The New Prime theorem (31)

$$P_1 = P^9 \pm m$$
 and $P_1 = (2P)^9 \pm n$

Chun-Xuan Jiang

P.O.Box3924, Beijing100854, P.R.China

Abstract

Using Jiang function we prove $P_1 = P^9 \pm m$ and $P_1 = (2P)^9 \pm n$.

Theorem 1. Let m be an even number which is not cube and ninth power.

$$P_1 = P^9 + m \quad (m \neq a^3, a^9)$$
 (1)

For every even number m there exist infinitely many primes P such that P_1 is a prime.

Proof. We have Jiang function [1,2]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)],$$
 (2)

where $\omega = \prod_{P} P$, $\chi(P)$ is the number of solutions of congruence

$$q^{15} + m \equiv 0 \pmod{P}, q = 1, \dots, P - 1.$$
 (3)

We have

$$m^{\frac{P-1}{3}} \equiv 1 \pmod{P} \tag{4}$$

If (4) has a solution then $\chi(P) = 3$. If (4) has no solutions then $\chi(P) = 0$.

We have

$$m^{\frac{P-1}{9}} \equiv 1 \pmod{P} \tag{5}$$

If (5) has a solution then $\chi(P) = 9$. If (5) has no solutions then $\chi(P) = 0$. $\chi(P) = 1$ otherwise.

We have

$$J_{2}(\omega) \neq 0$$
. (6)

We prove that (1) has infinitely many primes solutions.

We have asymptotic formula [1,2]

$$\pi_2(N,2) = \left| \left\{ P \le N : P_1 = prime \right\} \right| \sim \frac{J_2(\omega)\omega}{9\phi^2(\omega)} \frac{N}{\log^2 N}. \tag{7}$$

In the same way we are able to prove $P_1 = P^9 - m$.

Theorem 2. Let n be an odd number which is not cube and ninth power.

$$P_1 = (2P)^9 + n (8)$$

has infinitely many primie solutions.

Proof. we have Jiang function [1,2]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)]$$
 (9)

where $\chi(P)$ is the number of solutions of congruence

$$(2q)^9 + n \equiv 0 \pmod{P}, q = 1, \dots, P - 1.$$
 (10)

We have

$$n^{\frac{P-1}{3}} \equiv 1 \pmod{P} \tag{11}$$

If (11) has a solution then $\chi(P) = 3$. If (11) has no solutions then $\chi(P) = 0$.

We have

$$n^{\frac{P-1}{9}} \equiv 1 \pmod{P} \tag{12}$$

If (12) has a solution then $\chi(P) = 9$. If (12) has no solutions then $\chi(P) = 0$. $\chi(P) = 1$ otherwise.

We have

$$J_{\gamma}(\omega) \neq 0. \tag{13}$$

We prove that (8) has infinitely many prime solutions.

We have asymptotic formula [1,2]

$$\pi_2(N,2) = \left| \left\{ P \le N : P_1 = prime \right\} \right| \sim \frac{J_2(\omega)\omega}{9\phi^2(\omega)} \frac{N}{\log^2 N}. \tag{14}$$

In the some way we are able to prove $P_1 = (2P)^9 - n$.

Remark. The prime number theory is basically to count the Jiang function $J_{n+1}(\omega)$ and Jiang

prime
$$k$$
-tuple singular series $\sigma(J) = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} = \prod_P \left(1 - \frac{1 + \chi(P)}{P}\right) (1 - \frac{1}{P})^{-k}$ [1,2], which can count

the number of prime number. The prime distribution is not random. But Hardy prime k-tuple singular series

$$\sigma(H) = \prod_{P} \left(1 - \frac{v(P)}{P}\right) (1 - \frac{1}{P})^{-k}$$
 is false [3-8], which can not count the number of prime numbers.

References

- [1] Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. Inter. Acad. Press, 2002, MR2004c:11001, (http://www.i-b-r.org/docs/jiang.pdf) (http://www.wbabin.net/math/xuan13.pdf)(http://vixra.org/numth/).
- [2] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution.(http://www. wbabin.net/math/xuan2.

- pdf.) (http://wbabin.net/xuan.htm#chun-xuan.)(http://vixra.org/numth/)
- [3] Chun-Xuan Jiang, The Hardy-Littlewood prime k -tuple conjecture is false.(http://wbabin.net/xuan.htm# chun-xuan)(http://vixra.org/numth/)
- [4] G. H. Hardy and J. E. Littlewood, Some problems of "Partitio Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923)1-70.
- [5] W. Narkiewicz, The development of prime number theory. From Euclid to Hardy and Littlewood. Springer-Verlag, New York, NY. 2000, 333-353.这是当代素数理论水平.
- [6] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
- [7] D. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I. Ann. Math., 170(2009) 819-862.
- [8] T. Tao. Recent progress in additive prime number theory, preprint. 2009. http://terrytao.files.wordpress. com/2009/08/prime-number-theory 1.pdf
 Szemerédi's theorem does not directly to the primes, because it can not count the number of primes. It is unusable. Cramér's random model can not prove prime problems. It is incorrect. The probability of $1/\log N$ of being prime is false. Assuming that the events "P is prime", "P+2 is prime" and "P+4 is prime" are independent, we conclude that P, P+2, P+4 are simultaneously prime with probability about $1/\log^3 N$. There are about $N/\log^3 N$ primes less than N. Letting $N \to \infty$ we obtain the prime conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood prime tuple conjecture, but can not prove and count any prime problems[6]. Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate.

Leonhard Euler

It will be another million years, at least, before we understand the primes.

Paul ErdÖs

我们研究看不见摸不着的素数理论。谁也没研究过的素数理论。