Proof of the $3 n+1$ problem for $n \geq 1$
 by

Steffen Bode

Albuquerque, New Mexico, USA
email: the3nplus1proof@yahoo.com

Abstract

I establish the existence of a unique binary pattern inherent to the $3 n+1$ step, and then use this binary pattern to prove the $3 n+1$ problem for all positive integers.

Introduction

Observe that every positive odd integer n, defined as $n=\sum_{i=0}^{x} 4^{i}, x \in \mathbf{Z}^{+}$ requires one $3 n+1$ step and then $2(x+1)$ consecutive $n / 2$ steps to be reduced to 1.

The truth of this statement will become apparent when the $3 n+1$ step with such an integer is observed in base 2.

Example 1: Let $n=\sum_{i=0}^{2} 4^{i}=21=10101_{2}$, then

$$
10101_{2} * 10_{2} \Rightarrow 101010_{2}+10101_{2} \Rightarrow 111111_{2}+1_{2}=1000000_{2}=2^{6} \text {, and }
$$

$$
1000000_{2} / 10_{2} \Rightarrow 100000_{2} / 10_{2} \Rightarrow 10000_{2} / 10_{2} \Rightarrow 1000_{2} / 10_{2} \Rightarrow 100_{2} / 10_{2} \Rightarrow 10_{2} / 10_{2}=1
$$

Therefore, the base 2 representation of positive integers furnishes more insight into the $3 n+1$ problem than their base 10 representation.

Proof

Let O^{+}be the set of positive odd integers, then

$$
\mathbf{O}^{+}=\{\mathrm{x}=\mathbf{Z} \mid \mathrm{x}=2 \mathrm{y}+1, \mathrm{y} \geq 0, \mathrm{y} \in \mathbf{Z}\}
$$

```
Theorem 1: Let \(\mathbf{P}\) designate the \(3 n+1\) problem. Then if \(\mathbf{P}\) is true for all positive odd integers, it is true for all positive integers.
\[
\forall a \in \mathbf{O}^{+}: \mathbf{P}(\mathrm{a}) \Rightarrow \forall \mathrm{b} \in \mathbf{Z}^{+}: \mathbf{P}(\mathrm{b})
\]
```

Proof: Case 1: Power of two
Let $\mathrm{n}=2^{\mathrm{x}}, \mathrm{x} \in \mathbf{Z}^{+}$. Then n requires x consecutive $\mathrm{n} / 2$ steps to be reduced to 1 .

Case 2: Odd integer multiplied by a power of two Let $y=2^{x} n, n \in \mathbf{O}^{+}$and $x \in \mathbf{Z}^{+}$. Then x consecutive $n / 2$ steps are required to have $y=n$.

Since these cases are exhaustive, it shows that if the $3 n+1$ problem is true for all $a \in \mathbf{O}^{+}$it hast to be true for all $b \in \mathbf{Z}^{+}$.

The iteration between the $3 n+1$ step and the $n / 2$ step modifies every integer $\mathrm{n}, \mathrm{n} \in \mathrm{O}^{+}$in such a way that, at some point the integer becomes $2^{\mathrm{x}}, \mathrm{x} \in \mathbf{Z}^{+}$.

However, the process of this transformation is obscured by the $\mathrm{n} / 2 \mathrm{step}$. In order to make the process apparent, the $n / 2$ step is omitted and the addition of 1 in the $3 n+1$ step is modified to compensate for the omission of the $n / 2$ step.

Example 2: Let $n=9=1001$, then $3 n+2^{x}$ produces this pattern:

$$
\begin{array}{rrrr}
1001_{2} * 11_{2} \Rightarrow & 11011_{2}+ & 1_{2}= & 11100_{2} \\
11100_{2} * 11_{2} \Rightarrow & 1010100_{2}+ & 100_{2} & 1011000_{2} \\
1011000_{2} * 11_{2} \Rightarrow & 100001000_{2}+ & 1000_{2} & =100010000_{2} \\
100010000_{2} * 11_{2} \Rightarrow & 1100110000_{2}+ & 10000_{2} & =1101000000_{2} \\
1101000000_{2} * 11_{2} \Rightarrow & 100111000000_{2}+ & 1000000_{2} & =101000000000_{2} \\
101000000000_{2} * 11_{2} & \Rightarrow & 1111000000000_{2}+1000000000_{2} & =10000000000000_{2}=2^{13} .
\end{array}
$$

In example 2, the least significant bit transcends the most significant bit after six $3 n+2^{x}$ steps, transforming n into a power of two.

Definition 1: Let LSB be the least significant bit of $s \in \mathbf{Z}^{+}$, then

$$
\mathrm{L} S B=\left\{2^{r}, r \geq 0, r \in \mathbf{Z} \mid 2^{r}=s / t, t \in \mathbf{O}^{+}\right\} .
$$

Theorem 2: The $3 n+L S B$ step and the $3 n+1$ step are isomorphic.

Proof: Suppose $n_{0} \in \mathbf{O}^{+}$. Let $n_{1}=3 n_{0}+1$ and $n_{2}=n_{1} / L S B$, then

$$
\begin{aligned}
& \quad \frac{3 n_{1}+L S B}{3 n_{2}+1}=\frac{3 n_{1}+L S B}{3\left(\frac{n_{1}}{L S B}\right)+1}=\frac{3 n_{1}+L S B}{\frac{3 n_{1}+L S B}{L S B}}=L S B \\
& \therefore 3 n+L S B \equiv 0(\bmod 3 n+1) .
\end{aligned}
$$

Because a modular congruence exists between the $3 n+L S B$ step and the $3 n+1$ step, they are therefore isomorphic.

The pattern in example 2 is composed of two functions. The first function increases the most significant power of two or most significant bit of n, and the second function increases the least significant power of two or least significant bit of n.

Let $m(x)$ be the function for repeated multiplication of n by 3 in terms of $x, x \in \mathbf{Z}^{+}$. Then $m(x)=3^{x+\delta} n$.

Let lsb(x) be the function for repeated multiplication by 4 (3(LSB) +LSB) of the least significant bit of n in terms of $x, x \in \mathbf{Z}^{+}$. Then $\operatorname{lsb}(x)=4^{x+\delta}$.

Definition 2: Let $f(x)$ be the function for the $3 n+L S B$ step for $n \in \mathbf{O}^{+}$in terms of $x, x \in \mathbf{Z}^{+}$. Then

$$
f(x)=m(x)+l \operatorname{sb}(x)=3^{x+\delta} n+4^{x+\delta}
$$

Suppose that Tlsb(x) is the function that gives the true position of the least significant bit of the $3 n+L S B$ step for $n \in O^{+}$in terms of $x, x \in \mathbf{Z}^{+}$. Then

$$
\delta=\sum_{1}^{\mathrm{x}} \mathrm{Tlsb}(\mathrm{x})-\operatorname{lsb}(\mathrm{x})
$$

Example 3: Tlsb(x) > lsb(x)

Assume that multiplying n_{k} by 3 produces $\cdots 001111100 \cdots$ somewhere in the binary representation of the result; and that the rightmost 1 is $L S B=2^{x}$. Let lsb $(x)=$ Tlsb (x). Adding LSB to n_{k} yields ••010000000•••, then

$$
\delta=\sum_{x}^{x} \operatorname{Tlsb}(x)-1 \operatorname{sb}(x)=\sum_{x}^{x} 2^{x+5}-2^{x+2}=\sum_{x}^{x} x+5-x-2=\sum_{x}^{x} 3=3 .
$$

Example 4: Tlsb(x) < lsb(x)

Assume that multiplying n_{k} by 3 and adding LSB produces ••001111100... somewhere in the binary representation of the result; and that the rightmost 1 is $L S B=2^{x}$. Let lsb $(x)=T l s b(x)$. Then repeated multiplication by 3 and addition of LSB will produce this pattern:

$$
\begin{array}{llll}
\cdots 001111100 \cdots & \text { times } 3 \text { plus } 2^{x} \\
\cdots 101111000 \cdots & \text { times } 3 \text { plus } 2^{x+1} \\
\cdots 001110000 \cdots & \text { times 3 plus } 2^{x+2} \\
\cdots 101100000 \cdots & \text { times } 3 \text { plus } 2^{x+3} \\
\cdots 001000000 \cdots, & \text { then } & &
\end{array}
$$

$$
\begin{gathered}
\delta=\sum_{x}^{x+3} \operatorname{Tlsb}(x)-1 \text { s.b }(x)=\sum_{x}^{x+3} 2^{x+1}-2^{x+2}=\sum_{x}^{x+3} x+1-x-2=\sum_{x}^{x+3}-1=-4 \\
\therefore(\delta<0) V(\delta=0) V(\delta>0)
\end{gathered}
$$

Assume $x \in \mathbf{Z}^{+}$, then $m(x)<l s b(x)$ implies that a single power of two is larger than a sum of powers of two.
$m(x)-1 \operatorname{sb}(x)=9\left(3^{x+2}\right)-4^{x+2}=0$ for $x \approx 5.6377$.

The integer after the root necessitates that $m(x)<l s b(x)$. In other words, it requires six $3 n+L S B$ steps for 9 to converge to 2^{13}.

```
Theorem 3: For all positive odd integers n, there exists a positive
                        integer x such that m(x) < lsb(x).
                        |n(n\in\mp@subsup{O}{}{+})\existsx\in\mp@subsup{\mathbf{Z}}{}{+}(m(x)<lsb (x))
```

Proof: Case 1:
$\delta \leq-1, \quad \delta \in \mathbf{Z}$
Assume $n \in O^{+}$and let $m(x)-\operatorname{sb}(x)=3^{x-\delta} n-4^{x-\delta}=0$.
Then $x=\frac{\log (1 / n)}{\log (3 / 4)}+\delta$.

$$
\therefore \exists!\mathrm{x} \in \mathbf{R}^{+}\left(3^{\mathrm{x}-\delta} \mathrm{n}-4^{\mathrm{x}-\delta}=0\right) \Rightarrow \exists \mathrm{x} \in \mathbf{Z}^{+}(\mathrm{m}(\mathrm{x})<\operatorname{lsb}(\mathrm{x}))
$$

Case 2:
$\delta=0$
Assume $n \in \mathbf{O}^{+}$and let $m(x)-\operatorname{lsb}(x)=3^{x} n-4^{x}=0$.
Then $x=\frac{\log (1 / n)}{\log (3 / 4)}$.

$$
\therefore \exists!x \in \mathbf{R}^{+}\left(3^{x} n-4^{x}=0\right) \Rightarrow \exists x \in \mathbf{Z}^{+}(m(x)<\operatorname{ls} b(x))
$$

Case 3:
$\delta \geq 1, \quad \delta \in \mathbf{Z}$
Assume $n \in \mathbf{O}^{+}$and let $m(x)-l$ sb $(x)=3^{x+\delta} n-4^{x+\delta}=0$.
Then $x=\frac{\log (1 / n)}{\log (3 / 4)}-\delta$.

$$
\therefore \exists!x \in \mathbf{R}^{+}\left(3^{x+\delta} n-4^{x+\delta}\right) \Rightarrow \exists x \in \mathbf{Z}^{+}(m(x)<\operatorname{lsb}(x))
$$

Because these cases are exhaustive, it shows that

$$
\forall \mathrm{n}\left(\mathrm{n} \in \mathrm{O}^{+}\right) \exists \mathrm{x} \in \mathbf{Z}^{+}(\mathrm{m}(\mathrm{x})<\operatorname{lsb}(\mathrm{x}))
$$

For all $n \in \mathbf{O}^{+}$there exists an $\mathrm{x} \in \mathbf{Z}^{+}$such that $\mathrm{m}(\mathrm{x})<\operatorname{lsb}(\mathrm{x})$ (Theorem 3), therefore $f(x)$ converges to $2^{y}, y \in \mathbf{Z}^{+}$. And since the $3 n+$ LSB step and the $3 n+1$ step are isomorphic (Theorem 2), it can be concluded that if $a_{0}=n, n \in \mathbf{O}^{+}$, then
$a_{i+1}=\left\{\begin{array}{ll}a_{i} / 2 & \text { for even } a_{i} \\ 3 a_{i}+1 & \text { for odd } a_{i}\end{array}\right.$, converges to 1.

Because the $3 n+1$ problem is true for all positive odd integers, then by Theorem 1 the truth extends to all positive integers. Therefore, if $\mathrm{a}_{0}=\mathrm{n}, \mathrm{n} \in \mathbf{Z}^{+}$, then
$a_{i+1}=\left\{\begin{array}{ll}a_{i} / 2 & \text { for even } a_{i} \\ 3 a_{i}+1 & \text { for odd } a_{i}\end{array}\right.$, converges to 1.
Q.E.D

