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Abstract. 
In this paper we use extend Harley’s measure of uncertainty of a set and of mass to the degree of 
uncertainty of a set and of a mass (bba).  
 
Measure of Uncertainty of a Set. 
 In DST (Dempster-Shafer’s Theory), Hartley defined the measure of uncertainty of a set 
A  by:  

2( ) logI A A= , for { }2 \A θ∈ Φ ,  

where A  is the cardinal of the set A  . 
 We can extend it to DSmT  in the same way: 
  2( ) logI A A= , for { }\A Gθ∈ Φ  

where Gθ  is the super-power set, and A  means the DSm  cardinal of the set A . 
 
 We even improve it to: 
  { } [ ]: \ 0,1s

d Gθ Φ →∪  

 If A  is a singleton, i.e. 1A = , then ( ) 0s
d A =∪  (minimum degree of uncertainty of a set), 

 For the total ignorance tI  , since tI  is the maximum cardinal, we get ( ) 1s
d tI =∪  

(maximum degree of uncertainty of a set). 
 For all other sets X  from { }\Gθ Φ , whose cardinal is in between 1 and tI , we have 

( )0 1s
d X< <∪ .  

 We consider our degree of uncertainty of a set work better than Hartley Measure since it 
is referred to the frame of discernment. 
 
 Let’s see an Example 1. 
 If { },A Bθ =  and A B ≠ Φ∩ , we have the model  
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 Example 2.  
 If { }, ,A B Cθ = , and A B ≠ Φ∩ , but A C = Φ∩ , B C = Φ∩ , we have the model  
 
  A  B   C 
   
 
 
 
 

2( ) log 1I A A= =  as in Example 1. 

 While  ( ) 2 2
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It is normal to have a smaller degree of uncertainty of set A  when the frame of discernment is 
larger, since herein the total ignorance has a bigger cardinal. 
 
 
Generalized Hartley Measure of uncertainty for masses is defined as: 
  

{ }
2

2 \

( ) ( ) log
A

GH m m A A
θ∈ Φ

= ∑  

In DST we simply extend it in DSmT  as: 

{ }
2

\

( ) ( ) log
A G

GH m m A A
θ∈ Φ

= ∑
 

 
Degree of Uncertainty of a mass. 
We go further and define a degree of uncertainty of a mass m  as 
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where tI  is the total ignorance. 
 If ( )m ⋅  is a mass whose focal elements are only singletons then ( ) 0M

d m =∪  (minimum 
uncertainty degree of a mass). 
 If ( ) 1tm I = , then ( ) 1M

d m =∪  (maximum uncertainty degree of a mass). 

 For all other masses ( )m ⋅  we have 0 ( ) 1M
d m< <∪ . 
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