = V1  V2 be a neutrosophic set 
bilinear algebra over the set S. Suppose X = X1  X2  V1  V2
= V is such that X1 is a generating set of V1 over S and X2 is a 
generating set of V2 over S then we call X = X1  X2 to be the 
generating bisubset of V over S. The bidimension of V is the 
cardinality of X = X1  X2 denoted by |X| = (|X1|, |X2|). 

We will illustrate this situation by some examples. 

Example 5.23: Let

V = V1  V2 = 
a a

a NI
a a

 {(a, a, a, a, a, a) | a  ZI} 

be a neutrosophic set bilinear algebra over the set S = ZI. 

Clearly  

X = 
I I

I I
 {(I, I, I, I, I, I)} = X1  X2

bigenerates V over ZI. The bidimension of V is (1, 1). 

Example 5.24: Let

V = V1  V2 = ZI[x] 
1 2 3

i

4 5 6

x x x
x ZI

x x x

be a neutrosophic set bilinear algebra over the set S = ZI.  

X = {I, Ix, Ix2, …} 
I 0 0 0 I 0 0 0 I

, ,
0 0 0 0 0 0 0 0 0

,

0 0 0 0 0 0 0 0 0
, ,

I 0 0 0 I 0 0 0 I
 V1  V2
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is a bigenerator of V over the set S. Clearly bidimension of V is 

infinite as |X| = (|X1|, |X2|) = ( , 6). 

DEFINITION 5.13: Let V = V1  V2 be a neutrosophic set 
bilinear algebra over the set S. Suppose W = W1  W2  V1

V2 is such that W = W1  W2 is only a neutrosophic set bivector 
space over the set S then we call W to be a pseudo neutrosophic 
set bivector subspace of V over the set S. 

 We will illustrate this by some examples. 

Example 5.25: Let

V = 
a b

a,b,c,d ZI
c d

 {ZI  ZI  ZI} = V1  V2

be a neutrosophic set bilinear algebra over the set S = ZI.  

Let

W = 
a 0 0 b

, a,b ZI
0 0 0 0

{5ZI  3ZI  {0}, {0}  {0}  ZI}  V1  V2

Then, W is only a neutrosophic set bivector space over the set S 

= ZI. Thus W is a pseudo neutrosophic set bilinear subalgebra 

over S.

Example 5.26: Let

V = 
1 2 3

4 5 6

a a a

a a a
| ai  QI; 1  i  6} 

{QI[x]; all polynomials in the variable x with coefficients from 

QI} = V1  V2 be a neutrosophic set bilinear algebra over the 

set S = ZI. Choose
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W = W1  W2 =

1 2

1 6 2 4

6 4 6

a 0 0 0 a 0
a ,a ,a ,a QI

0 0 a a 0 a

{5ZI[x], 3ZI[x] where 5ZI [x] denotes the set of all polynomials 

in the variable x with coefficients from 5ZI and 3ZI [x] denotes 

the set of all polynomials in the variable x with coefficients for 

3ZI}  V1  V2. W is a pseudo neutrosophic set bivector space 

over the set S = ZI. 

DEFINITION 5.14: Let V = V1  V2 be a neutrosophic set 
bilinear algebra over the set S. Let W = W1  W2 be such that 
W1 is a neutrosophic set linear subalgebra of V1 over S and W2
is only a neutrosophic set vector subspace of V2 then we call W 
= W1  W2 to be a quasi neutrosophic set bilinear subalgebra 
of V over the set S. 

We will illustrate this by some simple examples. 

Example 5.27: Let

V = V1  V2 = 
a b

a,b,c,d QI
c d

1 2 3

4 5 6

a a a

a a a

such that ai  QI; 1  i  6} be neutrosophic set bilinear algebra 

over the set S = ZI. 

Consider

W = W1  W2

=
a 0 0 b

, a,b QI
0 0 0 0

1 2 3

i

4 5 6

a a a
a ZI; 1 i 6

a a a

 V1  V2;
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W is only a quasi neutrosophic set bilinear subalgebra of V over 

the set S = ZI. 

Example 5.28: Let

V = 

1 2

3 4

i

5 6

7 8

a a

a a
a QI;1 i 8

a a

a a

1 2 3 4 5

i

6 7 8 9 10

a a a a a
a ZI;1 i 10

a a a a a

= V1  V2

be a neutrosophic set bilinear algebra over the set S = ZI. Take  

W = W1  W2

=

1 2

3 4

i

5 6

7 8

a a 0 0

0 0 a a
, a QI;1 i 8

0 0 a a

a a 0 0

1 2 3 4 5

i

6 7 8 9 10

a a a a a
a 5ZI; 1 i 10

a a a a a

 V1  V2;

W is a quasi neutrosophic set bilinear subalgebra of V over the 

set S. 
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DEFINITION 5.15: Let V = V1  V2 be such that V1 is a 
neutrosophic set linear algebra over the set S and V2 is a only a 
set linear algebra over a set S then we call V to be a quasi 
neutrosophic set bilinear algebra over the set S.  

We shall illustrate this situation by some examples. 

Example 5.29: Let

V = V1  V2 =
a b

a,b, c, d QI
c d

1 2 3

i

4 5 6

a a a
a ZI; 1 i 6

a a a

where V1 is a neutrosophic set linear algebra over the set S = Z+

 {0} and V2 is a set linear algebra over the same set S = Z+

{0}. We see V = V1  V2 is a quasi neutrosophic set bilinear 

algebra over the set S. 

Example 5.30: Let V = V1  V2 where V1 = {Z[x]; all 

polynomials in the variable x with coefficients from the ring Z} 

is a set linear algebra over the set S = Z and V2 = {QI  QI  QI 

 QI Q  Q  QI} be a neutrosophic set linear algebra over the 

set S = Z. V = V1  V2 is a quasi neutrosophic set bilinear 

algebra over the set S. 

DEFINITION 5.16: Let V = V1  V2 where V1 is a neutrosophic 
set linear algebra over the set S and V2 is a neutrosophic set 
vector space over the same set S then we call V to be a pseudo 
neutrosophic set bilinear algebra over the set S.

We will illustrate this by some examples. 

Example 5.31: Let

V = V1  V2
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=
11 2 3

i

5 64

a 0 0a a a
, a ZI;1 i 6

a 0 a0 a 0

a b
a,b,c,d QI

c d

be a pseudo neutrosophic set bilinear algebra over the set S = 

ZI.

Example 5.32: Let

V = V1  V2

=
a a a a a a a a

, a QI
a a a a a a a a

a a
a ZI

a a

be a pseudo neutrosophic set bilinear algebra over the set S = 

Z+I; here V1 is only a neutrosophic set vector space over S = Z+I

and V2 is a neutrosophic set linear algebra over the set S = Z+I.

We define neutrosophic set bilinear transformation of these in 

the following. 

DEFINITION 5.17: Let V = V1  V2 and W = W1  W2 be any 
two neutrosophic set bivector spaces defined over the same set 
S. A map T = T1  T2 from V = V1  V2 to W1  W2 is a 
neutrosophic set bilinear transformation of the neutrosophic set 
bivector spaces if T1 : V1  W1 and T2 : V2  W2 are 
neutrosophic set linear transformations of the neutrosophic set 
vector spaces.  

Here T = T1  T2 : V = V1  V2  W = W1  W2 where T1 : 

V1  W1  T2:V2  W2 = T:V  W = T1  T2 : V1  V2
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W1  W2. On similar lines one can define neutrosophic set 

bilinear transformations of neutrosophic set bilinear algebras. 

If W = W1  W2 is replaced by V = V1  V2 we call such 

neutrosophic set bilinear transformations as neutrosophic set 

bilinear operators on V. 

We denote the collection of all neutrosophic set bilinear 

transformations of V to W by NHomS (V = V1  V2, W = W1

W2) and that of the neutrosophic set bilinear operators of V to V 

by NHomS (V = V1  V2), V= V1  V2).

We will illustrate this situation by some examples. 

Example 5.33: Let

V = V1  V2

=
a 0 0 b

, a,b,c,d QI
b 0 0 d

1 2 3

i

5 64

0 0 0 0a a a
, a QI;1 i 6

a a 0 00 0 a

 and

W = W1  W2

= {QI  QI  QI  QI} 

1 2

3 4 i

5 6

a a
0 0

a a , a QI;1 i 6
a a

0 0

be neutrosophic set bivector spaces defined over the set S = ZI. 

 Define  = 1 2 = V = V1  V2  W = W1  W2 where 1

: V1  W1 and 2 : V2  W2 as 

1

a 0

b 0
= {(a, b, 0, 0)}, 
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1

0 b

0 d
= {(0, 0, b, d)}, 

2
1 2 3

4

a a a

0 0 a
 =

1 2

3 4

a a

a a

0 0

,

and

2

5 6

0 0 0 0

a a 0 0
 = 

5 6

0 0

a a
.

It is easily verified that  : V  W is a neutrosophic set bilinear 

transformation of V to W. 

Example 5.34: Let

V = 
a b 0 a a 0 0 a

, , , a,b,c QI
0 c b c b 0 0 b

 {(a b c 0), (0 0 a), (0 0 a b 0 c) | a, b, c  ZI} be a 

neutrosophic set bivector space over the set S = ZI.  

Define  : V  V as

 = 1 2 : V1  V2 = V  V1  V2 = V 

1 : V1  V1 is such that 

1

a b

0 c
=

0 a

b c
,

1

0 a

b c
 = 

a b

0 c
,

1

a 0

b 0
 = 

0 a

0 b

and

1

0 a

0 b
 = 

a 0

b 0
.
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2 : V2  V2 is such that 

2 (a, b, c, 0) = (0, 0, a, b, 0, c) 

2 (0 0 a) = (0 0 a) 

 and

2 (0, 0, a, b, 0, c) = (a, b, c, 0). 

It is easily verified that  : V  V ( 1 : V1  V1)  ( 2 : V2

V2) is a neutrosophic set bilinear operator on V. 

Interested reader can study the structure of NHomS (V, W) and 

NHomS (V, V) where V and W are neutrosophic set bivector 

space over the set S. 

Next we proceed onto give examples of neutrosophic set 

bilinear algebra transformations. 

Example 5.35: Let

V = V1  V2 = 
a b

a,b,c,d QI
c d

n
i

i

i 1

a x p(x)

be the collection of all polynomials in the variable x with 

coefficients from QI} and  

W = W1  W2 = {(a, b, c, d) | a, b, c, d  QI} 
n

2i

i

i 1

a x q(x)

be the collection of polynomials in the variable x of even degree 

with coefficients from QI} be two neutrosophic set bilinear 

algebra over the set S = ZI. 

Define  = 1 2 : V1  V2 = V  W1  W2 = W as 1 : 

V1  W1 and 2 : V2  W2 such that

1

a b

c d
 = {a, b, c, d} 

and
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2

n
i

i

i 1

a x  = 
n

2i

i

i 1

a x .

It is easily verified that  is a neutrosophic set bilinear 

transformation from V to W. 

Example 5.36: Let

V = V1  V2 = 

1 2 3

i

4 5 6

a a a
a QI;1 i 6

a a a

1 2 3

4 5 6 i

7 8 9

a a a

a a a a QI;1 i 9

a a a

be a neutrosophic set bilinear algebra over the set S = ZI. 

Define  = 1 2 : V = V1  V2  V = V1  V2 by  

1 : V1  V1 and 2 : V2  V2

1
1 2 3

4 5 6

a a a

a a a
 = 

4 5 6

1 2 3

a a a

a a a

 and

2

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 =

7 8 9

4 5 6

1 2 3

a a a

a a a

a a a

.

It is easily verified that  is a neutrosophic set bilinear operator 

on V. 

We proceed onto define the notion of neutrosophic biset 

bivector spaces. 
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DEFINITION 5.18: Let V = V1  V2 be such that V1 is a 
neutrosophic set vector space over the set S1 and V2 is a 
neutrosophic set vector space over the set S2; S1  S2; S1  S2.
We define V = V1  V2 to be the neutrosophic biset bivector 
space over the biset S = S1  S2.

We will illustrate this by some examples. 

Example 5.37: Let V = V1  V2 where . 

V1 = {(a, b, c), 

a

b

c

d

a, b, c, d  QI} 

be a neutrosophic set vector space over the set S1 = 5ZI and

V2 = 
a 0

b 0
,

1 2 3

4 5 6

a a a

a a a
 a, b, ai  ZI; 1  i  6} 

be a neutrosophic set vector space over the set S2 = 7Z+I  {0}. 

V = V1  V2 is a neutrosophic biset bivector space over the 

biset S = S1  S2.

Example 5.38: Let V = V1  V2 where V1 = {ZI[x]; i.e., all 

polynomials in the variable x with coefficients from ZI} is a 

neutrosophic set vector space over the set S1 = 3Z+I  {0} and  

V2 = {(a, b, c), 
a b

c d
| a, b, c, d  ZI} 

be a neutrosophic set vector space over the set S2 = 5Z+ I  {0}. 

V = V1  V2 is a neutrosophic biset bivector space over the set 

S = S1  S2.
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These types of algebraic structures will find their applications in 

mathematical models. 

Example 5.39: Let V = V1  V2 where V1 = {(0 0 0), (I 0 0), (0 

1 1), (0 0 0 0 0), (0 0 0 I), (0 0 0 0), (I 1 I 1), (1 0 I 0) (1, I, 0, 0, 

I), (0 0 I 1 1)} is a neutrosophic set vector space over the set S1

= Z2 = {0, 1} and  

V2 = 5

a b c a 0 0

d 0 e , b 0 0 a,b,c,d,e,f ,g Z I

0 0 f e 0 g

is a neutrosophic set vector space over the set S2 = Z5 I. Thus V 

= V1  V2 is a neutrosophic biset bivector space over the biset S 

= S1  S2.

DEFINITION 5.19: Let V = V1  V2 be a neutrosophic biset 
bivector space over the biset S = S1  S2. Let W = W1  W2

V1  V2; if W is a neutrosophic biset bivector space over the set 
S = S1  S2 then we call W to be a neutrosophic biset bivector 
subspace of V over the biset S = S1  S2.

Example 5.40: Let V = V1  V2 where

V1 = 12

a a
a Z I

a a

is a neutrosophic set vector space over the set S1 = Z12I and  

V2 = 
1 2 3

i 15

4 5 6

0 0 0a a a
, a Z I

a a a0 0 0

is a neutrosophic set vector space over the set S2 = Z15I. V = V1

 V2 is a neutrosophic biset bivector space over S = S1  S2.

Let W = W1  W2 where
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W1 = 
a a

a 0, 3I, 6I, 9I
a a

 V1

be a neutrosophic set vector subspace of V1 over S1 and

W2 = 
1 2 3

i 15

a a a
a Z I

0 0 0
 V2

be the neutrosophic set vector subspace of V2 over S2 W = W1

 W2  V1  V2 is a neutrosophic biset bivector subspace of V 

over the biset S = S1  S2.

Example 5.41: Let V = V1  V2 where

V1 = 

1

2 1 2 3 i

3

a

a ,(a ,a ,a ) a ZI;1 i 3

a

is a neutrosophic set vector space over the set S1 = ZI and

V2 = 

1

1 2 3

i 25

3 4 2

4

a 0

a 0 a 0 0 a
, a Z I;1 i 4

0 a 0 a a 0

0 a

be a neutrosophic set vector space over the set S2 = Z25I. V = V1

 V2 is a neutrosophic biset bivector space over the biset S = S1

 S2.

Take W = W1  W2  V1  V2 where

W1 = {(a1, a2, a3) | ai  ZI; 1  i  3}  V1

be the neutrosophic set vector subspace of V1 over S1 and
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W2 = 
1 2

i 25

3 4

a 0 a 0
a Z I;1 i 4

0 a 0 a
 V2

be the neutrosophic set vector subspace of V2 over S2. Then W 

= W1  W2 is a neutrosophic biset bivector subspace of V over 

the biset S = S1  S2.

DEFINITION 5.20: Let V = V1  V2 be a neutrosophic biset 
bivector space over the biset S = S1  S2.

If X = X1  X2  V1  V2 is such that X1 generates V1 over 
S1 and X2 generates V2 over S2 then we say X = X1  X2 is the 
bigenerator of the neutrosophic biset bivector space V = V1

V2 over the biset S = S1  S2.
The bicardinality of X = X1  X2 denoted by |X| = |X1  X2|

= |X1|  |X2| or (|X1|, |X2|), gives the bidimension of V over S. 

We will illustrate this situation by some examples. 

Example 5.42: Let

V = {(a a a a), 

a

a

a

a

a

 | a  ZI} 

{(a, a, a, a, a, a, a), 
a a

a a
 | a  Z12I}.

V1  V2 be a neutrosophic biset bivector space over the biset S 

= ZI  Z15I = S1  Z12.

Take
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 X = {(1 1 1 1), 

1

1

1

1

1

 {(1, 1, 1, 1, 1, 1, 1), 
1 1

1 1

= X1  X2  V1  V2;

clearly X bigenerates V and bidimension of V is (2, 2). 

Example 5.43: Let V = V1  V2, where V1 = {ZI[x]; all 

polynomials in the variable x with coefficients from ZI} is a 

neutrosophic set vector space over the set S1 = ZI and  

V2 = 3

a b
a,b,c,d Z I

c d

be a neutrosophic set vector space over the set S2 = Z3I. V = V1

 V2 is a neutrosophic biset bivector space over the biset S = S1

 S2. V is infinitely generated by any X = X1  X2 over S = S1

 S2.

Now we proceed onto define neutrosophic biset bilinear algebra 

and enumerate few of their properties. 

DEFINITION 5.21: Let V = V1  V2 where V1 is a set linear 
algebra over the set S1 and V2 another neutrosophic set linear 
algebra over the set S2 which is distinct and different from V1;
further S1  S2 or S1  S2 or S2  S1; then we call V to be the 
biset bilinear algebra over the biset S = S1  S2.

We will illustrate this by some examples. 

Example 5.44: Let V = V1  V2 where
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V1 = 5

a b
a,b,c,d Z I

c d

is a neutrosophic set linear algebra over the set S1 = Z5I and V2

= {QI  QI  QI  QI} is a neutrosophic set linear algebra over 

the set S2 = QI. Now V = V1  V2 is a neutrosophic biset 

bilinear algebra over the biset S = S1  S2.

 If we take

X = 
I 0 0 I 0 0 0 0

, , ,
0 0 0 0 I 0 0 I

 {(I, 0, 0, 0), (0, I, 0, 0), (0, 0, I, 0), (0, 0, 0, I)} 

= X1  X2  V1  V2;

X bigenerates V as a neutrosophic biset bilinear algebra over the 

biset S = S1  S2. The bidimensin of V is (4, 4). 

Example 5.45: Let V = V1  V2 where

V1 = 
1 2 3

i

4 5 6

a a a
a QI;1 i 6

a a a

is a neutrosophic set linear algebra over the set S1 = ZI and

V2 = 
a b

a,b,c,d RI
c d

be a neutrosophic set linear algebra over the set S2 = Q+I. V = 

V1  V2 is a neutrosophic biset bilinear algebra over the biset S 

= S1  S2. Clearly both V1 and V2 are infinitely generated as 

neutrosophic set linear algebras over the sets S1 and S2

respectively. 
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We now proceed onto define the substructures in neutrosophic 

biset bilinear algebras. 

DEFINITION 5.22: Let V = V1  V2 be a neutrosophic biset 
bilinear algebra over the biset S = S1  S2. Let W = W1  W2

V1  V2; if W is a neutrosophic biset bilinear algebra over the 
biset S = S1  S2 then we call W to be a neutrosophic biset 
bilinear subalgebra of V over the biset S = S1  S2.

Example 5.46: Let V = V1  V2 where V1 = {ZI  ZI  ZI 

ZI} is a neutrosophic set linear over the set S1 = 5Z+I and  

V2 =
1 2

i

4 3

a a
a QI;1 i 4

a a

be a neutrosophic set linear algebra over the set S2 = 7Z+I. V = 

V1  V2 is a neutrosophic biset bilinear algebra over the biset S 

= S1  S2. Take W = W1  W2  V1  V2 where

W1 = {ZI  {0}  {0}  ZI}  V1

and

W2 = 
1 2

i

4 3

a a
a ZI;1 i 4

a a
 V2;

W = W1  W2 is a neutrosophic biset bilinear subalgebra of V 

over the biset S = S1  S2.

Example 5.47: Let V = V1  V2 where

V1 = 

1 2 3

4 5 i

6

a a a

0 a a a ZI;1 i 6

0 0 a

is neutrosophic set linear algebra over the set S1 = 11Z+I  {0} 

and
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V2 = i1 2 3 4 5 a QI;1 i 5a a a a a

be a neutrosophic set linear algebra over the set S2 = 17Z+I

{0}. V = V1  V2 is a neutrosophic biset bilinear algebra over 

the biset S = S1  S2.

Take W = W1  W2  V1  V2 where

W1 = 

1 2 3

4 5 i

6

a a a

0 a a a Z I;1 i 6

0 0 a

 V1

and

W2 = i1 2 3 4 5 a ZI;1 i 5a a a a a  V2;

W is a neutrosophic biset bilinear subalgebra of V over the biset 

S = S1  S2.

Now we proceed onto define the notion of quasi neutrosophic 

biset bilinear algebra. 

DEFINITION 5.23: Let V = V1  V2 where V1 is a neutrosophic 
set vector space over the set S1 and V2 is a neutrosophic set 
linear algebra over the set S2 where V1  V2; V1  V2, V2  V1

and S1  S2; S1  S2 and S2  S1. We define V = V1  V2 to be a 
quasi neutrosophic biset bilinear algebra over the biset S = S1

 S2.

We will illustrate this by some examples. 

Example 5.48: Let V = V1  V2 where

V1 = {(a1, a2, a3, a4) , 

1

2

3

4

5

a

a

a

a

a

| ai  ZI; 1  i  5} 
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is a neutrosophic set vector space over the set S1 = 3Z+ I  {0} 

and

V2 = 

1 2 3

5 6 7 i

8 4 9

a a a

a a a a QI;1 i 9

a a a

is a neutrosophic set linear algebra over the set S2 = 5Z+  {0}. 

V = V1  V2 is a quasi neutrosophic biset bilinear algebra over 

the biset S = S1  S2.

Example 5.49: Let V = V1  V2 where

V1 = 

1 2 1 2 3 4

3 4 5 6 7 8

5 6 9 10 11 12

a a a a a a

a a , a a a a

a a a a a a

where ai  QI; 1  i  12} is a neutrosophic set vector space 

over the set S1 = ZI and

V2 = 

1 2 3

4 5 6 i

7 8 9

a a a

a a a a Q I {0};1 i 9

a a a

is a neutrosophic set linear algebra over the set S2 = Q+I  {0}. 

Thus V = V1  V2 is a quasi neutrosophic biset bilinear algebra 

over the biset S = S1  S2.

It is important to mention here that we have substructure 

defined on them.  

DEFINITION 5.24: Let V = V1  V2 where V is a quasi 
neutrosophic biset bilinear algebra over the biset S = S1  S2.
Take W = W1  W2  V1  V2 if W is a quasi neutrosophic biset 
bilinear algebra over the biset S = S1  S2, then we define W to 
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be a quasi neutrosophic biset bilinear subalgebra of V over the 
biset S = S1  S2.

We will illustrate this situation by some examples. 

Example 5.50: Let V = V1  V2 where

V1 = 

1 2

1 2 3

3 4 i

4 5

5

a a
a a a

, a a a ZI;1 i 5
0 a a

a 0

is a neutrosophic set vector space over the set S1 = 3Z+I  {0} 

and V2 = {(a1, a2, a3, a4, a5, a6, a7) | ai  QI, 1  i  7} is a 

neutrosophic set linear algebra over the set S2 = 13Z+I  {0}. V 

= V1  V2 is a quasi neutrosophic biset bilinear algebra over the 

biset S = S1  S2.

Take W = W1  W2  V1  V2 where

W1 = 

1 2

1 2 3

3 4 i

4 5

5

a a
a a a

, a a a 3ZI;1 i 5
0 a a

a 0

and W2 = {(a1, 0, a3, 0, a5, 0, a7) | a1, a3, a5, a7  QI}; W is a 

quasi neutrosophic biset bilinear subalgebra of V over the biset 

S = S1  S2.

Example 5.51: Let V = V1  V2 where V1 = {Z+I[x]; all 

polynomials in the variable x with coefficients from Z+I  {0}} 

is a neutrosophic set linear algebra over the set S1 = 3Z+I  {0} 

and V2 = {3ZI[x] and 7ZI[x]; that all polynomials in the 

variable x with coefficients from the 3ZI and 7ZI respectively} 

is a neutrosophic set vector space over the set S2 = 8Z+I  {0}. 

Thus V = V1  V2 is a quasi neutrosophic biset bilinear algebra 

over the biset S = S1  S2.

Take W = W1  W2 where W1 = {The set of all even degree 

polynomials in the variable x with coefficients from Z+I  {0}} 



190

 V1 and W2 = {3Z+I [x] and 7Z+I [x]; collection of all 

polynomials in the variable x with coefficients from 3Z+I  {0} 

and 7Z+  {0} respectively}  V2; W = W1  W2 is a quasi 

neutrosophic biset bilinear subalgebra of V over the biset S = S1

 S2.

It may so happen that a neutrosophic biset bilinear algebra 

contain quasi neutrosophic bilinear subalgebra. We now define 

this concept. 

DEFINITION 5.25: Let V = V1  V2 be a neutrosophic biset 
bilinear algebra over the biset S = S1  S2. Suppose W = W1

W2  V1  V2 where W1 is just a proper subset of V1 but W1 is 
only a neutrosophic set vector space over the set S1 and W2 is 
proper subset of V2 and W2 is a neutrosophic set linear algebra 
over the set S2. We call W = W1  W2  V1  V2 to be a quasi 
neutrosophic biset bilinear subalgebra of V over the biset S = S1

 S2.

We will illustrate this situation by some simple examples. 

Example 5.52: Let

V = V1  V2

= i1 2 3 4 5 a QI;1 i 5a a a a a

1 2

i

3 4

a a
a ZI;1 i 4

a a

be a neutrosophic biset bilinear algebra over the biset S = S1

S2 where S1 = Q+I  {0} and S2 = 3ZI. Take W = W1  W2

V1  V2 where  

W1 = i1 2 3 4 a QI;1 i 4a a 0 a a  V1

is only a neutrosophic set vector space over the set S1 = Q+I

{0}.
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W2 = 
2

i

3

0 a
a 3Z I;i 2,3

a 0
 V2

be a neutrosophic set vector space over the set S2 = 3ZI. W = 

W1  W2  V1  V2 is a quasi neutrosophic biset bilinear 

subalgebra of V over the biset S = S1  S2.

Example 5.53: Let

V = V1  V2 = 
1 2

i

4 3

a a
a ZI;1 i 4

a a

{ZI[x]; all polynomials in the variable x with coefficients from 

ZI} be a neutrosophic biset bilinear algebra over the biset S = S1

 S2 = 3ZI  7ZI.

Take

W = W1  W2 = 
a b

a,b,c ZI
0 c

{3ZI[x] and 7ZI[x]; all polynomials in the variable x with 

coefficients from 3ZI and 7ZI respectively}  V1  V2; W is 

only a quasi neutrosophic biset bilinear subalgebra over the 

biset S. 

Now we proceed onto define yet another new substructure. 

DEFINITION 5.26: Let V = V1  V2 be a neutrosophic biset 
bivector space (bilinear algebra) over the biset S = S1  S2. Let 
W = W1  W2  V1  V2 be a proper subbiset of V1  V2. Let T 
= T1  T2  S1  S2 = S, where T is also a proper subbiset of S 
= S1  S2. If W is a neutrosophic biset bivector space (bilinear 
algebra) over the biset T then we call W to be a neutrosophic 
subbiset bivector subspace (bilinear subalgebra) of V over the 
subbiset T of S. 

We will illustrate this situation by some examples. 
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Example 5.54: Let V = V1  V2 where

V1 = 
a b c a b

, a,b,c,d,e,f QI
d e f c d

be a neutrosophic set vector space over the set S1 = ZI and

V2 = 

a

b
a b c d

, a,b,c,d,e,f ,g,h QIc
e f g h

d

e

be a neutrosophic set vector space over the set S2 = Q+I. V = V1

 V2 is a neutrosophic biset bivector space over the biset S = S1

 S2.

Take

W = W1  W2

=
a b c

a,b,c,d,e,f ZI
d e f

a

b

a,b,c,d,e QIc

d

e

 V1  V2

and T = 3ZI  7ZI  S1  S2; W is a neutrosophic subbiset 

bivector subspace of V over the subbiset T = T1  T2 = 3ZI 

7ZI  S1  S2 = S. 

Example 5.55: Let V = V1  V2 = {QI[x], the set of all 

polynomials in the variable x with coefficients from QI} 
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a b c

d e f a,b,c,d,e,f ,g,h,i RI

g h i

be the neutrosophic biset bilinear algebra over the biset S = S1

 S2 = ZI  Q+I.

Take W = W1  W2 = {ZI [x]; that is the set of all 

polynomials in the variable x with coefficients from ZI} 

a b c

d e f a,b,c,d,e,f ,g,h,i ZI

g h i

W is a neutrosophic subbiset bilinear subalgebra of V over the 

subbiset T = T1  T2 = 3ZI  Z+I  S1  S2.

Now we proceed onto define the new notion of neutrosophic 

semigroup bivector space over the semigroup S. 

DEFINITION 5.27: Let V = V1  V2 where (V1  V2, V1  V2 and 
V2  V1) V1 is a neutrosophic semigroup vector space over the 
semigroup S and V2 is a neutrosophic semigroup vector space 
over the semigroup S, then we say V = V1  V2 to be the 
neutrosophic semigroup bivector space over the semigroup S. 

We will illustrate this situation by some examples. 

Example 5.56: Let V = V1  V2 = {ZI ZI  Z+I  3Z+I}

a b c
a,b,c,d,e,f QI

d e f

be a neutrosophic semigroup bivector space over the semigroup 

S = Z+I.
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Example 5.57: Let V = V1  V2 = {(a, b, c), (a, b, c, d, e) | a, b, 

c, d, e  Z7I} 

7

a
a b

b
c d , a,b,c,d Z I

c
e f

d

be a neutrosophic semigroup bivector space over the semigroup 

= Z7I.

Now we proceed onto define the notion of neutrosophic 

semigroup bivector subspace. 

DEFINITION 5.28: Let V = V1  V2 be a neutrosophic 
semigroup bivector space over the semigroup S. Let W = W1

W2  V1  V2 = V be a proper biset of V; if W is a neutrosophic 
semigroup bivector space over the semigroup S then we call W 
to be a neutrosophic semigroup bivector subspace of V over the 
semigroup S. 

We will illustrate this definition by some examples. 

Example 5.58: Let

V = V1  V2 =
a a a

a Z I {0}
a a a

a a a

a a b
, a,b,c,d Z I {0}

b b c

b b d

be a neutrosophic semigroup bivector space over the semigroup 

S = 3Z+I  {0}.  
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Take

W = W1  W2 =
a a a

a 5Z I {0}
a a a

a

b
a,b,c,d Z I {0}

c

d

 V1  V2,

W is a neutrosophic semigroup bivector subspace of V over the 

semigroup S. 

Example 5.59: Let V = V1  V2 = {(0 0 0), (1 1 I), (0 0 0 0), (I 

1 1 I), (1 1 0 I), (0 0 I 0), (0 0 0 0 0), (I 1 1 1 I)}  {Z2I  Z2I

Z2I  Z2I  Z2I} be a neutrosophic semigroup bivector space 

over the semigroup S = {0, 1} = Z2 = (addition modulo 2). 

Consider W = W1  W2 = {(0 0 0 0), (I 1 1 I), (1 1 0 I), ( 0 0 I 

0)}  {Z2I  Z2I  {0}  {0}  {0}}  V1  V2; W is a 

neutrosophic semigroup bivector subspace of V over the 

semigroup S = Z2.

DEFINITION 5.29: Let V = V1  V2 be such that V1 is a 
neutrosophic semigroup linear algebra over the semigroup S 
and V2 is a neutrosophic semigroup linear algebra over the 
semigroup S; (V1  V2; V1  V2 and V2  V2). V = V1  V2 is 
defined as the neutrosophic semigroup bilinear algebra over the 
semigroup S. 

We will illustrate this definition by some examples. 

Example 5.60: Let

V = V1  V2

= 12

a a a

a a a a Z I

a a a

 {(a a a a a a a) | a Z12 I} 
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be a neutrosophic semigroup bilinear algebra over the 

semigroup S = Z12I.

Example 5.61: Let V = V1  V2 = {Z5I [x]; all polynomials in 

the variable x with coefficients from Z5I}  {Z5I  Z5I  Z5I} 

be a neutrosophic semigroup bilinear algebra over the 

semigroup S = Z5I.

It is important at this juncture to mention that every 

neutrosophic semigroup bilinear algebra is a neutrosophic 

semigroup bivector space but a neutrosophic semigroup bivector 

space in general is not a neutrosophic semigroup bilinear 

algebra.

The interested reader can prove the above statement. 

Now we proceed onto define the notion of bigenerator and 

bidimension of this algebraic structure. 

DEFINITION 5.30: Let V = V1  V2 be a neutrosophic 
semigroup bivector space (bilinear algebra) over the semigroup 
S. Let X = X1  X2  V1  V2, if X1 generates V1 as a 
neutrosophic semigroup vector space (linear algebra) over the 
semigroup S and if X2 generates V2 as a neutrosophic 
semigroup vector space (linear algebra) over the semigroup S 
then, X = X1  X2 is called the bigenerator of the neutrosophic 
semigroup bivector space (bilinear algebra) over the semigroup 
S.

The bidimension of V is |X| = (|X1|  |X2|) or (|X1|, |X2|) 
over the semigroup S. Even if one of |X1| or |X2| are infinite we 
say the bidimension of V is infinite only when both |X1| and |X2|
is finite we say bidimension of V is finite. 

We will illustrate this by some simple examples. 

Example 5.62: Let V = V1  V2 = {(I, 0, 0), (1, 0, 0), (0 0 0), 

(0, 0), (I, I), (1, 1), (1, I),  (I, 1)}  {(a a a) | a  Z2I} be a 

neutrosophic semigroup bivector space over the semigroup S = 

Z2. X = X1  X2 = {(I, 0, 0), (1, 0, 0) (I, I) (1, 1), (1, I), (I, 1)} 
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{(1 1 1), (I I I)}  V1  V2 is the bigenerator of V and the 

bidimension of V is (6, 2). 

Example 5.63: Let

V = V1  V2

=
a a

a ZI
a a

 {(a a a a a a) | a  ZI} 

be a neutrosophic semigroup linear algebra over the semigroup 

S = ZI.

Take

X = 
1 1

1 1
 {(1 1 1 1 1 1)} = X1  X2  V1  V2;

X bigenerates V and bidimension of V is (1, 1). 

DEFINITION 5.31: Let V = V1  V2 where V1 is a neutrosophic 
semigroup vector space over the semigroup S and V2 is a 
neutrosophic semigroup linear algebra over the semigroup S, 
then we call V to be a quasi neutrosophic semigroup bilinear 
algebra over the semigroup S. 

We will illustrate this by some examples. 

Example 5.64: Let

V = V1  V2

= {(a a a), (a a a a), (a a), (a a a a a a) | a  Z3I}

3

a a a a

a a a a a Z I

a a a a

be a neutrosophic semigroup quasi bilinear algebra over the 

semigroup S = Z3I.
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Example 5.65: Let

V = V1  V2

=

a a

a a
a,b ZI

b b

b b

 {(a a b b) | a, b  ZI} 

be a quasi neutrosophic semigroup bilinear algebra over the 

semigroup S = ZI.  

Now we proceed onto define another substructure. 

DEFINITION 5.32: Let V = V1  V2 be a quasi neutrosophic 
semigroup bilinear algebra over the semigroup S. Let W = W1

 W2  V1  V2 be a proper subset of V such that W is a quasi 
neutrosophic semigroup bilinear algebra over the semigroup S, 
then we call W to be a quasi neutrosophic semigroup bilinear 
subalgebra of V over the semigroup S.  

Example 5.66: Let

V = V1  V2 = 
a a a a a

a ZI
a a a a a

 {(a a a a a a) | a  ZI} 

be a quasi neutrosophic semigroup bilinear algebra over the 

semigroup S = ZI.  

Take

W = W1  W2

=
a a a a a

a 5ZI
a a a a a

 {(a a a a a) | a  5ZI} 

 V1  V2,
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W is a quasi neutrosophic semigroup bilinear subalgebra of V 

over the semigroup S = ZI. 

Example 5.67: Let

V = V1  V2 = 
a b

a,b,c,d ZI
c d

{(a, a), 

a

a

a

a

,
a a

a a
 | a  ZI}

be a quasi neutrosophic semigroup bilinear algebra over the 

semigroup S = ZI. Take  

W = W1  W2 = 
a a

a ZI
a a

 {(a, a), 
a a

a a
}

 V1  V2; W is a quasi neutrosophic semigroup bilinear 

subalgebra of V over the semigroup S = ZI. 

Now we proceed onto define the new notion of neutrosophic 

group bivector space and neutrosophic group bilinear algebras.  

DEFINITION 5.33: Let V = V1  V2 be such that V1  V2, V1  V2

and V2  V1, V1 and V2 are neutrosophic group vector spaces 
over the same group G then we call V to be a neutrosophic 
group bivector space defined over the group G. 

Note: The group G can be an ordinary group or a neutrosophic 

group.

We will illustrate this by some examples. 

Example 5.68: Let
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V = V1  V2 = 3

a a
a Z I

a a
 {(a a a a) | a  Z3I}.

V = V1  V2 is a neutrosophic group bivector space over the 

group G = Z3I. In fact V = V1  V2 is also a neutrosophic group 

bivector space over the group G = Z3.

Example 5.69: Let

V = V1  V2 = {(0, 0, 0) (I, I, I), (0, I, I) (I, 0, I) (0, 0, 0, 0, 0) (I, 

I, 0, I, I) (I, 0, I, 0, I) (0, 0, I, I, 0) (0, 0, 0, 0) (I, I, I, I) (I, I, 0, 0) 

(0, 0, I, I)} 

2

a a a a a a
a Z I

a a a a a a

be a neutrosophic group bivector space over the group G = Z2I.

Now we proceed onto define the neutrosophic group bivector 

subspace.

DEFINITION 5.34: Let V = V1  V2 be a neutrosophic group 
bivector space over the group G. W = W1  W2  V1  V2 is 
said to be a neutrosophic group bivector subspace of V over G 
if W itself is a neutrosophic group bivector space over the group 
G.

We will illustrate this by some examples. 

Example 5.70: Let

V = V1  V2 = 5

a a

a a
a a a

, a Z Ia a
a a a

a a

a a
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{(a, a, a) (a, a) (a, a, a, a, a) | a  Z5I}

be a neutrosophic group bivector space over the group G = Z5I.

Let

W = W1  W2 5

a a a
a Z I

a a a

{(a, a) (a, a, a) | a  Z5I}  V1  V2,

W is a neutrosophic group bivector subspace of V over the 

group G = Z5I.

Example 5.71: Let

V = V1  V2 = 
a b a a a a

, a,b,c,d QI
c d a a a a

{(a a a a a a a), (a a a), (a, a) 

a
a

a a
a

, a , a
a

a a
a

a

 | a  QI} 

be a neutrosophic group bivector space over the group G = ZI.  

W = W1  W2 = 
a b

a,b,c,d QI
c d

{(a a a) 

a

a a

a , a

a a

a

, (a, a) | a  QI} 
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 V1  V2 is a neutrosophic group bivector subspace of V over 

the group G = ZI. 

Now we proceed onto define the notion of pseudo neutrosophic 

semigroup bivector subspace of V.  

DEFINITION 5.35: Let V = V1  V2 be a neutrosophic group 
bivector space over the group G. Let W = W1  W2  V1  V2

and H  G be a semigroup of the group G. If W is a 
neutrosophic semigroup bivector space over the semigroup H 
then we call W to be a neutrosophic pseudo semigroup bivector 
subspace of V. 

We will illustrate this by some examples. 

Example 5.72: Let V = V1  V2 = {ZI[x]}  {(a b c) | a, b, c 

ZI} be a neutrosophic group bivector space over the group G = 

ZI. Take W = W1  W2 = {Z+I [x]}  {(a b c) | a, b, c  Z+I}

V1  V2. W is a neutrosophic semigroup bivector space over the 

semigroup Z+I  ZI. W is a pseudo neutrosophic semigroup 

bivector subspace of V over the semigroup Z+I  Z. 

Example 5.73: Let 

V = V1  V2 = 
a b c

a,b,c,d,e,f ZI
d e f

 {(a, b, c, d, e) | a, b, c, d, e  ZI} be a neutrosophic group 

bivector space over the group ZI.

Take

W = W1  W2 = 
a b 0

a,b,c,d Z I {0}
c d 0

 {(a, a, a, a, a)| a  ZI}  V1  V2.

W is a neutrosophic semigroup bivector subspace of V over the 

semigroup 2Z+I  {0}. 
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DEFINITION 5.36: Let V = V1  V2 be a neutrosophic group 
bivector space over the group G. Let W = W1  W2  V1  V2 = 
V; take S a proper subset of G. If W is a neutrosophic set 
bivector space over the set S then we call W to be the pseudo 
neutrosophic set bivector subspace of V over the set S.  

We will illustrate this situation by some simple examples. 

Example 5.74: Let

V = V1  V2

= {(a b, c, d) | a, b, c, d  2ZI} 
a b

a,b,c,d ZI
c d

be neutrosophic group bivector space over the group G = ZI.  

Take

W = W1  W2

= {(a b, c, d) | a, b, c, d  2Z+I  {0}} 

a b
a,b,c,d 4Z I {0}

c d
.

W is a neutrosophic pseudo set bivector subspace of V over the 

set S = {0, 2I, 22I, 23I, …, 2nI | n  N}. 

Example 5.75: Let

V = V1  V2 = {QI  ZI  QI  QI} 

a b
a,b,c,d 3ZI

c d

be a neutrosophic group bivector space over the group G = ZI. 

Take
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W = W1  W2 = {Q+I  {0}  {0}  Q+I}

a a
a,b,c,d 9Z I

a a

 V1  V2; W is a neutrosophic pseudo set bivector subspace of 

V over the set S = {0, 3I, 32I, …, 3nI | n  N}. 

Now we proceed onto define yet another new notion, viz. 

neutrosophic bisemigroup bivector space. 

DEFINITION 5.37: Let V = V1  V2 where V1 is a neutrosophic 
semigroup vector space over the semigroup S1 and V2 is also 
neutrosophic semigroup vector space over the semigroup S2. (S1

 S2, S1  S2 and S2  S1 and V1  V2, V1  V2 and V2  V1) we 
call V to be the neutrosophic bisemigroup bivector space over 
the bisemigroup S = S1  S2.

We illustrate this by some examples. 

Example 5.76: Let V = V1  V2 where

V1 = 
a

,
a

 (a, a, a, a, a) | a  Z7I}

and

V2 = 

a a
a

a a
, a Z Ia

a a
a

a a

.

V is a neutrosophic bisemigroup bivector space over the 

bisemigroup S = S1  S2 = Z7I  Z+I.

DEFINITION 5.38: Let V = V1  V2 where V1 is a neutrosophic 
semigroup linear algebra over the semigroup S1 and V2 is a 
neutrosophic semigroup linear algebra over the semigroup S2
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(V1  V2, V1  V2 and V2  V1 and S1  S2 ,S2  S1, S1  S2). V is 
a neutrosophic bisemigroup bilinear algebra over the 
bisemigroup S = S1  S2.

We will illustrate this by some examples. 

Example 5.77: Let

V = V1  V2 = 
a b c

a,b,c,d,e,f QI
d e f

{ZI[x]; all polynomials in the variable x with coefficients from 

ZI} be a neutrosophic bisemigroup bilinear algebra over the 

bisemigroup S = S1  S2 = Q+I  ZI. 

Example 5.78: Let

V = V1  V2 = {(x, y) | x, y  Z17I}

12

a a a
a Z I

a 0 a

be a neutrosophic bisemigroup bilinear algebra over the 

bisemigroup S = S1  S2 = Z17I  Z12I.

DEFINITION 5.39: Let V = V1  V2 be a neutrosophic 
bisemigroup bivector space over the bisemigroup S = S1  S2.
W = W1  W2  V1  V2 is called a neutrosophic bisemigroup 
bivector subspace of V over the bisemigroup S if W is a 
neutrosophic bisemigroup bivector space over the bisemigroup 
S.

We give examples of the definition. 

Example 5.79: Let

V = V1  V2 = {(x, y, z), (a, a, a, a) | x, y, z, a  Z12I} 
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21

a

a

, a,b a,b Z Ia

a

a

be a neutrosophic bisemigroup bivector space over the 

bisemigroup S = S1  S2 = Z12 I  Z21I.

Take

W = W1  W2

= {(x, y, z) | x, y, z  Z12I} 21

a

a

a Z Ia

a

a

 V1  V2;

W is a neutrosophic bisemigroup bivector subspace of V over 

the bisemigroup S. 

Example 5.80: Let

V = V1  V2

= {QI  QI, ZI  ZI  ZI} 

20

a b

a a c d
, a,b,c,d,e, f ,g,h Z I

a a e f

g h

be a neutrosophic bisemigroup bivector space over the 

bisemigroup S = S1  S2 = ZI  Z20I.

Take

W = W1  W2
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= {QI  QI} 
a a

a a
 V1  V2,

W is a neutrosophic bisemigroup bivector subspace of V over 

the bisemigroup S. 

DEFINITION 5.40: Let V = V1  V2 be a neutrosophic 
bisemigroup bilinear algebra over the bisemigroup S = S1  S2.
W = W1  W2  V1  V2 is defined as the neutrosophic 
bisemigroup bilinear subalgebra of V over S1  S2 = S if W is a 
neutrosophic bisemigroup bilinear algebra over the 
bisemigroup S = S1  S2.

We will give an example. 

Example 5.81: Let

V = V1  V2

=
a b c

a,b,c,d,e,f QI
d e f

12

a

a a Z I

a

be a neutrosophic bisemigroup bilinear algebra over the 

bisemigroup  S = S1  S2 = ZI  Z12I.

Take

W = W1  W2

=
a a a

a QI
a a a

a

a a {0,2I,4I,6I,8I,10I}

a

 V1  V2;

W is a neutrosophic bisemigroup bilinear subalgebra of V over 

the bisemigroup S. 
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DEFINITION 5.41: Let V = V1  V2 be a neutrosophic 
bisemigroup bivector space (bilinear algebra) over the 
bisemigroup S = S1  S2. Take W = W1  W2  (V1  V2) (W1

W2, W1  W2, W2  W1) and T = T1  T2  S1  S2 (T1  T2, T1

 T2 and T2  T1) be a subbisemigroup of S = S1  S2. If W is a 
neutrosophic bisemigroup bivector space (bilinear algebra) 
over the bisemigroup T = T1  T2 then we call W to be a 
neutrosophic subbisemigroup subbivector space (subbilinar 
algebra) of V over the subbisemigroup T of S = S1  S2.

We will illustrate this by some simple examples. 

Example 5.82: Let

V = V1  V2

= 12

a b
,(a,a,a,a,a) a,b,c,d Z I

c d

a a a a
,(x, y) a,x, y ZI

a a a a

be a neutrosophic bisemigroup bivector space over the 

bisemigroup S = S1  S2 = Z12I  ZI. Take W = W1  W2

= 12

a b
a,b,c,d Z I

c d
 {(x, y) | x, y  ZI} 

 V1  V2;

W is a neutrosophic subbisemigroup bivector subspace of V 

over the subbisemigroup T = T1  T2 = {0, 2I, 4I, 6I, 8I, 10I} 

{Z+I  {0}}  S1  S2 of the bisemigroup S. 

Example 5.83: Let

V = V1  V2
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=
a a a a a

a QI
a a a a a

24

a b

c d
a, b, c, d, e, f , g, h Z I

e f

g h

be a neutrosophic bisemigroup bilinear algebra over the 

bisemigroup S = S1  S2 = QI  Z24I.

Take

W = W1  W2

=
a a a a a

a ZI
a a a a a

24

a a

a a
a Z I

a a

a a

 V1  V2,

W is a neutrosophic subbisemigroup bilinear subalgebra of V 

over the subbisemigroup T = T1  T2 = ZI  2Z24I of the 

bisemigroup S = S1  S2 = QI  Z24I.

Now we proceed onto define the bidimension. 

DEFINITION 5.42: Let V = V1  V2 be a neutrosophic 
bisemigroup bivector space (bilinear algebra) over the 
bisemigroup S = S1  S2. Take X = X1  X2  V1  V2; if X1
generates V1 as a neutrosophic semigroup vector space (linear 
algebra) over the semigroup S1 and X2 generates V2 as a 
neutrosophic semigroup vector space (linear algebra) over S2

then we say X = X1  X2 bigenerates V over the bisemigroup S 
= S1  S2.

The cardinality of X = X1  X2 denoted by |X1|  |X2| or 
(|X1|, |X2|) is called the bidimension of the neutrosophic 
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bisemigroup bivector space (bilinear algebra) V = V1  V2.
Even if one of X1 or X2 is of infinite dimension then we say the 
bidimension of V is infinite, only when both X1 and X2 are of 
finite cardinality we say V is of finite bidimension over the 
bisemigroup S = S1  S2.

We will illustrate this by some simple examples. 

Example 5.84: Let V = V1  V2 = {(0, 0), (I, I), (0, 0, 0), (I, I, I) 

(0 0 0 0 0), (I, 0, I, 0, I)}  {(5I, 5I), (0, 0), (10I, 10I), (15I, 

15I), (20I, 20I), (5I, 0), (10I, 0), (20I, 0), (15I, 0)} be a 

neutrosophic bisemigroup bivector space over the bisemigroup 

S = S1  S2 = Z2I  Z25I.

Take X = X1  X2 {(I, I), (I, I, I), (I, 0, I, 0, I)}  (5I, 5I), 

(5I, 0)}  V1  V2. X is a bigenerator of V and the bidimension 

of V is (3, 2) 

Example 5.85: Let

V = V1  V2

=

a b c

a b c a,b,c ZI

a b c

a a a a a

b b b b b a,b,c Q I

c c c c c

be a neutrosophic bisemigroup bilinear algebra over the 

bisemigroup S = S1  S2 = ZI  Q+I.

Take X = X1  X2

=

1 0 0 0 1 0 0 0 1

1 0 0 , 0 1 0 , 0 0 1

1 0 0 0 1 0 0 0 1
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1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 , 1 1 1 1 1 , 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 V1  V2, X bigenerates V over the bisemigroup S = S1  S2.

The bidimension of the neutrosophic bisemigroup bilinear 

algebra V = V1  V2 over the bisemigroup S = S1  S2 is (3, 3) 

Now we proceed onto define the notion of neutrosophic bigroup 

bivector space over the bigroup. 

DEFINITION 5.43: Let V = V1  V2 be such that V1  V2, V1

V2 and V2  V1. If V1 is a neutrosophic group vector space over 
the group G1 and V2 is a neutrosophic group vector space over 
the group G2 and G1  G2, G1  G2 and G2  G1 then we call V 
= V1  V2 to be a neutrosophic bigroup bivector space over the 
bigroup G = G1  G2.

We will illustrate this by some examples. 

Example 5.86: Let V = V1  V2 = {(0, 0), (I, I), (1, 1), (0, 0, 0), 

(I, I, I), (I, 0, I, 0, I, 0 I) (0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1), (I, I, I, 

I, I), (0, 0, 0, 0, 0)} 

a a a
, ,

a a a
 (a, a), (a, a, a)} 

such that a  Z12I be a neutrosophic bigroup bivector space over 

the bigroup G = G1  G2 = {N(Z2)  Z12I}.

Example 5.87: Let

V = V1  V2 = {Z2I  Z2I  Z2I,

x

y

z

 | x, y, z  Z2I}
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a b a
, ,

c d b
(c, d) | a, b, c, d  ZI} 

be a neutrosophic bigroup bivector space over the bigroup G = 

G1  G2 = Z2I  ZI.

We now proceed onto define substructures in the neutrosophic 

bigroup bivector spaces. 

DEFINITION 5.44: Let V = V1  V2 be a neutrosophic bigroup 
bivector space over the bigroup G = G1  G2. W = W1  W2

V1  V2 is defined to be a neutrosophic bigroup bivector 
subspace of V = V1  V2 over the bigroup G = G1  G2 if W = 
W1  W2 is itself a neutrosophic bigroup bivector space over 
the bigroup G = G1  G2.

DEFINITION 5.45: Let V = V1  V2 be a neutrosophic bigroup 
bivector space over the bigroup G = G1  G2. Let W = W1  W2

 V1  V2 and H = H1  H2  G1  G2 be such that H1 is a 
proper subset of G1 and is a semigroup under the operations of 
G1 and H2 is also a proper subset of G2 and is a semigroup of 
G2. If W = W1  W2 is a neutrosophic bisemigroup bivector 
space over the bisemigroup H = H1  H2 then we define W = 
W1  W2  V1  V2 (W1  W2, W1  W2, and W2  W1 with H1

H2, H1  H2 and H2  H1) to be a pseudo neutrosophic 
bisemigroup bivector subspace of V over the bisemigroup H = 
H1  H2 contained in G = G1  G2.

DEFINITION 5.46: Let V = V1  V2 be a neutrosophic bigroup 
bivector space over the bigroup G = G1  G2. Let W = W1  W2

 V1  V2 and P = P1  P2  G1  G2 is such that Pi is a 
proper subgroup of Gi, i=1, 2 if W is a neutrosophic bigroup 
bivector space over the bigroup P = P1  P2 (P1  P2, P1  P2

and P2  P1) then we call W to be a neutrosophic subbigroup 
bivector subspace of V over the subgroup P of the bigroup G. 

We will illustrate these definitions by some examples. 
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Example 5.88: Let

V = V1  V2

=

a
a b

, a a,b,c,d QI
c d

a

12

a

a
a,a,a,a,a , a Z I

a

a

be a neutrosophic bigroup bivector space over the bigroup G = 

QI  Z12I. Take P = P1  P2 = ZI  {0, 2I, 4I, 6I, 8I, 10I} be a 

subbigroup of G. 

W = W1  W2

=
a b

a,b,c,d QI
c d

12a Z Ia,a,a,a,a

 V1  V2,

W is a neutrosophic subbigroup bivector subspace of V over the 

subbigroup P = P1  P2  G1  G2 = QI  Z12I.

Example 5.89: Let

V = V1  V2

=

a

a b c a
, a,b,c,d,e,f QI

d e f a

a
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20

a b

c d ,(a,a,a,a,a,a) a,b,c,d,e,f Z I

e f

be a neutrosophic bigroup bivector space over the bigroup G = 

QI  Z20I = G1  G2.

Take

W = W1  W2 = 

a

a
a QI

a

a

 {(a, a, a, a, a, a)| a  Z20I}  V1  V2 and P = P1  P2 = ZI 

 {0, 10I}  G1  G2 = QI  Z20I. W is a neutrosophic 

subbigroup subbivector space over the subbigroup P = P1  P2

 G1  G2.

Example 5.90: Let V = V1  V2

=

a
a b

, ,[a,a,a,a,a] a,b,c,d QIa
c d

a

1 2 3 4 4

i 16

5 6 5 6

a a a a 0 0 0 a
, a Z I;1 i 6

a 0 0 a 0 a a 0

be a neutrosophic bigroup bivector space over the bigroup G = 

G1  G2 = {QI}  Z16I. Take W = W1  W2

=

a
a b

, a a,b,c,d QI
c d

a
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1 2 3 4

i 16

5 6

a a a a
a Z I;1 i 6

a 0 0 a

 V1  V2 = V, 

W is a neutrosophic bigroup subbivector space over the bigroup 

G = G1  G2.

Example 5.91: Let

V = V1  V2 = 

{(a, a), 

a

a

a

a

a

| a  Z25I}

a
a a a

, a a QI
a a a

a

be a neutrosophic bigroup bivector space over the bigroup G = 

G1  G2 = Z25I  QI.

Take

W = W1  W2

=

a

a

a

a

a

| a  Z25I}
a a a

a QI
a a a

 V1  V2,

W is a neutrosophic bigroup subbivector space over the bigroup 

G = G1  G2.

Example 5.92: Let

V = V1  V2 = 

a b c
a b

0 d e , a,b,c,d,e, f QI
c d

0 0 f
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a

a ,(x, y, z) a, x, y, z ZI

a

 be a neutrosophic bigroup bivector space over the bigroup G = 

G1  G2 = 3ZI  8ZI.

Choose

W = W1  W2

=

a b c

0 d e a,b,c,d,e, f QI

0 0 f

 {(x, y, z) | (x, y, z)  Z36I}  V1  V2;

W is a pseudo neutrosophic subbisemigroup bivector subspace 

over the subbisemigroup H = H1  H2 = {3Z+I  48Z+I}  G1

 G2.

Example 5.93: Let

V = V1  V2

=

a

a b c b
, a,b,c,d,e, f ZI

d e f c

d

a b

c d , (a,b,c,d,e) a,b,c,d,e, f QI

e f

be a neutrosophic bigroup bivector space over the bigroup G = 

G1  G2 = 5ZI  7ZI.
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Consider

W = W1  W2

=

a

b
a,b,c,d ZI

c

d

 {[a, b, c, d, e] | a, b, c, d, e  QI} 

 V1  V2;

W is a pseudo neutrosophic subbisemigroup bivector subspace 

of V over the subsemigroup  

5Z+I  7Z+I  5ZI  7ZI. 

Now we proceed onto define neutrosophic pseudo bigroup 

bivector space. 

DEFINITION 5.47: Let V = V1  V2 where V1 is a neutrosophic 
semigroup vector space over the semigroup S1 and V2 is a 
neutrosophic group vector space over the group G1 (S1  G1, G1

 S1, S1  G1, V1  V2, V1  V2 and V2  V1). We call V = V1
V2 to be a neutrosophic pseudo bigroup bivector space over the 
pseudo bigroup G = S1  G1.

We will illustrate this situation by some examples. 

Example 5.94: Let

V = V1  V2

=
a b

a,b,c,d Z I {0}
c d

a a a
a QI

a a a

is a pseudo neutrosophic bigroup bivector space over the pseudo 

bigroup  

G = (Z+I  {0})  QI = G1  G2.
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Example 5.95: Let

V = V1  V2 = 

a

a , (a, a, a, a, a) a 3Z I {0}

a

a b a b c
, a,b,c,d,e, f QI

c d d e f

be a pseudo neutrosophic bigroup bivector space over the 

pseudo bigroup G = S1  G1 = {3Z+I  {0}}  QI. 
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Chapter Six  

NEUTROSOPHIC FUZZY GROUP BILINEAR
ALGEBRA

In this chapter we proceed onto define the neutrosophic fuzzy 

analogue of the definition given in chapter four of this book. 

Through out this book N([0, 1]) = {a + bi | a, b  [0, I]} is the 

fuzzy neutrosophic set or neutrosophic fuzzy set. 

DEFINITION 6.1: Let V = V1  V2 be a neutrosophic set 
bivector space over the set S. We say the neutrosophic set 
bivector space V = V1  V2 with the bimap  = 1 2 is a 
neutrosophic fuzzy set bivector space or neutrosophic set fuzzy 
bivector space if  : 1 2 : V = V1  V2  [0, 1] and  

(r1 a1  r2 a2) = ( 1 2) (r1 a1  r2 a2)
= 1(r1 a1) 2(r2 a2) 1(a1) 2(a2)

for all ai  Vi; i =1, 2 and r1, r2  S.
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We call V  = V  = 
1 21 2( )V V  or V = ( 1 2) (V1

 V2) to be the neutrosophic fuzzy set bivector space over the 
set S. 

We will illustrate this by some examples. 

Example 6.1: Let

V = V1  V2

=
a a a a a

, a QI
a 0 0 a 0

 {(a, a, a, a), 

a a

a a

0 a

a 0

| a  ZI} 

be a neutrosophic set bivector space over the set S = {0, 2, 22,

…, 2n | n  N}.

Define  : V  N([0, 1])  

i.e.,  = 1 2 : V1  V2  N([0, 1]) as  

1

a a

a 0
 = 

1
I if a 0

2

1 if a 0

1

a a a

0 a 0
 = 

1
I if a 0

4

1 if a 0

and

2 (a, a, a, a) = 

1
I if a 0

5

1 if a 0

2

a a

a a

0 a

a 0

 = 

1
I if a 0

8

1 if a 0

.
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 V  = 
1 21 2(V V )  is a neutrosophic fuzzy set bivector space. 

Example 6.2: Let

V = V1  V2

= 12

a b
a a

, a b a,b Z I
b b

a b

17

a a a

b b b
, , (a,b,c,d) a,b,c,d Z I

c c c

d d d

 be a neutrosophic set bivector space over the set S = {0, 1}. 

Define  = 1 2 : V = V1  V2  N([0, 1]) where 1 : V1

N([0, 1]) and 2 : V2  N([0, 1]). 

Defined by

1

a a

b b
 = 

1
I if a 0 or b 0

4

1 if a b 0

,

1

a b

a b

a b

 = 

1
I if a 0 or b 0

6

1 if a b 0

,

2

a a

b b

c c

d d

 = 

1
I if a 0 or b 0 or c 0 or d 0

8

1 if a b c d 0

,
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2

a

b

c

d

 = 

a 0

b 01
I if

c 04

d 0

1 if a b c d 0

and

2 (a, b, c, d) = 

1
I if a 0 or b 0 or c 0 or d 0

18

1 if a b c d 0

.

V  = 
1 21 2(V V )  is a neutrosophic set fuzzy bivector space. 

Now we proceed onto define the notion of neutrosophic set 

fuzzy bilinear algebra. 

DEFINITION 6.2: Let V = V1  V2 be a neutrosophic set bilinear 
algebra over the set S. A neutrosophic set fuzzy bilinear algebra 
or neutrosophic fuzzy set bilinear algebra (V, ) = (V1  V2, 1

2) or ( 1 2) (V1  V2) is a bimap  = 1 2 : V1  V2

 N[(0, 1)] such that  
i (ai + bi)  min( i (ai), i (bi))

i (ri ai) i (ai)
for ai, bi Vi, ri  S. i = 1, 2. 

We illustrate this by some examples. 

Example 6.3: Let

V = V1  V2

= {ZI  ZI  ZI} 
a a

a QI
a a

be a neutrosophic set bilinear algebra over the set S = Z+I. 

Define  = 1 2 : V = V1  V2 N([0, 1]) where 1 : V1

N([0, 1]) and 2 : V2  N([0, 1]) such that  
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1 (a, b, c) = 

1
I if (a,b,c) (0,0,0)

3

1
if (a,b,c) (0,0,0)

3

and

2

a a

a a
 = 

a a 0 01
I if

a a 0 04

a a 0 01
if

a a 0 04

 V  = 
1 21 2(V V )  is a neutrosophic set fuzzy bilinear algebra. 

Example 6.4: Let

V = V1  V2

=
a b c d

a,b,c,d,e, f Q I {0}
e f g h

a

b

c
a,b,c,d,e, f Q I {0}

d

e

f

be a neutrosophic set bilinear algebra over the set S = Z+.

Define : V  N([0, 1])  

 = 1 2 : V = V1  V2 N([0, 1])  

by 

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1])  

as
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1

a b c d

e f g h
 = 

a b c d 0 0 0 01
I if

e f g h 0 0 0 08

a b c d 0 0 0 01
if

e f g h 0 0 0 08

2

a

b

c

d

e

f

 = 

a 0

b 0

c 01
I if

d 09

e 0

f 0

a 0

b 0

c 01
if

d 09

e 0

f 0

V  = 
1 21 2(V V )  is a neutrosophic set fuzzy bilinear algebra. 

Now we proceed onto define the notion of neutrosophic set 

fuzzy bivector subspace. 

DEFINITION 6.3: Let V = V1  V2 be a neutrosophic setbivector 
space over the set S and W = W1  W2  V1  V2 be the 
neutrosophic set bivector subspace of V over the set S. Define 
= 1 2: W = W1  W2  N[(0, 1)] then W  = 

1 21 2( )W W
is called the neutrosophic set fuzzy bivector subspace of V. 

We will illustrate this situation by some examples. 

Example 6.5: Let V = V1  V2
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= {(Z+I  Z+I  Z+I  Z+I),

a

b
| a,b,c,d Z I

c

d

a b a a a a
, a,b,c Z I

0 c a a a a

be a neutrosophic set bivector space over the set S = Z+I.

Let

W = W1  W2

=

a

b
| a,b,c,d Z I

c

d

a b
a,b,c Z I

0 c

 V1 V2

be a neutrosophic set bivector subspace of V over the set S. 

Define

 = 1 2 : W1  W2  N([0, 1]) 

by  

1 : W1  N([0, 1]) 

such that

1

a

b

c

d

 = I + 
1

3

2

a b

0 c
 = I + 

1

4
,
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then W  = 
1 21 2(W W )  is a neutrosophic set fuzzy bivector 

subspace of V. 

Example 6.6: Let

V = V1  V2 = {Z+I [x], (a, a, a, a) | a  Z+I}

a b

c d

e f

g h

, (a, a, a, a, a) ,

a a a a a

b b b b b
 | a, b, c, d, e, f, g, h  Q+I} 

be a neutrosophic set bivector space over the set S = 3Z+I. Take

W = W1  W2

= {(a, a, a, a)| a  Z+I}
a a a a a

b b b b b
 | a, b  Z+I}

 V1  V2

to be a neutrosophic set bivector subspace of V over the set S. 

Define  = 1 2: W1  W2  N([0, 1]) where 1 : W1

N([0, 1]) and 2 : W2  N([0, 1]); 

1 (a, a, a, a) = I + 
1

20
and

2

a a a a a

b b b b b
 = I + 

1

8

W  = 
1 21 2(W W )  is a neutrosophic set fuzzy bivector 

subspace of V. 
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Now we proceed onto define the notion of neutrosophic fuzzy 

semigroup bivector space. 

DEFINITION 6.4: A neutrosophic semigroup fuzzy bivector 
space or a neutrosophic fuzzy semigroup bivector space V  (or 

V or 
1 21 2( )V V ) is a neutrosophic semigroup bivector space 

V = V1  V2 over the semigroup S, with a bimap  = 1 2 : 
V = V1  V2  N([0, 1]) satisfying the following conditions; 

 (ra) =  (r1a1  r2a2)
= ( 1 2) (r1 a1  r2 a2)

= 1 (r1 a1) 2 (r2 a2) 1 (a1) 2 (a2);
i.e., 1 (r1, a1) 1 (a1) and 2 (r2a2) 2 (a2)

for all a1  V1, a2  V2 and r1, r2  S. 

We will illustrate this situation by some examples. 

Example 6.7: Let

V = V1  V2

= {ZI  ZI  ZI  ZI, Z+I  Z+I  Z+I}

a d
a a a a a

b e , a,b,c,d,e, f Z I
b b b b b

c f

be a neutrosophic semigroup bivector space over the semigroup 

S = Z+I. Define  = 1 2 : V = V1  V2  N [(0, 1)] where 

1 : V1  N([0, 1]) and 2 : V2  N([0, 1]) with 

1 (a, b, c, d) = 

1
I if (a b c d)

4

1 if a b c d 0
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1 (a, b, c) = I + 
1

3
and

2

a d

b e

c f

 = 0.5I + 
1

8

2

a a a a a

b b b b b
 = 0.8I + 

1

6
.

V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bivector 

space.

Example 6.8: Let

V = V1  V2

= 5

a b c

0 d e a,b,c,d,e, f Z I

0 0 f

 {Z5I  Z5I  Z5I  Z5I} 

be a neutrosophic semigroup bivector space over the semigroup 

S = Z6. Define  : V  N([0, 1]) that is  = 1 2 : V1  V2

 N [(0, 1)] where  

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1]) 

by  

1

a b c

0 d e

0 0 f

 = 

a b c 0 0 0
1

0.9I if 0 d e 0 0 0
5

0 0 f 0 0 0

a b c 0 0 0

1 if 0 d e 0 0 0

0 0 f 0 0 0
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and

2 (a, b, c, d) = 

1
I if a,b,c,d 0,0,0,0

5

1 if a,b,c,d 0,0,0,0

.

 V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bivector 

space.

 Now we proceed onto define the notion of neutrosophic 

semigroup fuzzy bivector subspace. This is defined in two 

ways. 

DEFINITION 6.5: Let V = V1  V2 be a neutrosophic semigroup 
bivector space over the semigroup S. V  = 

1 21 2( )V V  be a 
neutrosophic semigroup fuzzy bivector space. Suppose W = W1

 W2  V1  V2 be a neutrosophic semigroup bivector subspace 
of V, then we define 

1 21 2( )W W W  to be the neutrosophic 
semigroup fuzzy bivector subspace of V  , where : W  N([0, 
1]) is such that  = 1 2  is the restriction of  to W i.e i  : 
Wi  N([0, 1]) where i : Vi  N([0, 1]). i = 1, 2.

DEFINITION 6.6: Let V = V1  V2 be a neutrosophic semigroup 
bivector space defined over the semigroup S. Let W = W1  W2

 V1  V2 be a neutrosophic semigroup bivector subspace of V 
over the semigroup S. Let = 1 2 : W = W1  W2  N([0, 
1]) be a bimap such that W  is a neutrosophic semigroup fuzzy 
bivector space; then we call W  = 

1 21 2( )W W  to be a 
neutrosophic semigroup fuzzy bivector subspace of V.

It is important to note the following. In general the two 

definitions are not equivalent for  : W = W1  W2  N([0, 1]), 

 may not be defined on V \ W = V1 \ W1  V2 \ W2, where as 

 : W  N([0, 1]) is only a restriction bimap.  

Here we give examples of both the definitions. 
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Example 6.9: Let

V = V1  V2

= {(a, b, c, d, e), 

a

a

a

| a, b, c, d, e  Z+I}

{Z+I  Z+I  Z+I,
a b

a,b,c,d Z I
c d

be a neutrosophic semigroup bivector space over the semigroup 

S = Z+I. Let  = 1 2 : V = V1  V2  N([0, 1]) where 1

:V1  N([0, 1]) and 2 :V2  N([0, 1]) are defined by  

1(a, b, c, d, e) = 
1

I
7

1

a

a

a

 = 
1

I
3

, 2 (a, a, a) = 
1

I
26

2

a b

c d
=

1
I

4

V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bivector 

space. Let

W = W1  W2

=

a

a a Z I

a

a b
a,b,c,d Z I

c d



231

 V1  V2.

Define : W = W1  W2  N([0, 1]) as follows,  = 1 2 :

W1  W2  N([0, 1])  

1  : W1  N([0, 1]) 

and

2  : W2  N([0, 1]) 

is such that 

1

a

a

a

 = 
1

I
3

and

2

a b

c d
=

1
I

4

W =
1 21 2(W W )  is the neutrosophic semigroup fuzzy 

bivector space of V .  is clearly the restriction bimap of  on 

W.

Example 6.10: Let

V = V1  V2

=

a b

a b

a a a a a b
, a,b Z I

b b b b a b

a b

a b

a b c
a,a,a,a,a , a,b,c,d,e, f Q I

d e f

be a neutrosophic semigroup bivector space over the semigroup 

S = Z+I.
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Define  = 1 2 = V = V1  V2  N([0, 1]) where 1 : V1

 N([0, 1]) and 2 : V2  N([0, 1]) are such that  

1

a a a a

b b b b
 = 

1
I

8

1

a b

a b

a b

a b

a b

a b

=
1

I
12

and

2 (a, a, a, a, a) = 
1

I
5

2

a b c

d e f
 = 

1
I

6

V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bivector 

space. Let

W = W1  W2

=
a a a a

a Z I
a a a a

 {(a, a, a, a, a) |a  Q+I} 

 V1  V2

be a neutrosophic semigroup bivector subspace of V over the 

semigroup S. 

Define

= 1 2  : W1  W2  N([0, 1]) 

where

1  : W1  N([0, 1]) 
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and

2  : W2  N([0, 1]) 

are such that 

1

a a a a

a a a a
 = 

1
I

8

and

2  (a, a, a, a, a) = 
1

I
5

.

W  = 
1 21 2W (W W )  is a neutrosophic semigroup fuzzy 

bivector space of V .

Example 6.11: Let

V = V1  V2

= {(a, b, c, d, e) , 

a

a

a

 | a, b, c, d, e,  Z+I}

 {Z+I  Z+I  Z+I,
a b

c d
 | a, b, c, d,  Z+I}

be a neutrosophic semigroup bivector space over the semigroup 

Z+I. Let

W = W1  W2

=

a

a a Z I

a

a b
a,b,c,d Z I

c d
 V1  V2

be a neutrosophic semigroup bivector subspace of V over the 

semigroup S. Define  : W  N([0, 1]) i.e.,  

 = 1 2 = W1  W2  N([0, 1]) 

where
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1 : W1  N([0, 1]) 

and

2 : W2  N([0, 1]) 

are such that

1

a

a

a

 = 
1

I
100

and

2

a b

c d
 = 

1
I

200

W  = 
1 21 2(W W )  is a neutrosophic semigroup fuzzy 

bivector space of V. Clearly W  and W  are distinct given in 

examples 6.9 and 6.11 respectively. 

Example 6.12: Let

V = V1  V2

=

a b

a b

a a a a a b
, a,b Z I

b b b b a b

a b

a b

a b c
a,a,a,a,a , a,b,c,d,e, f Q I

d e f

be a neutrosophic semigroup bivector space over the semigroup 

S = Z+I.

Let

W = W1  W2
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=
a a a a

a Z I
a a a a

 {(a, a, a, a, a) | a  Q+I}

 V1  V2

be a neutrosophic semigroup bivector subspace of V over the 

semigroup S = Z+I.

Define  = 1 2 = W1  W2 = W  N([0, 1]) where  

1 : W1  N([0, 1]) 

and

2 : W2  N([0, 1]) 

with

1

a a a a

a a a a
 = I + 1 

and

2 (a, a, a, a, a) = I + 0.5. 

W  = 
1 21 2(W W )  is a neutrosophic semigroup fuzzy 

bivector space of V. Clearly W  and W  are different in 

examples 6.10 and 6.12 respectively. 

Now we proceed onto define the notion of neutrosophic 

semigroup fuzzy bilinear algebra. 

DEFINITION 6.7: Let V = V1  V2 be a neutrosophic semigroup 
bilinear algebra over the semigroup S. We say V  = 

1 21 2( )V V or ( 1 2) (V1  V2) is a neutrosophic semigroup 
fuzzy bilinear algebra if  = 1 2 : V = V1  V2  N([0, 1]) 
is such that 1 : V1  N([0, 1]) and 2 : V2  N([0, 1]) satisfy 
the conditions i (xi + yi)  min ( i (xi), i (yi)); i (rxi) = r i

(xi); i=1, 2 for every r  S and xi, yi  Vi ; i=1, 2. 

We will illustrate this situation by some examples. 

Example 6.13: Let  V = V1  V2

= {(a, a, a, a, a, a, a) | a  Q+I}
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a b
a,b,c,d Z I

c d

be a neutrosophic semigroup bilinear algebra over the 

semigroup S = Z+I.

Define  = 1 2 = V = V1  V2  N([0, 1]) where 1 : V1

 N([0, 1]) and 2 : V2  N([0, 1]) are such that  

1 (a, a, a, a, a, a, a) = 
1

I
8

2

a b

c d
 = 

1
I

9

V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bilinear 

algebra.

Example 6.14: Let

V = V1  V2

=
1 2 3

i 2

4 5 6

a I a I a I
a I Z I;1 i 6

a I a I a I

and

V2 = {(a1I, a2I, a3I, a4I) | aiI  Z2I; 1  i  4} 

be a neutrosophic semigroup bilinear algebra over the 

semigroup S = Z2. Define  = 1 2 : V1  V2  N([0, 1]) 

where 1 : V1  N([0, 1]) and 2 : V2  N([0, 1]); such that  

1
1 2 3

4 5 6

a I a I a I

a I a I a I
 = i

i

1
I if a 0 for some i,1 i 6

6

1 if a 0 for i 1,2,3,4,5,6

and
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2(a1I, a2I, a3I, a4I) = i

i

1
I if a 0 for some i 1,2,3,4

4

1 if a 0;1 i 4

V  = 
1 21 2(V V )  is a neutrosophic semigroup fuzzy bilinear 

algebra.

The reader is expected to define the two types of neutrosophic 

semigroup fuzzy bilinear subalgebra as in case of neutrosophic 

semigroup bivector spaces. 

DEFINITION 6.8: Let V = V1  V2 be a neutrosophic group 
bivector space over the group G. Define  = 1 2 : V = V1

V2  N([0, 1]) a bimap such that  
1 : V1  N([0, 1]) 

and
2 : V2  N([0, 1]) 

where
i (ai + bi)  min ( i (ai), i (bi));

i (ai) = i (– ai)
i (0) = 1 

i (rai)  (ai)

for all ai, bi  Vi, r  G for i=1, 2. We call V  = 
1 21 2( )V V  to 

be the neutrosophic group fuzzy bivector space.  

It is pertinent to mention here that the concept of neutrosophic 

group fuzzy bilinear algebra and neutrosophic group fuzzy 

bivector spaces and fuzzy equivalent. 

We will illustrate this by some examples. 

Example 6.15: Let

V = V1  V2

=
aI bI cI

aI, bI,cI,dI,eI, fI ZI
dI eI fI

 {ZI  ZI} 
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be a neutrosophic group bivector space over the group Z.  

Let

 = 1 2 : V = V1  V2  N([0, 1]) 

be defined as follows: 

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1]) 

1

aI bI cI

dI eI fI
 = 

1
I if a 0

| a |

1
I if b 0

| b |

1
I if a 0 b and c 0

| c |

1
I if a b c 0 and d 0

| d |

1
I if a b c d 0; e 0

| e |

1
I if a b c d e 0; f 0

| f |

1 if a b c d e f 0

2 (x, y) = 

1
I if (x, y) (0,0)

2

0 if (x, y) (0,0)

V  = 
1 21 2(V V )  is a neutrosophic group fuzzy bivector 

space.

Example 6.16: Let

V = V1  V2
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=
a b

a,b,c,d QI
c d

 {QI  QI  QI} 

be a neutrosophic group bilinear algebra over the group G = QI. 

Define  = 1 2: V = V1  V2  N([0, 1]) where  

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1]) 

with

1

a b

c d
 = 

1
I if | ad bc | 0

5

0 if | ad bc | 0

and

2(a, b, c) = 

1
I if atleast one of a or b or c is non zero

5

0 if a b c 0

V  = 
1 21 2(V V )  is a neutrosophic group fuzzy bilinear 

algebra. Now we proceed onto define neutrosophic group fuzzy 

bilinear subalgebra or neutrosophic group fuzzy bivector 

subspace as both are fuzzy equivalent. 

DEFINITION 6.9: Let V = V1  V2 a neutrosophic group 
bivector space over the group G. Let V  = 

1 21 2( )V V  be the 
neutrosophic group fuzzy bivector space of V. Let W = W1  W2

 V1  V2 be a proper neutrosophic group bivector subspace of 
V

1 21 2( )W W W is a neutrosophic group fuzzy bivector 
subspace of V  if = 1 2 : W1  W2  N([0, 1]) is the 
restriction bimap of  : 1 2 : V1  V2  N([0, 1]) i.e., i  : 
Wi  N([0, 1]) is the restriction map, i : Vi  N([0, 1]) for i = 
1, 2.

We will illustrate this by an example. 
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Example 6.17: Let

V = V1  V2

=
a b

a,b,c,d QI
c d

 {QI  QI  QI} 

be a neutrosophic group bivector space over the group G = QI. 

Define  = 1 2 : V1  V2  N([0, 1]) where  

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1]) 

Define

1

a b

c d
 = 

1
I if a 0,b 0,c 0,d 0

4

1
I if one of a,b,or c or d is zero

3

1
I if two of a,b,c,or d is zero

2

I 1 if only one of a,b,c or d is non zero

1 if a b c d 0

2(a, b, c) = 

1
I if a 0,b 0,c 0

3

1
I if one of a,b,or c is zero

2

I 1 if one of a or b or c is non zero

1 if a b c 0

V  = 
1 21 2(V V )  is a neutrosophic group fuzzy bivector 

space.

Let

W = W1  W2
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=
a b

a,b QI
0 0

 (QI  QI  {0}} 

 V1  V2

be a neutrosophic group bivector space over the group G = QI. 

Define = 1 2  : W1  W2  N([0, 1]) by; where 

1  : W1  N([0, 1]) 

and

2  : W2  N([0, 1]) 

is such that 

1

a b

0 0
 = 

I 1 if one of a or b is non zero

1
I if a 0, b 0

2

1 if a 0 b

2 (a, b, 0) = 

1
I if a 0,b 0

2

I 1 if a 0 or b 0

1 if a b 0

1 21 2W (W W )  is a neutrosophic group fuzzy bivector 

subspace of V .

DEFINITION 6.10: Let V = V1  V2 be a neutrosophic group 
bivector space over the group G. Let W = W1  W2  V1  V2
be a neutrosophic group bivector subspace of V over G. Define 
a bimap  = 1 2; W1  W2  N([0, 1]) so that W =

1 21 2( )W W  is a neutrosophic group fuzzy bivector space then 
we call W  to be the neutrosophic group fuzzy bivector 
subspace of V.

We will illustrate this definition by an example. 
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Example 6.18: Let

V = V1  V2

= {ZI  ZI  ZI  ZI } 
a b

a,b,c,d QI
c d

be a neutrosophic group bivector space over the group G = ZI. 

Let

W = W1  W2

= {ZI  ZI  ZI  {0} } 
a b

a,b,d QI
0 d

 V1  V2

be a neutrosophic group bivector space over the group G.  

Define  : W  N([0, 1]); that is  = 1 2 : W = W1  W2

 N([0, 1]) where 1 : W1  N([0, 1]) and 2 : W2  N([0, 

1]).  

1 (x, y, z, 0) = 

1
I if atleast one of x, y, z is non zero

3

1 if x y z 0

2

a b

0 d
 = 

1
I if atleast one of a,b, d is non zero

4

1 if a b d 0

W  = 
1 21 2(W W )  is a neutrosophic group fuzzy bivector 

subspace of V. 

DEFINITION 6.11: Let V = V1  V2 be a neutrosophic biset 
bivector space over the biset S = S1  S2. Let  = 1 2 : V1

 V2  N([0, 1]) where 1 : V1  N([0, 1]) and 2 : V2  N([0, 
1]) such that 1(r1 a1) 1(a1) for all r1,  S1 and a1  V1 and 
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2 (r2 a2) 2(a2) for all r2  S2 and a2  V2. V  = 
1 21 2( )V V

is a neutrosophic biset fuzzy bivector space.

We will give an example of this definition. 

Example 6.19: Let

V = V1  V2

= {(Z+I  Z+  Z+I)}
a a a a

a Z I
a a a a

be a neutrosophic biset bivector space over the biset 3Z+  Z+I

= S = S1  S2.

Define  = 1 2 : V1  V2  N([0, 1]) where 1 : V1

N([0, 1]) and 2 : V2  N([0, 1]) given by 

1 (a, b, c) = 
1

I
b

2

a a a a

a a a a
=

1
I

8

V  = 
1 21 2(V V )  is a neutrosophic biset fuzzy bivector space. 

Now the notion of neutrosophic biset fuzzy bilinear algebra is 

left as an exercise for the reader to define and give examples of 

it. The two types of neutrosophic biset fuzzy bivector subspaces 

can also defined analogous to earlier definitions. 

DEFINITION 6.12: Let V = V1  V2 be a neutrosophic 
bisemigroup bivector space over the bisemigroup S = S1  S2.
Let  = 1 2 : V = V1  V2  N([0, 1]) be a bimap; if i (ai

+ bi)  min ( i(ai), i(bi)) : i(riai)   ri (ai) for all ri  Si and ai,
bi  Vi; i = 1, 2, then we call V  = 

1 21 2( )V V  to be a 
neutrosophic bisemigroup fuzzy bivector space.
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We will illustrate this by an example. 

Example 6.20: Let

V = V1  V2

= {(a, a, a) | a  Z6I} 7

a

a
a Z I

a

a

be a neutrosophic bisemigroup bivector space over the 

bisemigroup S = S1  S2 = Z6  Z7.

Define

 = 1 2 : V1  V2  N([0, 1]) 

where

1: V1  N([0, 1]) 

and

2: V2  N([0, 1]) 

by 

1 (a, a, a) = 

1
I if a 0

3

1 if a 0

and

2

a

a

a

a

 = 

1
I if a 0

4

1 if a 0

.

V =
1 21 2(V V ) is a neutrosophic bisemigroup fuzzy bivector 

space.
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Next we proceed onto define the notion of neutrosophic bigroup 

fuzzy bivector spaces. 

DEFINITION 6.13: Let V = V1  V2 be a neutrosophic bigroup 
bivector space over the bigroup G = G1  G2. Let  = 1 2 : 
V1  V2  N([0, 1]) be a bimap where 1 : V1  N([0, 1]) and 

2 : V2  N([0, 1]) are such that V1 1 and V2 2 are 
neutrosophic group fuzzy vector spaces then V  = 

1 21 2( )V V
= V1 1  V2 2 is a neutrosophic bigroup fuzzy bivector space.

We will illustrate this situation by some example. 

Example 6.21: Let

V = V1  V2

= 20

a b
a,b,c,d Z I

c d

 {Z+I  Z+I  Z+I  Z+I  Z+I}

be a neutrosophic bigroup fuzzy bivector space over the bigroup 

G = Z20  Z+I.

Define

 : V  N([0, 1]) 

where

 = 1 2 : V1  V2  N([0, 1]); 

1 : V1  N([0, 1]) 

and

2 : V2  N([0, 1]). 

1

a b

c d
 = 

1
I if | ad bc | 0

8

1 if ad bc 0

and
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2 (a, b, c, d, e) = 

1
I if (a,b,c,d,e) (0,0,0,0,0)

5

1 if (a,b,c,d,e) (0,0,0,0,0)

V =
1 21 2(V V )  is a neutrosophic bigroup fuzzy bivector 

space.

As in case of neutrosophic biset vector space we can define 

two types of neutrosophic bigroup fuzzy bivector subspaces. 

This task is left as an exercise for the reader. 
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Chapter Seven  

SUGGESTED PROBLEMS 

(1)  Find all mixed neutrosophic integer set subspace of the 

mixed neutrosophic integer set vector space V = {20I, 0, 40 

– I, 25I – 5, 45I – 3, 28I – 4, 12 + 4I, 3 + 4I, 40 – 4I, 10I, 

201, 28I, 54}  N(Z) over the set S = {0, 1}  Z. 

a. Does V have pseudo pure neutrosophic integer set 

vector subspace? 

b. Does V contain any pseudo set integer set vector 

subspace? 

(2) Find all pure neutrosophic integer set vector subspaces of 

the pure neutrosophic integer set vector space V = {0, I, 28I, 

42 + I, – 79 + 3I, 442, 89I, 200I + 4002, 42I + 381, 451I} 

over the set S = {0, 1}  Z. 

(3)  Let V = {3nI, 5mI + 2n, 0, 2m | m, n  Z + } be the mixed 

neutrosophic integer set vector space over S = {0, 1}  Z. 
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a. Find 3 mixed neutrosophic integer set vector 

subspace of V. 

b. Find 3 pseudo pure neutrosophic integer set vector 

subspaces of V. 

c. Find 3 pseudo set integer set vector subspace of V. 

d. Can V have mixed neutrosophic integer subset 

vector subspace? Justify your claim. 

(4)  Let V = 
aI b 0 0 0 nZ

, , n,p,a,b,c,d Z
c dI 3nI 0 0 pzI

be a pure neutrosophic integer set vector space over Z +  Z. 

a. Find atleast 5 pure neutrosophic integer set vector 

subspace of V over Z + .

b. Find atleast 5 pure neutrosophic integer subset 

vector subspace of V. 

(5) Let V = {2I, 0, 3I + 2, 27, 38 – 3I, 54I – 47, 280I, 249} and 

W = {41I, 156I, 31 – I, 48I, 56 + 47I, 56, 0, 27 + 48I, 56I + 

21} be two mixed neutrosophic integer set vector spaces 

over the set S = {0, 1}  Z. 

a. Find a neutrosophic integer set linear 

transformation of V to W. 

b. Find atleast one neutrosophic integer set subspace 

preserving linear transformation. 

c. Find one neutrosophic integer set pseudo set 

subspace preserving linear transformation. 

d. Find one neutrosophic integer pseudo pure subspace 

preserving linear transformation. 

(6) Let V = {0, 2I, 25I, 3I – 2, 48 – 5I, 28I + 4}  PN(Z) be a 

pure neutrosophic integer set vector space over the set S = 

{0, 1}  Z.

 Find all neutrosophic set linear operators on V. How many 

of them preserve the pure neutrosophic integer set 

subspaces of V. 
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(7)  Let V = {0, 2I + 8, 27 – 3I, 4I, –51, 48I – 3, 27 – 8I, 9I + 8, 

– 5I, 49 – IM 28M – 26, 42, – 21}  N(Z) be the mixed 

neutrosophic integer set vector space over S = {0, 1}.  

a. How many neutrosophic integer set linear operators 

can be defined on V?  

b. Find those neutrosophic integer set linear operators 

on V which preserves subspaces of V.  

(8)  Let V = {I, 2I, 0, 19I – 3, 27 – I, I + 4, 28, 48 – 31I, 151I} 

be a neutrosophic integer set vector space over the set S = 

{0, 1}.

a. Find all neutrosophic integer set vector subspace of 

V over S.

b. Find atleast 3 neutrosophic integer linear operators 

on V which preserves all types of subspaces.  

(9)  Let V = {2ZI, 5Z, m + nI | m, n  Z} be the neutrosophic 

integer set linear algebra over the set Z. 

a. Find at least 5 neutrosophic integer subset linear 

subalgebras of V over S  Z. 

b. Find 5 pseudo neutrosophic integer set vector 

subspaces of V. 

c. Find 5 neutrosophic integer set linear subalgebras 

of V. 

d. Find at least 5 neutrosophic integer set linear 

operators which preserves atleast one of the three 

substructures.

e. Does there exist any neutrosophic integer set linear 

operator on V which preserves simultaneously all 

the three substructures mentioned in the problem. 

(10)  Let V = {3ZI, 25ZI, 41Z, 9Z + 32ZI} be a neutrosophic 

integer set vector space over the set Z. 

a. Find neutrosophic integer set subvector spaces of V 

over Z. 

b. Find neutrosophic integer set linear operators on V. 
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c. Find neutrosophic integer subset subvector spaces 

of V. 

(11)  Let V = {2I, 0, 41I, 21 – I, 4, 43I, 25 + 3I, 27 – I, I – 42, 3, 

48I + 90}  N(Z) be a neutrosophic integer set vector space 

over the set {0, 1}. Find a neutrosophic integer set generator 

of V. 

(12)  Let V = {3ZI, 41Z, 28ZI + 31Z}  N(Z) be a neutrosophic 

integer set vector space of V over Z + .

a. Find a neutrosophic integer set generator of V over 

Z + .

b. If V is defined over Z what will be the neutrosophic 

integer set generator of V over Z. 

c. If V is defined over 3Z + what will be the 

neutrosophic integer set generator of V over 3Z + .

d. If V is defined over S = {0, 1} what will be the 

neutrosophic integer set generator of V over S. 

e. If V is defined over the set S = {– 1, 2, 0, 1}, what 

will be the neutrosophic integer set generator of V 

over S. 

(13)  Let V = {3ZI, 2Z, m + nI | m, n  Z} be a neutrosophic 

integer set linear algebra over Z. 

a. Find the neutrosophic integer set generator of V 

over Z. 

b. Find the neutrosophic integer set generator of V 

when the same V is defined over the set S = {0, 1}. 

c. Suppose the neutrosophic integer set linear algebra 

V is defined over 3Z + what will be the neutrosophic 

integer set generator of V over the set 3Z + .

d. What will be the neutrosophic integer set generator 

of V if V is defined over the set S = {0, 1, 2, – 1, – 

2}?

(14) Give some interesting properties about neutrosophic integer 

set linear algebras. 
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(15) Give an example of a neutrosophic integer set linear algebra 

which has no neutrosophic integer set linear subalgebra. 

(16)  Give an example of a neutrosophic integer set linear algebra 

which has no neutrosophic integer subset linear subalgebra. 

(17)  Give some interesting results on substructures of 

neutrosophic integer set vector spaces. 

(18)  Obtain some interesting properties about n-n set vector 

spaces.

(19)  Find all n-n set vector subspaces of the n-n set vector space 

V = {7  7I 27I, 48  48I, 56, 42I, 7  70I, – 28, 56 – 56I, – 

28  28I, 0} defined over the set S = {0, 1, 1 – I}. 

(20)  Let V be a neutrosophic integer set vector space over a set S 

 Z. Let NHomS (V, V) denote the collection of all linear 

operators of V, what is the algebraic structure enjoyed by 

NHomS (V, V)? 

(21)  Let W and V be neutrosophic integer set vector space over a 

set S  Z. Let NHomS (V, W) denote the set of all linear 

transformation of V into W. Find the algebraic structure 

enjoyed by NHomS (V, W). 

(22)  Give some interesting properties about n-n set linear 

algebra.

(23)  Let V = {24I, 22 – I, 90 + 4I, 22 + 2I, 0, 21 + 9I, 21I, 30I, 

94I}  N(Z) be a n-n set vector space over the set S = {0, 1, 

I}. Find all n-n set vector subspaces of V over S. 

(24)  Let V = {m – mI | m  Z} be a n-n set linear algebra over S 

= {0, 1, 1 – I}  N(Z). Find the set of all n-n set linear 

operators on V. 

(25)  Let V = {2I, 3I – 2, 0, 44I – 20, 27I + 9, 22 + I, I, 24I, 36I, 

23I}  N(Z) and W = {5 – 5I, 20 – 20I, 30 – 30I, I, 44 – 

44I, 26I, 72I}  N(U) be n-n set vector space over the set S 

= {1, 0, I}. Find atleast 5 distinct n-n set linear 

transformation from V to W which preserves n-n set vector 

subspaces of V and one n-n set linear transformation from V 

to W which does not preserve subspaces! 
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(26)  Find the algebraic structure enjoyed by NHomS(V, W) 

where V and W are n-n set vector spaces defined over S; 

where NHomS (V, W) is the collection of all n-n set linear 

transformations of V to W. 

(27)  What is the algebraic structure of NHomS(V, V); where 

NHomS(V, V) is the collection of all n-n set linear operators 

of a n-n set vector space over the set S  N(Z)? 

(28)  When V and W in problem 26 is replaced by n-n set linear 

algebra, what is the structure of NHomS(V, W)? 

(29)  When V in the problem 27 is replaced by n-n set linear 

algebra, what is the structure of NHomS(V, V)? 

(30)  Let V = 

m mI 0

0 m mI m Z

m mI m mI

 N(Z) be the n-n set 

linear algebra over the set S = {0, 1, 1 – I}  N(Z).

a. Find NHomS (V, V).  

b. Find n-n subset linear subalgebras of V over F. 

c. Does V have pseudo n-n set vector subspaces? 

d. Does there exist a n-n set linear operator on V 

which does not preserve any n-n set linear 

subalgebras?

(31)  Obtain some interesting properties about set neutrosophic 

integer vector spaces. 

(32)  Let V = {ZI}  N(Z) be a set neutrosophic integer linear 

algebra over the set S = Z + .

a. Find at least 3 set neutrosophic sublinear algebras 

of V. 

b. Does V have pseudo set neutrosophic integer 

subvector spaces? 

c. Find some subset neutrosophic integer sublinear 

algebras of V. 
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(33)  Let V = {3 + 3I, 5 + 5I, 0, 3I, 8 + 8I, 7I, 42 + 42I}  N(Z 

(I)); V is a set neutrosophic integer vector space over the set 

S = {0, 1, I, 1 – I}  N(Z) or equivalently N(Z(I)). 

a. Find atleast 3 set neutrosophic integer vector 

subspaces over the set S. 

b. Does there exist subset neutrosophic integer vector 

subspace in V? 

(34)  Obtain some interesting properties about set neutrosophic 

integer linear algebras.

(35)  Let V  N(Zn) be a set neutrosophic modulo integer vector 

space over the set S = {0, 1}; find some interesting 

properties about V. 

(36)  Let V = {I, 0, 3I, 14I, 5I, 25I, 10, 10I, 3, 14}  N(Z26) be a 

set neutrosophic modulo integer vector space over the set S 

= {0, 1, I, 1 + 25I, 25 + I}.  

a. Find a set neutrosophic modulo integer vector linear 

operator T on V which preserves all substructures. 

b. Find NS (HomS (V, V)). What is the | NSHomS (V, 

V)| ? 

(37)  Prove V = {0, I, 2I, …., 22I}  N(Z23) is doubly simple 

neutrosophic modulo integer linear algebra over the set S = 

{0, I, 1 + 23I}.  

(38)  Obtain some interesting properties about V = {0, I + (p – 1), 

(p – 1) I + 1, 2I + (p – 2), (p – 2)I + 2¸ (p – 3) + 3I, (p – 3) I 

+ 3, … , 
p 1

2
 I + 

p 1

2
,

p 1

2
I + 

p 1

2
}  N(Zp); p a 

prime, a set neutrosophic modulo integer algebra over the 

set S = V  {0, 1, I}.  

(39)  Obtain some interesting properties about set neutrosophic 

real matrix vector spaces. 

(40)  Can there exist a set neutrosophic real matrix linear algebra 

which has finite cardinality? 
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(41)  Give an example of a neutrosophic group linear algebra of 

infinite cardinality. 

(42)  Does there exist a neutrosophic set linear algebra which is 

simple? 

(43)  Give an example of a neutrosophic group linear algebra of 

finite dimension.  

(44)  Obtain some interesting results on neutrosophic group 

vector space. 

(45)  Define a linear transformation from the neutrosophic 

semigroup vector space V to W where  

V = 
1 2 3

i

4 5 6

a I a I a I
a I QI; 1 i 6

a I a I a I

 and  

W = 

1 2 7

3 4 8 i

5 6 9

b I b I b I

b I b I b I b I QI; 1 i 9

b I b I b I

.

 Does there exists a linear transformation T from V to W 

such that T – 1 exists? 

(46)  Does there exists neutrosophic set vector spaces V and W 

defined over the set S such that there does not exist any T : 

V  W such that T – 1 exist? Justify your claim. 

(47)  If G is a simple group, can we say if V is a neutrosophic 

group vector space defined over G also is simple? 

(48)  Give an example of a simple neutrosophic group linear 

algebra.

(49)  Let V = 
aI bI

aI,bI,cI,dI QI
cI dI

 be a neutrosophic 

group linear algebra defined over the group G = pZI (p a 

prime). Find proper neutrosophic group linear subalgebras 

of V. 
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 Can V contain proper neutrosophic subgroup linear 

subalgebras? Justify your answer! 

(50)  Give some interesting properties about neutrosophic 

semigroup linear algebras. 

(51)  Give an example of a simple neutrosophic semigroup linear 

algebra.

(52)  Does the neutrosophic semigroup linear algebra V = 

2

aI bI

cI dI aI,bI,cI,dI,eI, fI Z I

eI fI

 defined over S = Z2I

have proper neutrosophic subsemigroup linear subalgebra? 

Justify your claim. Can V have proper neutrosophic 

semigroup linear subalgebras? 

(53)  Can a neutrosophic semigroup linear algebra have pseudo 

neutrosophic semigroup linear subalgebra? If so give 

examples of them? 

(54)  Let V = {Z7I [x] where Z7I [x] consists of all polynomials 

with coefficients from Z7I} be a neutrosophic semigroup 

linear algebra over the semigroup S = Z7I. Can V have 

pseudo neutrosophic semigroup linear subalgebras? Justify 

your claim. 

(55)  Prove if V is any neutrosophic semigroup linear algebra 

over a semigroup S = ZI (or Z + I or Q + I or R + I or QI or RI) 

then V cannot contain pseudo neutrosophic semigroup 

linear subalgebras. 

(56)  Give some interesting properties about the substructures of 

a neutrosophic group vector space. 

(57)  Give an example of a neutrosophic group vector space 

which is simple.  

(58)  Give an example of a neutrosophic group linear algebra 

which has no proper pseudo neutrosophic group linear 

subalgebras.
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(59)  Give an example of a simple neutrosophic group linear 

algebra defined over a group G where the group G is not 

simple. 

(60)  Let V = 7

aI aI
aI Z I

aI aI
 be a neutrosophic group linear 

algebra over the group G = N(Z7). Is V simple? Justify your 

claim. Can this problem be generalized for any prime p? 

(61)  Find all neutrosophic set vector subspaces of V = 

11 11 11

aI 0 0 aI aI
, , (aI, bI,cI), , Z I Z I aI,bI,cI Z I

bI 0 bI cI bI

 over the set S = Z11I.

(62)  Find all neutrosophic subset vector subspaces of V = 

20

aI aI aI 0
, , (aI,aI,aI) aI Z I

0 aI aI aI
 defined over the 

set S = {0, 5, 10}. 

(63)  Find all neutrosophic subset vector subspaces of V = {(aI, 

bI, cI) | aI, bI, cI  Z20I} defined over the set N(Z20).

(64)  Can we say if V is a neutrosophic set vector space over the 

set S and if V has a proper neutrosophic set vector 

subspaces over the set S then V has a proper neutrosophic 

subset vector subspace? 

(65)  Is the claim if V a neutrosophic set vector space over the set 

S has proper neutrosophic subset vector subspace then V 

has proper neutrosophic set vector subspace? Justify your 

answer.

(66)  Given V =  

1 2 3

i 25

4 5 6

7 8 9

a I a I a I
a,b,c,c,d,a Z IaI bI cI

, a I a I a I , (aI,aI,aI,aI)
0 dI 0 1 i 9

a I a I a I

 is a neutrosophic set vector space over the set S = N(Z25).
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a. Find all proper neutrosophic subset vector 

subspaces of V. 

b. Find all proper neutrosophic set vector subspaces of 

V.

c. Does V have pseudo neutrosophic set linear 

subalgebra?

d. Can V have pseudo neutrosophic set vector 

subspaces? 

(67)  Is Z13I a simple neutrosophic semigroup? 

a. Construct a neutrosophic set vector space V over 

Z13I which is a simple neutrosophic set vector space 

(over Z13I).

b. Construct a neutrosophic set vector space V over 

N(Z13) which is a simple neutrosophic set vector 

space (over N(Z13)).

(68) Let V = 19

aI aI aI aI
a Z I

aI aI aI aI
 be a neutrosophic 

semigroup vector space over the semigroup S = Z19I. Is V 

simple? Justify your claim. 

(69)  Let V in problem (68) be taken as a neutrosophic group 

vector space over S = N(Z19). Is V simple? 

(70)  Is V defined in problems (68) and (69) neutrosophic 

semigroup linear algebra over S = Z19I and neutrosophic 

group linear algebra over the group S = N(Z19) respectively? 

(71)  Give some interesting properties about the collection of 

linear transformation operators of a neutrosophic group 

linear algebras V over G. Does the collection of such linear 

operators of V form a neutrosophic group linear algebra 

over G? 

(72)  Given V = 23

aI aI
aI Z I

aI aI
 be a neutrosophic group 

linear algebra over the group G = N(Z23). Find the set of all 
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linear operators of V to V. Does the collection of linear 

operators of V to V form a neutrosophic group linear 

algebra over the group G = N(Z23)?

(73)  Let V be a neutrosophic set vector space over the set S. Let 

N(HomS (V, V)) denote the set of all linear operators of V 

to V. What is the algebraic structure of NHomS (V, V)? 

(74)  Suppose V is a neutrosophic semigroup linear algebra over 

the semigroup S. Let N(HomS (V, V)) denote the collection 

of all linear operators of V to V. Is N(HomS (V, V)) a 

neutrosophic semigroup linear algebra over the semigroup 

S?

(75)  Let V and W be neutrosophic semigroup vector spaces over 

the semigroup S. Suppose N(HomS (V, W)) denote the 

collection of all linear transformations of V to W, what is 

the algebraic structure enjoyed by the collection N(HomS

(V, W)? Suppose IN(HomS(V, W)) denote the collection of 

all invertible linear transformations of V to W what is the 

algebraic structure of IN(HomS (V, W)? 

 If N(HomS (V, W) denote the collection of all linear 

transformations of W to V can we find any relation between 

the collections N(HomS (V, W)) and N(HomS(W, V))? 

 Does these exist any relation between I(NHomS(V, W)) and 

INHomS (W, V)? 

(76)  Give some important properties about I(NHomG(V, W) (ii) 

INHomG(W, V) where V and W are neutrosophic group 

linear algebras defined over the group G. 

(77)  What is the difference between the algebraic structures of 

N(HomS(V, W)) and (NHomG(V, W)? (Here V and W are 

neutrosophic semigroup linear algebras defined over the 

semigroup S and V and W are neutrosophic group linear 

algebras defined over the group G respectively). 

(78)  If V and W are finite dimensional neutrosophic set vector 

spaces over the set S, what can be said about the dimension 

of NHomS(V, W)? Is N(HomS(V, W) finite dimensional? 
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(79)  Does there exist any relation between the dimensions of V 

and W and that of the dimension of N(HomS (V, W))? 

(80)  Does the structures V, W and N(HomS(V, W)) enjoy any 

common algebraic properties? (Here V and W are 

neutrosophic set vector spaces defined over the set S). 

 What happens if V and W are neutrosophic set linear 

algebras defined over S? 

(81)  Let V be a neutrosophic group linear algebra over the group 

G of dimension say N(n < ). Suppose N(HG(V, V)) denote 

the set of all linear operators on V. CaN(NHomG(V, V)) 

have any form of dimension associated with it? 

(82)  Let V = 11

aI aI
aI Z I

aI aI
be a neutrosophic group vector 

space over the group G = Z11I. Find N(HomG(V, V)). 

Suppose V is realized as a neutrosophic semigroup linear 

algebra what can be said about N(HomG(V, V))? Suppose V 

is realized only as a neutrosophic set linear algebra over G, 

what can we say about the algebraic structure of 

N(HomG(V, V))? 

(83)  Obtain some interesting properties about V = V1  V2

where V is a neutrosophic set bivector space. 

(84)  Give an example of a neutrosophic set bivector space. 

(85)  Let V = V1  V2 = 
aI bI

aI,bI,cI ZI
cI 0

 {(aI, aI, aI, 

aI, aI) | aI  ZI} be a neutrosophic set bivector space over 

the set S = 3Z + I

a. Find neutrosophic set bivector subspaces of V. 

b. Find pseudo neutrosophic set bilinear sub algebras 

of V. 

c. Does V have pseudo neutrosophic set bilinear 

subalgebras?
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(86)  Obtain some interesting properties about neutrosophic biset 

bivector spaces. 

(87)  Prove a neutrosophic biset bivector space in general is not a 

neutrosophic biset bilinear algebra. 

(88)  Let V = V1  V2 be a neutrosophic biset bivector space over 

the biset S = Z25I  ZI where V1 = 

a

a

a

a

, Z25I  Z25I  Z25I}

and V2 = {(a, b, c, d, e), 
a b c

d e f
| a, b, c, d, e, f  ZI}.

a. Find atleast 5 neutrosophic biset bivector subspaces 

of V. 

b. Find three distinct neutrosophic biset bivector 

operators on V. 

c. Find three distinct neutrosophic subset bilinear 

bivector subspaces of V. 

d. What is the algebraic structure enjoyed by 

N(HomS(V, V)) = {set of all bilinear operators on 

V}? 

e. Can V have pseudo neutrosophic biset bilinear 

subalgebras?

(89)  Let V = V1  V2

 = 

a a a

a a a a QI

a a a

a b
a,b,c,d QI

c d

 be a neutrosophic group bivector space over the group Z = 

G. Find the bidimension of V over Z. What is the dimension 

of S(HomG(V, V)) a neutrosophic group vector space over 

G or a neutrosophic group linear algebra over G or a 



261

neutrosophic group bivector space over G? Justify your 

claim! 

(90)  Let V = V1  V2 be a neutrosophic semigroup bivector 

space over a semigroup S. Prove in general V is not a 

neutrosophic group bivector space even if S is a group! 

(91)  Let V = V1  V2 = 12

a b c
a,b,c,d,e, f Z I

d e f

27

a a

b b
a,b,c,d Z I

c c

d d

 be a neutrosophic bigroup 

bivector over the bigroup G = Z12  Z27. Find a 

neutrosophic bigroup bivector subspace W of V. Define a 

neutrosophic linear operator T which preserves this 

subspace; that is T (W)  W. What is the bidimension of 

S(HomG (V, V))? Find the algebraic structure enjoyed by 

S(HomG (V, V)). 

(92)  Give some interesting properties of neutrosophic semigroup 

bivector spaces. 

(93)  What is the difference between neutrosophic bisemigroup 

bivector space and neutrosophic semigroup bivector space? 

(94)  Obtain some interesting features especially enjoyed by 

neutrosophic group bilinear algebra. 

(95)  Give an example of a neutrosophic bigroup bivector space 

of bidimension (7, 5) over a bigroup G = G1  G2.

(96)  Can one claim the neutrosophic bidimension in general is 

reduced if we consider neutrosophic bigroup bilinear 

algebra instead of neutrosophic bigroup bivector spaces? 

(97)  What is the advantage of neutrosophic set linear algebras 

over a neutrosophic linear algebras? 

(98)  What is the benefit of using neutrosophic biset bivector 

spaces instead of a neutrosophic set bivector space? 
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(99)  Give some nice applications of neutrosophic bisemigroup 

bilinear algebras. 

(100) Which bispace is useful in neutrosophic modeling; 

neutrosophic bigroup bivector space or neutrosophic group 

bivector space? 

(101)  What is the advantage of using neutrosophic bigroup 

bivector space instead of using a neutrosophic group 

bivector space? 

(102)  Is their any benefit in using a neutrosophic set bivector 

space instead of a neutrosophic set vector space? 

(103)  What is the advantage of studying neutrosophic bigroup 

bivector space in the place of neutrosophic bigroup bilinear 

algebra?

(104)  Does there exist any generalized neutrosophic bistructures 

other than the neutrosophic set bivector spaces? 

(105)  Give an example of a (11, 19) bidimensional neutrosophic 

bigroup bivector space. 

(106)  Can one say a neutrosophic bigroup bivector space of 

bidimension (p1, p2) (p1 and p2, two distinct primes) is 

always bisimple? 

(107)  Can a neutrosophic group bivector space of bidimension say 

(12, 15) be simple? Justify your claim! 

(108)  Give an example of a neutrosophic group bilinear algebra of 

finite bidimension, which is simple. 

(109)  Give an example of a neutrosophic group bilinear algebra of 

infinite bidimension, which is simple. 

(110)  Can one say a neutrosophic group bilinear algebra of 

bidimension (1, 1) is always simple? Justify your claim. 

(111)  Give an example of a neutrosophic group bilinear algebra of 

bidimension (1, 1). 

(112)  What is the difference between a simple neutrosophic group 

bivector space and a simple neutrosophic group bilinear 

algebra?
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(113)  Suppose V = V1  V2 is a neutrosophic group bivector 

space defined over the group G = {(0, 1, 2, …, p – 1) such 

that p is a prime}. Is V a simple neutrosophic bivector space 

over G? 

(114)  Find a bigenerating subset of the neutrosophic group 

bivector space V = 12

a b c
a,b,c,d,e, f Z I

d e f

12

a a a a
| a Z I

a a a a
 over the group G = Z12I. 

(115)  Let V = V1  V2 = 11

a a a
a Z I

a a a

13

a a

a a
a Z I

a a

a a

 be a neutrosophic bigroup bilinear 

algebra over the bigroup G = G1  G2 = Z11  Z13. Find a 

bigenerating subset of V. If V = V1  V2 is a neutrosophic 

bigroup bilinear algebra over the bigroup G = G1  G2 = 

Z11I  Z13I, what is the bidimension of the bigenerating 

subset of V? If V = V1  V2 is a neutrosophic bigroup 

bilinear algebra over the bigroup G = G1  G2 = N(Z11)

N(Z13), what is the bigenerating subset of V? 

 When is V simple? 

(116)  Give an example of a (7, 14) bidimension neutrosophic 

semigroup bivector space. 

(117)  Give an example of a neutrosophic semigroup bilinear 

algebra of bidimension (7, 14). 

(118)  Compare the algebraic structure in problems (116) and 

(117).

(119)  Give by an real model that neutrosophic set vector space is 

useful than a neutrosophic vector space. 
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(120)  Obtain some interesting properties about neutrosophic set 

fuzzy bilinear algebras. 

(121)  Let  V = V1  V2

 = 

a b
a b c

, c d a,b,c,d,e, f QI
d e f

e f

a a

b b
a,a,a,a,a , a,b Z I

c c

d d

 be a neutrosophic set bivector space over the set S = Z + I. 

Let W = W1  W2 = 
a b c

a,b,c,d,e, f Z I
d e f

{(a, a, a, a, a) | a  Z + I}  V1  V2 be a neutrosophic set 

bivector subspace of V over the set S. Find neutrosophic 

linear bioperator on V which preserves W. Find one 

neutrosophic linear bioperator of V which does not preserve 

W. Find V  and W .

(122) Give some interesting properties about neutrosophic 

semigroup fuzzy bivector spaces. 

(123)  Prove the notion of neutrosophic semigroup fuzzy bilinear 

algebra and neutrosophic semigroup fuzzy bivector space 

are fuzzy equivalent. 

(124) Let V = V1  V2

 = 

a b
a a a

a b
a a a , , a,b,a,b,a,b a,b Z I

a b
b b b

a b
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a a a a
a a a

0 b b b
0 b b , a,b Z I

0 0 a a
0 0 a

0 0 0 b

 be a neutrosophic semigroup bivector space over the 

semigroup S = Z + I  {0}. Define  : V  N([0, 1]) so that 

V  = 
1 2

1 2V V  is a neutrosophic semigroup fuzzy 

bivector space. Define a  so that W  does not exist for any 

proper neutrosophic semigroup bivector subspace W of V 

where  is the restriction of  to W.

(125)  Let V = V1  V2

= 17

a a

a a , a a a a a a Z I

a a

11

a
a a a

a
a a a , a Z I

a
a a a

a

 be a neutrosophic bigroup bivector space over the bigroup 

G = Z17I  Z11I. Find a  : V  N[Z0, 1] so that  is a 

substructure preserving neutrosophic bigroup fuzzy bivector 

space.

(126)  Obtain some interesting properties about neutrosophic 

bigroup fuzzy bivector spaces over a bigroup G = G1  G2.

(127)  Let V = V1  V2 =

23

a a a

a a a a Z I

a a a
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19

a a a a a a
a Z I

a a a a a a

 be a neutrosophic bigroup bilinear algebra over the bigroup 

G = G1  G2 = Z23I  Z19I.

a. Find a bigenerator of V. 

b. If G is replaced by Z23  Z19, what is the 

bigenerator of V? 

c. Define :V  N([0, 1]) so that V  = 
1 2

1 2V V

is a neutrosophic bigroup fuzzy bilinear algebra.  

d. Can V = V1  V2 have any proper neutrosophic 

bigroup bilinear subalgebras? 

e. Is V simple? 

f. Define two neutrosophic bigroup fuzzy bilinear 

algebras say  and  so that  and  do not agree on 

any element on V. 

(128)  Let V and W be any two distinct neutrosophic bisemigroup 

bivector spaces over the same bisemigroup S = S1  S2.

Find N(HomS (V, W)). 

(129)  Obtain some interesting properties about the neutrosophic 

bigroup bilinear algebras. 

(130)  Let  

 V = 

a b
a a a a

a b
b b b b , a,b,c ZI

a b
c c c c

a b

a a a a a

x, y , b b b b b , a,a,a,a x, y,a,b,c ZI

c c c c c
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 and  

 W = 

a b c a 0 0

0 a b , a b 0 a,b,c Z I

0 0 c a b c

a b c d

e f g h , a,b,c,d,e, f a,b,c,d,e, f ,g,h,i, j, k, l ZI

i j k l

 be any two neutrosophic set bivector spaces over the set S = 

Z + I. Find N(HomS(V, W)). What will happen if S is 

replaced by S1 = {0, 1, 2, 3, 4}. 

a. Will this affect the bigenerating subset of V and W? 

b. What is bidimension of V and W are neutrosophic 

set bivector spaces over the set S? 

c. What is the bidimension of V and W as 

neutrosophic set bivector spaces over the set S1?

(131)  Can one prove bidimension depends on the set over which 

the neutrosophic set bivector space is defined? 

(132)  Prove or disprove the bigenerator of a neutrosophic 

semigroup bilinear algebra V is dependent on the semigroup 

over which V is defined. 

(133)  Obtain some interesting properties about bidimension and 

bigenerators of the neutrosophic set bivector spaces. 

(134)  Suppose V = V1  V2 is such that V can be treated as a 

neutrosophic set bivector space as well as neutrosophic set 

bilinear algebra over the same set S. Will they have 

different sets of bigenerators when V = V1  V2 is just a 

neutrosophic set bivector space and another set of 

bigenerator when the same V is a neutrosophic set bilinear 

algebra over the same S.? Justify your claim. 

(135)  Let V = V1  V2 be any neutrosophic bigroup bivector 

space over the bigroup G. 
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a. Is it possible for V to have more than one 

bigenerating bisubset of V? 

b. Will the bidimension of V be the same if V has 

more than one bigenerating bisubset? 

(136)  Let V = V1  V2 =

2

a b c
a,b,c,d,e, f Z I

d e f

3

a b
a,b,c,d Z I

c d

 be a neutrosophic bigroup bivector space over the bigroup 

G = Z2I  Z3I. 

a. What is the bidimension of V? 

b. How many bigenerating bisubset V has? 

(137)  Characterize those neutrosophic bigroup bivector spaces 

which have a unique generating subbiset! 

(138)  Give an example of a neutrosophic bigroup bivector space 

which has more than one bigenerating bisubset.  

(139)  Let V = V1  V2 =

12

a a a

b b b a,b,c Z I

c c c

25

a a a

a a a a Z I

a a a

 be a neutrosophic bigroup bilinear algebra over the bigroup 

G = Z12I  Z25I.

a. Find a bigenerating bisubset of V. 

b. How many sets of bigenerating bisubset of V exist? 

c. What is the bidimension of V? 

(140)  Let V = V1  V2 = 
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x

y x y x y z
(x, y, z), , , x, y, z, w ZI

z z w 0 y 0

w

a
a b c d

b
a b c g 0 e f g

, (a,b,c,d), , a, b,c,d,e, f ,g,h,i ZIc
d e f h 0 0 h i

d
0 0 0 f

e

 be a neutrosophic group bivector space over the group G = 

ZI.

a. What is the bidimension of V? 

b. Find a bigenerator of V? 

c. Find all proper neutrosophic group bivector 

subspaces of V. Is that collection finite or infinite? 

d. Define  : V  N([0, 1]) which can preserve all 

proper neutrosophic group bivector subspaces; V  is 

the neutrosophic group fuzzy bivector space. 

e. Find a  : V  N([0, 1]) which does not yield even 

a single W  where W is a proper neutrosophic 

group bivector subspace of V; the extension of 

on V. 

f. Can V have pseudo neutrosophic semigroup 

bivector subspaces? 

g. If group ZI is replaced by pZI, p a prime will V = 

V1  V2 have different bidimension and 

bigenerator? Justify your answer. 

(141)  Give an example of neutrosophic bigroup bilinear algebra 

which is simple but of infinite bidimension. 
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(142)  Give an example of a neutrosophic group bivector space 

which is simple and of finite bidimension (n, m), n and m 

are not prime. 

(143)  Suppose V = V1  V2 is a neutrosophic bigroup bilinear 

algebra over a bigroup G = G1  G2, where V is of finite 

bidimension, can one conclude V has only a finite number 

of neutrosophic bigroup bilinear subalgebras? Justify your 

claim. 

(144)  Let V = V1  V2 = 

5

a a a

0 a a a Z I

0 0 a

12

a 0 0 0

a a 0 0
a Z I

a a a 0

a a a a

 be a neutrosophic bigroup bilinear algebra over the bigroup 

G = G1  G2 = Z5I  Z12I.

a. Define  : V  N[(0, 1)] so that V  is a 

neutrosophic bigroup fuzzy bilinear algebra. 

b. Can V have neutrosophic bigroup bilinear 

subalgebras?

c. Can V have pseudo neutrosophic subbisemigroup 

bilinear subalgebras? 

 Hence or otherwise if V = V1  V2 is a neutrosophic 

bigroup bilinear algebra over a bigroup G = ZpI  ZnI (p a 

prime and n not a prime) of the form;  

 V = p

a a a

0 a a a Z I

0 0 a

n

a 0 0 0

a a 0 0
a Z I

a a a 0

a a a a

 answer the above three questions. 

 What will happen if  
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V = V1  V2

= p

a b c

0 d e a,b,c,d,e, f Z I

0 0 f

n

a 0 0 0

b c 0 0
a,b,c,d,e, f ,g,h,i Z I

d e f 0

g h i j

 is a neutrosophic bigroup bilinear algebra over the bigroup; 

a. if G = ZpI  ZnI?

b. If over G = Zp  Zn?

(145)  Give an example of a neutrosophic bigroup bilinear algebra 

over a bigroup which has entries from N( ).

(146)  Let V = V1  V2 be a neutrosophic biset bilinear algebra 

over the biset S = S1  S2. Let N(MG (V, V)) denote the set 

of all neutrosophic biset linear operators from V to V.  

 What is the algebraic structure of N(MG (V, V))? 

(147) Does the bidimension of a neutrosophic bisemigroup 

bilinear algebra depend on the bisemigroup over which it is 

defined?

(148)  Let V = V1  V2 = {Z12I  Z12I  Z12I  Z12I}  { Z12I

Z12I  Z12I  Z12I  Z12I  Z12I, 12

a a
a Z I

a a
} be a 

neutrosophic set bivector space over S = Z12.

 What is the bidimension of V? Find a bigenerating bisubset 

of V. What is the bidimension of V if S = Z12I? 

a. Will the bigenerating bisubset be different? 

b. What is the bidimension of V if S if replaced by S1

= {0, 6I}? 
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(149)  Let V = V1  V2 = Z5 I [x]  Z2 I [x] be a neutrosophic 

bigroup bilinear algebra over the bigroup G = Z5  Z2.

a. What is the bidimension of V over G? 

b. If G is replaced by G1 = Z5I  Z2I; what is the 

bidimension of V? 

c. If G is replaced by G2 = Z5  Z2I; what is the 

bidimension? 

d. If G is replaced by H = Z5I  Z2; what is the 

bidimension of V? 

(150)  Let V = V1  V2 =

a a a
a ZI

a a a
 {ZI  ZI  ZI} 

 and  

 W = 

a b

c d a,b,c,d,e, f ZI

e f

a a a a

b b b b a,b,c ZI

c c c c

 be neutrosophic group linear algebras over the group G = 

ZI.

a. Find bidimensions of V and W. 

b. What is the bidimension of N(MZI (V, W))? 

c. If G is replaced by pZI, p a prime find the 

bidimensions of V and W. 

d. What is the bidimension of N(MpZI (V, W))? 
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e. Find V  a neutrosophic group fuzzy bilinear 

algebra.

(151)  Let V = V1  V2 =

30

a b c
a,b,c,d,e, f Z I

d e f

30

a a a

a a a a Z I

a a a

 be a neutrosophic group bilinear algebra over the group G = 

Z30I.

a. Can V have pseudo neutrosophic semigroup 

bilinear algebras over G = Z30I? 

b. What is the bidimension of V over G? 

c. What is the bidimension of N(MG (V, V))? 

(152)  Let V = V1  V2 = {Z8  Z8  Z8  Z8I}  {Z8I  Z8 I  Z8 I

 Z8I  Z8 I  Z8 I} be a neutrosophic group bilinear algebra 

over the group G = {0, 4} addition under modulo 8.  

a. Find the bidimension of V over G = {0, 4}. 

b. What is the bigenerating set of V over G = {0, 4}? 

c. If G is replaced by H = {0, 2, 4, 6}, what is the 

bidimension of V and the bigenerating set of V over 

H? 

d. What is the bidimension of N(MH(V, V))? 

(153)  Let V = V1  V2 be a neutrosophic group bilinear algebra 

over the group G. Suppose H1, H2, …, Hn be n distinct 

subgroups of G. Suppose V = V1  V2 is also a 

neutrosophic group bilinear algebra over each of the 

subgroups H1, H2, …, Hn; compare them.  
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(154)  Let V = 18

a b
a,b,c,d Z I

c d
 {(a a a a) | a  Z18 I} 

be a neutrosophic semigroup bilinear algebra over the 

semigroup S = Z18.

a. Define  = 1 2: V  N([0, 1]) so that V  is a 

neutrosophic semigroup fuzzy bilinear algebra.  

b. Is every bimap : V  N([0, 1]) is such that, V  is 

a neutrosophic semigroup fuzzy bilinear algebra? 

(155) Let V = V1  V2 = {ZI  Z  ZI  ZI  Z} 

a b c
a,b,c ZI,d,e, f , Z

d e f

 be a neutrosophic group bilinear algebra over the group G = 

Z.

 Find  : V  N([0, 1]) so that V  is a neutrosophic group 

fuzzy bilinear algebra. 

(156)  Give some interesting properties about neutrosophic group 

fuzzy bivector spaces.  

(157)  Let V = V1  V2 be any neutrosophic quasi semigroup 

bilinear algebra over the semigroup S.

 Find some interesting properties about this algebraic 

structure.

(158)  Let V = V1  V2 = Z12I[x]  Z+I[x] be a neutrosophic 

bisemigroup bivector space defined over the bisemigroup S 

= Z12I  Z + I.

a. Find a neutrosophic bisemigroup bivector subspace 

of V. 

b. Find a bigenerating bisubset of V. 

c. What is the bidimension of V? 
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(159)  Let V = V1  V2 =

12

a b
a,b,c,d N(Z I)

c d
 {N(Z12)I [x]} 

 be a neutrosophic group bivector space over the group G = 

Z12.

a. Find pseudo group bivector subspace of V.  

b. Find the bidimension of V.  

c. If G is replaced by G1 = Z12I can V have pseudo 

group bivector subspaces? 

d. Define  : V  N([0, 1]) such that V  is a 

neutrosophic group fuzzy bivector space. 

e. Can V have pseudo neutrosophic group bilinear 

subalgebras?

(160)  Let V = V1  V2 = {(Z7I)
12}  {(Z6I)

8}be a neutrosophic 

bigroup bivector space over the bigroup G = Z7  Z6.

a. What is bidimension of V over G? 

b. If G is replaced by G1 = Z7I  Z6I what is the 

bidimension of V over G? 

c. Does V have a pseudo neutrosophic bisemigroup 

bivector subspace W of V over G? 

(161) Let V = V1  V2 =

a b
a,b,c,d 3ZI

c d

a b
a,b,c,d 5ZI

c d

be a neutrosophic bigroup bivector space over the bigroup 

G = 3ZI  5ZI.
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If

W = W1  W2 = 

a a
a 3ZI

0 0

a a
a 5ZI

0 0

 V1  V2 is a neutrosophic bigroup bivector subspace of 

V, find the bidimension of W over G. 
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