On a problem concerning the Smarandache friendly prime pairs

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract

In this paper a question posed in [1] and concerning the Smarandache friendly prime pairs is analysed.

Introduction

In [1] the Smarandache friendly prime pairs are defined as those prime pairs (p, q) such that:

$$
\begin{equation*}
\sum_{x=p}^{q} x=p \cdot q \tag{1}
\end{equation*}
$$

where x denote the primes between p and q . In other words the Smarandache friendly prime pairs are the pairs (p, q) such that the sum of the primes between p and q is equal to the product of p and q.
As example let's consider the pair $(2,5)$. In this case $2+3+5=2 \cdot 5$ and then 2 and 5 are friendly primes. The other three pairs given in the mentioned paper are: $(3,13),(5,31)$ and $(7,53)$. Then the following open questions have been posed:

Are there infinitely many friendly prime pairs?
Is there for every prime pa prime q such that (p, q) is a Smarandache friendly prime pair?
In this paper we analyse the last question and a shortcut to explore the first conjecture is reported.

Results

First of all let's analyse the case $\mathrm{p}=11$. Let's indicate:

$$
f(11, q)=\sum_{x=11}^{q} x \quad \text { and } \quad g(11, q)=11 \cdot q
$$

where x denotes always the primes between 11 and q .
A computer program with Ubasic software package has been written to calculate the difference between $\mathrm{g}(11, \mathrm{q})$ and $\mathrm{f}(11, \mathrm{q})$ for the 164 primes q subsequent to 11 . Here below the trend of that difference.

As we can see the difference starts to increase, arrives to a maximum and then starts to decrease and once pass the x axis decrease in average linearly. The same thing is true for all the other primes p .
So for every prime p the search of its friend q can be performed up to:

$$
g(p, q)-f(p, q) \leq-M
$$

where M is a positive constant.
For the first 1000 primes M has been choosen equal to 10^{5}.
No further friendly prime pair besides those reported in [1] has been found. According to those experimental results we are enough confident to pose the following conjecture:

Not all the primes have a friend, that is there are prime p such that there isn't a prime q such that the (1) is true .

Moreover a furter check of friendly prime pairs for all primes larger than 1000 and smaller than 10000 has been performed choosing $\mathrm{M}=1000000$.
No further friendly prime pair has been found. Those results seem to point out that the number of friendly prime pairs is finite.

Question:

Are $(2,5),(3,13),(5,31)$ and $(7,53)$ the only Smarandache friendly prime pairs?

References.

[1] A. Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12 N. 1-2-3 Spring 2001

