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Abstract 

Using Jiang function we prove that 7jP k j+ −  contain infinitely many prime solutions. 
Theorem . Let k  be a given prime. 

                   7, ( 1, , 1)P jP k j j k+ − = −L                 （1） 

We have Jiang function [1,2] 

                     2 ( ) [ 1 ( )]
P

J P Pω χ= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

7

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

From (2) and (3) we have 
                        2 ( ) 0J ω ≠                             （4） 

we prove that (1) contain infinitely many prime solutions. 
We have asymptotic formula [1,2] 
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Where ( ) ( 1)
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Pφ ω = Π −  

Remark. The prime number theory is basically to count the Jiang function 1( )nJ ω+  and Jiang 

prime k -tuple singular series 
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[1,2], which can count 

the number of prime numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple 

singular series 
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 is false [3-8], which cannot count the number of prime 

numbers[3]. 
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Szemerédi’s theorem does not directly to the primes, because it cannot count the number of primes.  

Cramér’s random model cannot prove any prime problems. The probability of 1/ log N  of being prime 

is false. Assuming that the events “ P  is prime”, “ 2P +  is prime” and “ 4P +  is prime” are 
independent, we conclude that P , 2P + , 4P +  are simultaneously prime with probability about 

31/ log N . There are about 3/ logN N  primes less than N . Letting N →∞  we obtain the prime 

conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood 
prime tuples conjecture, but cannot prove and count any prime problems[6]. 

   Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have 
every reason to believe that there are some mysteries which the human mind will never penetrate. 

                                                        Leonhard Euler(1707-1783) 
  It will be another million years, at least, before we understand the primes. 
           
                                                          Paul Erdos(1913-1996) 
 

Of course, the primes are a deterministic set of integers, not a random one, so the predictions 
given by random models are not rigorous (Terence Tao, Structure and randomness in the prime 
numbers, preprint). 陶哲轩认为素数不是随机的。 
 Erdos and Turán(1936) contributed to probabilistic number theory, where the primes are 
treated as if they were random, which generates Szemerédi’s theorem (1975) and Green-Tao 
theorem(2004). But they cannot actually prove and count any simplest prime examples: twin 
primes and Goldbach’s conjecture. They don’t know what prime theory means, only conjectures. 
 
 


