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The New Prime theorem（27） 
Hardy-Littlewood conjecture P: 

2 1m +  and 2 3m +  

Chun-Xuan Jiang 
 

Abstract 

Using Jiang function we prove Hardy-Littlewood conjecture P: 2 1m +  and 2 3m + [4]. 

Theorem . suppose prime equations 

          2 2
1 2(2 ) 1, (2 ) 3P P P P= + = + .                 （1） 

There are infinitely many primes P  such that 1P  and 2P  are all prime. 
Proof. We have Jiang function [1,2] 
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where 
P

Pω = Π , ( )Pχ  is the number of solutions of congruence  

        2 2[(2 ) 1][(2 ) 3] 0 (mod ), 1, , 1q q P q P+ + ≡ = −L .           （3） 

We have that if 1 1
P
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⎝ ⎠
 then 1( ) 2Pχ = , if 1 1

P
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P
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2 ( ) 2Pχ = , if 3 1
P
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⎝ ⎠
 then 2 ( ) 0Pχ = . 

Substituting it into (2) we have. 
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We prove that there are infinitely many primes P  such that 1P  and 2P  are all prime. 
We have the best asymptotic formula [1,2] 
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Remark. The prime number theory is basically to count the Jiang function 1( )nJ ω+  and Jiang 

prime k -tuple singular series 
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[1,2], which can count 

the number of prime number. The prime distribution is not random. But Hardy prime k -tuple singular series 
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 is false [3-8], which can not count the number of prime numbers. 
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Szemerédi’s theorem does not directly to the primes, because it can not count the number of primes. It is 
unusable. Cramér’s random model can not prove prime problems. It is incorrect. The probability of 

1/ log N  of being prime is false. 

Assuming that the events “ P  is prime”, “ 2P +  is prime” and “ 4P +  is prime” are independent, we 

conclude that P , 2P + , 4P +  are simultaneously prime with probability about 31/ log N . There 

are about 3/ logN N  primes less than N . Letting N →∞  we obtain the prime conjecture, which is 

false. 

The tool of additive prime number theory is basically the Hardy-Littlewood prime tuple conjecture, but 

can not prove and count any prime problems[6]. 
 
 


