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Abstract

I establish the existence of a unique binary pattern inherent to the 3n+1 
step, and then use this binary pattern to prove the 3n+1 problem for all 
positive integers.

Introduction

Observe that every positive odd integer n, defined as n =∑ 4i , x ∈ Z+ 

requires one 3n+1 step and then 2(x+1) consecutive n/2 steps to be reduced 
to 1.

The truth of this statement will become apparent when the 3n+1 step with 
such an integer is observed in base 2.

Example 1:  Let n = ∑ 4i = 21 = 101012, then

 

101012 * 102 ⇒ 1010102 + 101012 ⇒ 1111112 + 12 = 10000002 = 26, and 
 
10000002/102 ⇒ 1000002/102 ⇒ 100002/102 ⇒ 10002/102 ⇒ 1002/102 ⇒ 102/102 = 1.

Therefore, the base 2 representation of positive integers furnishes more 
insight into the 3n+1 problem than their base 10 representation.
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Proof

 
Let O+ be the set of positive odd integers, then 

 O+ = {x = Z| x=2y+1, y ≥ 0 , y ∈ Z}.

Theorem 1:     Let P designate the 3n+1 problem. Then if P is true for all 
      positive odd integers, it is true for all positive integers.       
      

∀a ∈ O+: P(a) ⇒ ∀b ∈ Z+: P(b)

Proof: Case 1:  Power of two
 

Let n = 2
x
, x ∈ Z+. Then n requires x consecutive n/2 steps to be 

reduced to 1.

 Case 2:  Odd integer multiplied by a power of two

Let y = 2
x
n, n ∈  O+ and x ∈ Z+. Then x consecutive n/2 steps are 

required to have y = n.

Since these cases are exhaustive, it shows that if the 3n+1 problem is 

true for all a ∈ O+ it hast to be true for all b ∈ Z+.

The iteration between the 3n+1 step and the n/2 step modifies every integer 

n , n ∈ O+ in such a way that, at some point the integer becomes 2x, x ∈ Z+. 

However, the process of this transformation is obscured by the n/2 step. In 
order to make the process apparent, the n/2 step is omitted and the addition 
of 1 in the 3n+1 step is modified to compensate for the omission of the n/2 
step.

Example 2:  Let n = 9 = 10012, then 3n+2
x produces this pattern:

        10012 * 112 ⇒         110112 +          12 =          111002
       111002 * 112 ⇒       10101002 +        1002 =        10110002
     10110002 * 112 ⇒     1000010002 +       10002 =      1000100002
   1000100002 * 112 ⇒    11001100002 +      100002 =     11010000002
  11010000002 * 112 ⇒  1001110000002 +    10000002 =   1010000000002
1010000000002 * 112 ⇒ 11110000000002 + 10000000002 = 100000000000002 = 213.
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In example 2, the least significant bit transcends the most significant bit 
after six 3n+2x steps, transforming n into a power of two.

 

Definition 1:  Let LSB be the least significant bit of s∈Z+, then 

LSB={2r,r ≥ 0 , r∈Z ⎮ 2r= s/t,t∈O+}.

Theorem 2:     The 3n+LSB step and the 3n+1 step are isomorphic.

Proof: Suppose n0∈O+. Let n1=3n0+1 and n2=n1/LSB, then
  
  

       ____________ = ____________ = ____________ = LSB.
                           3      +1

  

  ∴ 3n+LSB ≡ 0(mod 3n+1).

Because a modular congruence exists between the 3n+LSB step and 
the 3n+1 step, they are therefore isomorphic.

The pattern in example 2 is composed of two functions. The first function 
increases the most significant power of two or most significant bit of n, 
and the second function increases the least significant power of two or 
least significant bit of n. 

Let m(x) be the function for repeated multiplication of n by 3 in terms 

of x, x∈Z +. Then m(x)=3x+δn.

Let lsb(x) be the function for repeated multiplication by 4 (3(LSB)+LSB)
of the least significant bit of n in terms of x, x∈Z+. Then lsb(x)=4x+δ. 

Definition 2:  Let f(x) be the function for the 3n+LSB step for n ∈ O+ in 
      terms of x, x ∈ Z+. Then

f(x)= m(x)+lsb(x)= 3x+δn + 4x+δ.
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Suppose that Tlsb(x) is the function that gives the true position of the least 

significant bit of the 3n+LSB step for n ∈ O+ in terms of x, x ∈ Z+. Then

δ = ∑ Tlsb(x)-lsb(x).

Example 3:  Tlsb(x) > lsb(x)

Assume that multiplying nk by 3 produces ...001111100... somewhere in the 

binary representation of the result; and that the rightmost 1 is LSB=2x. 
Let lsb(x)= Tlsb(x). Adding LSB to nk yields ...010000000..., then

δ = ∑ Tlsb(x)-lsb(x)=∑ 2x+5 - 2x+2 = ∑ x+5-x-2 = ∑ 3 = 3.

Example 4:  Tlsb(x) < lsb(x)

Assume that multiplying nk by 3 and adding LSB
 produces ...001111100... 

somewhere in the binary representation of the result; and that the 
rightmost 1 is LSB=2x. Let lsb(x)= Tlsb(x). Then repeated multiplication 
by 3 and addition of LSB will produce this pattern:
        

         ...001111100...
...101111000...
...001110000...
...101100000...

      ...001000000..., then

δ = ∑ Tlsb(x)-lsb(x) = ∑ 2x+1 - 2x+2 = ∑ x+1-x-2 =∑ -1 = -4.

∴ (δ<0) ∨ (δ=0) ∨ (δ>0)

Assume x ∈ Z+, then m(x) < lsb(x) implies that a single power of two is larger 
than a sum of powers of two. 
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Using example 2 as an illustration: 

 m(x)-lsb(x)= 9(3x+2)- 4x+2= 0 for x≈5.6377. 

The integer after the root necessitates that m(x) < lsb(x). In other words, 
it requires six 3n+LSB steps for 9 to converge to 213. 

Theorem 3:     For all positive odd integers n, there exists a positive 
      integer x such that m(x) < lsb(x). 

∀n(n ∈ O+)∃x∈Z+(m(x) < lsb(x))

Proof:  Case 1:

δ ≤ -1, δ ∈ Z
Assume n ∈ O+ and let m(x)-lsb(x) = 3x-δn-4x-δ = 0. 

Then  x =  __________ + δ.

∴ ∃!x∈R+(3x-δn-4x-δ = 0) ⇒  ∃ x∈ Z+(m(x) < lsb(x))

Case 2:

δ = 0

Assume n ∈ O+ and let m(x)-lsb(x) = 3xn-4x =0. 

Then  x =  __________ .

∴ ∃!x∈R+(3xn-4x =0) ⇒  ∃ x∈ Z+(m(x) < lsb(x))

Case 3:

δ ≥ 1 , δ ∈ Z
Assume n ∈ O+ and let m(x)-lsb(x) = 3x+δn-4x+δ = 0. 

Then  x =  __________ - δ.

∴ ∃!x∈R+(3x+δn-4x+δ) ⇒  ∃ x∈ Z+(m(x) < lsb(x))

Because these cases are exhaustive, it shows that 

∀n(n ∈ O+)∃x∈Z+(m(x) < lsb(x)). 
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For all n∈ O+ there exists an x∈ Z+ such that m(x) < lsb(x)(Theorem 3), therefore 
f(x) converges to 2y, y∈ Z+ . And since the 3n+LSB step and the 3n+1 step are 
isomorphic (Theorem 2), it can be concluded that if a0 = n , n∈O+, then

ai+1 ={      , converges to 1.

Because the 3n+1 problem is true for all positive odd integers, then by 

Theorem 1 the truth extends to all positive integers. Therefore, if 

a0 = n , n∈Z+, then

ai+1 ={      , converges to 1.

   

Q.E.D
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