Seven Conjectures in Geometry and Number Theory

Florentin Smarandache, Ph D
Professor of Mathematics
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract

: In this short paper we propose four conjectures in synthetic geometry that generalize Erdos-Mordell Theorem, and three conjectures in number theory that generalize Fermat Numbers.

2000 MSC: 11A41, 51F20

1. Four Geometrical Conjectures:

a) Let M be an interior point in a $A_{1} A_{2} \ldots A_{n}$ convex polygon and P_{i} the projection of M on $A_{i} A_{i+1}, i=1,2,3, \ldots, n$.
Then

$$
\sum_{i=1}^{n} \overline{M A_{i}} \geq c \sum_{i=1}^{n} \overline{M P_{i}}
$$

where c is a constant to be found.
For n=3, it was conjectured by Erdös in 1935, and solved by Mordell in 1937 and Kazarinoff in 1945. In this case $c=2$ and the result is called the Erdös-Mordell Theorem.
b) More generally: If the projections P_{i} are considered under a given oriented angle $\alpha \neq 90$ degrees, what happens with the above inequality?
c) In a 3 -space, we make the same generalization for a convex polyhedron with n vertexes and m faces:

$$
\sum_{i=1}^{n} \overline{M A_{i}} \geq c_{1} \sum_{j=1}^{m} \overline{M P_{j}}
$$

where $P_{j}, 1 \leq j \leq m$, are projections of M on all faces of the polyhedron, and c_{1} is a constant to be determined.
[Kazarinoff conjectured that for the tetrahedron

$$
\sum_{i=1}^{4} \overline{M A_{i}} \geq 2 \sqrt{2} \sum_{i=1}^{4} \overline{M P_{i}}
$$

and this is the best possible].
d) Furthermore, does the below inequality hold?

$$
\sum_{i=1}^{n} \overline{M A_{i}} \geq c_{2} \sum_{k=1}^{r} \overline{M T_{k}}
$$

where $T_{k}, 1 \leq k \leq r$, are projections of M on all sides of the polyhedron, and c_{2} is a constant to be determined.

2. Three Number Theory Conjectures (Generalization of Fermat Numbers):

Let's consider a, b integers ≥ 2 and c an integer such that $(a, c)=1$.
One constructs the function $P(k)=a^{b^{k}}+c$, where $k \in\{0,1,2, \ldots\}$. Then:
a) For any given triplet (a, b, c) there is at least a k_{0} such that $P\left(k_{0}\right)$ is prime.
b) Does there exist a non-trivial triplet (a, b, c) such that $P(k)$ is prime for all $k \geq 0$?
c) Is it possible to find a triplet (a, b, c) such that $P(k)$ is prime for infinitely many k 's?

REFERENCES

[1] Alain Bouvier and Michel George, sous la direction de François Le Lionnais, Dictionnaire des Mathématiques Elémentaires, Presses Universitaires de France, Paris, 1979.
[2] P. Erdös, Letter to T. Yau, August 1995.
[3] Florentin Smarandache, Collected Papers, Vol. II, University of Chişinău Press, Chişinău, 1997.
[Published in author's book Collected Papers, Vol. II, 1997.]

