Seven Conjectures in Geometry and Number Theory

Florentin Smarandache, Ph D Professor of Mathematics Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Abstract:

In this short paper we propose four conjectures in synthetic geometry that generalize Erdos-Mordell Theorem, and three conjectures in number theory that generalize Fermat Numbers.

2000 MSC: 11A41, 51F20

- 1. Four Geometrical Conjectures:
- a) Let *M* be an interior point in a $A_1A_2...A_n$ convex polygon and P_i the projection of *M* on A_iA_{i+1} , i = 1, 2, 3, ..., n. Then

$$\sum_{i=1}^{n} \overline{MA_i} \ge c \sum_{i=1}^{n} \overline{MP_i}$$

where c is a constant to be found.

For n=3, it was conjectured by Erdös in 1935, and solved by Mordell in 1937 and Kazarinoff in 1945. In this case c = 2 and the result is called the Erdös-Mordell Theorem.

- b) More generally: If the projections P_i are considered under a given oriented angle $\alpha \neq 90$ degrees, what happens with the above inequality?
- c) In a 3-space, we make the same generalization for a convex polyhedron with n vertexes and m faces:

$$\sum_{i=1}^{n} \overline{MA_i} \ge c_1 \sum_{j=1}^{m} \overline{MP_j}$$

where P_j , $1 \le j \le m$, are projections of M on all faces of the polyhedron, and c_1 is a constant to be determined.

[Kazarinoff conjectured that for the tetrahedron

$$\sum_{i=1}^{4} \overline{MA_i} \ge 2\sqrt{2} \sum_{i=1}^{4} \overline{MP_i}$$

and this is the best possible].

d) Furthermore, does the below inequality hold?

$$\sum_{i=1}^{n} \overline{MA_i} \ge c_2 \sum_{k=1}^{r} \overline{MT_k}$$

where T_k , $1 \le k \le r$, are projections of M on all sides of the polyhedron, and c_2 is a constant to be determined.

2. <u>Three Number Theory Conjectures (Generalization of Fermat Numbers):</u>

Let's consider a, b integers ≥ 2 and c an integer such that (a, c) = 1.

One constructs the function $P(k) = a^{b^k} + c$, where $k \in \{0, 1, 2, ...\}$. Then:

- a) For any given triplet (a, b, c) there is at least a k_0 such that $P(k_0)$ is prime.
- b) Does there exist a non-trivial triplet (a, b, c) such that P(k) is prime for all $k \ge 0$?
- c) Is it possible to find a triplet (a, b, c) such that P(k) is prime for infinitely many k's?

REFERENCES

- [1] Alain Bouvier and Michel George, sous la direction de François Le Lionnais, *Dictionnaire des Mathématiques Elémentaires*, Presses Universitaires de France, Paris, 1979.
- [2] P. Erdös, Letter to T. Yau, August 1995.
- [3] Florentin Smarandache, *Collected Papers, Vol. II*, University of Chişinău Press, Chişinău, 1997.

[Published in author's book Collected Papers, Vol. II, 1997.]